Simulation Modelling Formalism: Bond Graphs

Simulation Modelling Formalism:
Ordinary Differential Equations

The concepts of ordinary differential equations
(ODE:s) and difference equations (AEs) are presented
as means of describing the timewise development of
dynamic systems as they are commonly found both in
nature and in an artificial (human-created) environ-
ment.

1. Modelling of Physical Systems

Let us look at a simple example from mechanics first.
Two masses sliding on a surface are coupled by springs
to each other and to a vertical wall. An external force
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Figure 1
Representation of a simple mechanical system

u(?) is exerted on the mass which is further from the
wall. Graphically, this system can be depicted as i
Fig. 1. According to Newton’s second law, the mass m;
of each of these bodies multiplied by its acceleratlon g
must be equal the sum of all forces acting on the body
Thus

mia =u(f) — v, —ki(x; — x,) (1)
Moty = ki (X, — X2) — 1202 — KXy (2)
and with v;=dx/dt and a;=dv,/dt=d*,/ds* we find

my(dx/d?) = u(f) — ri(dx/df) — ky(x1~x;)  (3)
mz(dzledtz) = kl(xl - xZ) - rz(dXQ/dt) - k2x2 (4)

where m; are the masses, r; are the friction coefficients

“and k; are the spring constants.

Using Newtonian mechanics we can describe the
dynamics of this system by two second-order ODEs,
that is, given the required number of initial conditions
(in our case four), we can know the position, velocity
and acceleration of each of the two bodies at any
moment.

It was one of the great mathematical discoveries that
many kinds of different systems show similar behavior,
that is, they can be modelled by the same mathematical
rules. It is, for example, easy to show that the electrical
system of Fig. 2 can be described by the set of ODEs:

Ly(d%,/dr?) = dv(#)/dt— Ry(diy/dE) — (i, — i)/ C (5)
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Figure2

Simple electrical circuit mathematically equivalent to
Fig. 1
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Lz(d2i2)/dt2) = (ll - lz)/Cl - Rz(dlz/dt) - lz/ CZ (6)

In other words, from a mathematical point of view
~ these two systems are identical, where the mechanical

variable m; corresponds to the electrical variable L;, r;
) (s} R,’, k,' to l/Cj, X; to i,' and u to dU/dt

2. Mathematical Models Versus Reality

Although we have shown that the same mathematical
models may govern a variety of different systems, that
is, these models have a large degree of generality that
goes far beyond that of the physical systems they
represent, one must not succumb to the temptation of
identifying reality by the mathematical model repre-
senting it or, even worse, trust the computer figures
better than one’s eyes. For example, in our coupled
masses system we may easily exert a force which drives
the masses into the vertical wall or which breaks the
springs. Quite obviously, our model is not valid for this
type of experiment. Validation of models is discussed
by Sargent (1982) and elsewhere (see Validation of
Simulation Models: General Approach; Validation of
Simulation Models: Statistical Approach).

3. The State-Space Description

So far we have dealt with two second-order ODEs. It is
common to represent such models in the form of sets of
first-order ODEs. An nth order ODE may be trans-

formed into such a representation by solving for the

highest derivative and by using the variable itself and
all its derivatives except the highest as state variables:

W =f(x,%,%,...,x(n—-1) ()

x=x, i=x, i=x5...,x% V=x, (8)
Sx =X
X =x3
in—l =Xn
'iPL:f(xlst,x’.%: L ’xn) (9)
Applied to the mechanical spring problem, this gives
x=Ax+bu, xeR" . (10}
where
C 0 1 0 0] 0]
kl r kl 0 1
A= my my ms , b= M
0 0 0 1 0
k —(ky+ks) ~—r
fa2l 0 (ki + k3) —nh 0
| m; m | -
(11)

This transformation is common use, because all our
current numerical integration algorithms are developed
to solve problems of the form

j:=f(xat): x(t:t(]):x[]: te[to,tf], xeR"

(see Lambert 1973 and the article Ordinary Differential
Equation  Models:  Numerical Integration  of
Initial-Value Problems). '

It is only fairly recently that integration algorithms
for other representations have begun to be developed.
For example,

Ax=f(x,t) (A singular) (12)
arises in the modelling of coupled differential and
algebraic systems. More general is the representation

oo %, ..., x™)=0 (13)

In the near future we expect some special algorithms to
be developed for the representation

i=f(x,x,10) (14

which may be profitable in case of highly oscillatory
problems (Petzold 1978).

4. Range of Applications

The concept of differential equations goes back to the
time of Newton and the previously demonstrated anal-
ogy between mechanical and electrical systems is a
child of the last century. However, the concept became
really useful only in the middle of the present century
when the first analog computers became available
which ailowed very general nonlinear ODE problems
to be solved in a convenient and elegant way (see Korn
and Korn 1964 and the article Hybrid Analog—Digital

- Computers). The interest in large-scale models is even

younger, as only modern digital computers are capable
of treating large sets of ODEs (which are in general
very stiff) in an acceptably efficient and accurate man-
ner (Gear 1971, Bjorck and Dahlqvist 1974).

As interest in these methods grew, the theory was
developed further. The analogy between mechanical
and electrical models was generalized into a concept
which we nowadays call bond graph modelling (see van
Dixhoorn 1982 and the article Simulation Modelling
Formalism: Bond Graphs). Applications were
extended recently to cover a wide variety of dynamical
systems. The same or a similar set of differential equa-
tions could equally well represent a chain of chemical
reactions, the ecology of a lake or some facets of Wall
Street. We may even note first attempts to model some
global quantities, such as global ecology or world food
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supply (Frohberg 1982, Odum 1983). Few would doubt
that our planet really constitutes a dynamical system
with all its characteristic properties. Making use of
resources of the planet in a careless way can no longer
be justified.

5. Difference Equations and their Relation to
Differential Equations
So far we have discussed models of the form

x=f(x,u,t) telty, 1]
y=q(x,u,t) xeR" (15)
ueR™
veRP

where the u vector stands for the m inputs, the y vector
represents the p outputs and the x vector denotes the n
state variables. In the linear case, this can be written as

i=Ax+Bu 16
y=Cx+ Du (16)

When solving the ODEs on a digital computer, we
have to discretize the time axis. The most direct
approach of doing so is by expanding a Taylor series to
extrapolate to the point (#* + Af) from a given time ¢*:

dx(t*) Af dx(t*)

ar T2 Tag

x(t* + A) =x(t*) + At- + -+ (17)

When At is made sufficiently small, we may neglect all
higher-order terms and obtain the first-order approxi-
mation:

x(t* + AD)=x(*) + Ar-x(t7) (18)

which is also known as Euler’s integration algorithm.
Putting in the above ODEs, we can write

x(t*+ AN =x(t*)+ At flx(2*), u(t™), t*]
=f*Pe(e*), uft*), *, Ad (19)
In somewhat simpler form, by representing the

time axis through an integer range t=(0,1,2,...,
k,...,n), we can write

x(e+ 1) =F*[x(k), u(k), k, Af]

y(k+ 1) =glx(k+1), u(k+1), k] @0

and the linear case
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x(k+1)=Fx(k) + Gu(k)
y(k+1)=Hx(k+1) +Tu(k+1) 2y

In the linear case, a better solution is obtained by
means of the z transform, leading to

F

]

At
eAAt’ G=J’ eAzB dr
0

(22)

H=C, I=D

(see Jury 1964). This method is also sometimes referred
to as Tustin’s integration algorithm (Howe 1982).

In the case of linear systems, Tustin’s integration is
often quite a reasonable choice; Euler’s method on the
other hand is not, due to insufficient accuracy (first-
order approximation) and too small a stability domain
(Lambert 1973 and the article Ordinary Differential
Equation  Models:  Numerical  Integration  of
Initial-Value Problems). Why then has the FEuler
method received so much attention? There are several
reasons.

(a) In a real-time environment (e.g., in a computer-
controlled system), we cannot afford variable-
order variable-step integration algorithms, as we
must be able to guarantee that the time advance in
the simulation model (simulation clock) keeps
abreast of the real time advance. As these control
algorithms are often linear, the linear AE is of
primary importance here.

(b) Biologists and sociologists, who are more and
more interested in analyzing the dynamic proper-
ties of their systems, are often not very well trained
in numerical mathematics. For such workers,
Forrester (1961) developed his notion of levels and
rates where the level in the following sampling
instant is computed from the level and rate at the
current instant through the formula

level(k + 1) =level(k) + AT*rate(k)  (23)

This is obviously nothing but a reformulation of
Euler’s integration. However, persons with weak
mathematical background seem to be more at ease
with the terms level and rate than with the term
differential equation.

(c) More and more our ODE concept is being applied
to so-called ill-defined systems, where the model
parameters and even the governing equations are
known only to a minor extent (Vansteenkiste and
Spriet 1982). In such cases, it does not make sense
to compute the state equations to 14 digits if
perhaps not one of them is significant. It may then
make sense to save computer time by discretizing
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the original ODEs to AEs. This is also partly a
justification for point (b).

(d) There exist some systems which are discrete in
nature, for example the population of insects
which reproduce in spring only.

6. Difference Equations Revisited

Besides systems which are continuous in nature (at
least as long as one does not try to model them down to
the level of quantum mechanics), there exists another
class of systems which are entirely discrete in nature
and which are mostly modelled by a discrete-event
mechanism.

The simplest representative of this class of models is
the single-server—single-queue model. We could
obviously model the length of the waiting queue in, say,
a barbershop by the AE:

x(k+1)y=x(k)+u, (k) — u,(k) (24)

where x(k) is the length of the waiting queue at time
k*At, u,(k} is the number of customers entering the
shop between kxAt and (k+1)*At and u,(k) is the
number of customers serviced between k*Af and
(k+1)*Ar. If, for instance, both the interarrival time
and the service time are exponentially distributed, both
u;(k) and u,(k) will follow a Poisson distribution (Fish-
man 1973).

Although common in stochastic analysis, this
approach has, until now, rarely been applied in the
simulation context. It could, however, be automated to
alarge extent (that is, given a discrete-event model, the
set of AFEs could be generated automatically). Such an
approach may prove beneficial for example in
computer-aided manufacturing, as we have available
many more tools for the analysis and synthesis of AEs
than for discrete-models.

See also: Ordinary Differential Equation Models:
Numerical Integration of Initial-Value Problems
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