Ordinary Differential Equation Models

Ordinary Differential Equation Models:
Numerical Integration of Initial-Value
Problems

Although the concept of ordinary differential equations
(ODEs) as modelling formalism is quite old (see Simul-
ation Modelling Formalism: Ordinary Differential
Equations), only the advent of modern computer tech-
nology has made ODE:s solvable in a very general sense.
In this article we shall try to classify some of the more
popular numerical integration schemes. As there does
not exist any numerical integration algorithm which is
equally well suited to all types of ODE models, we shall
also try to classify the models to some extent.

1. General
Given a set of ODEs represented as

=fx,0) x(t)=x, tE€[t, 4 x€ER (1)

which is the representation most commonly used in
numerical integration, we want to find the solution x(¢)
at times ¢ € [#,, #], given a consistent set of initial values
specified at time ¢ = ¢;. In this case, we talk of an initial-
value problem, as opposed to a boundary-value problem
(Yen 1979) which we obtain when specifying consistent
sets of boundary values at several different instants
of time ¢ € [#,, #]. As these boundary-value problems
require quite different solution techniques, we shall
restrict further discussion to the treatment of initial-
value problems only.

All methods used have in common that they apply
extrapolation techniques to extrapolate the solution at
a given time ¢, say ¢ =t*, to the solution some small
amount of time later:

x(t=0)—>x(t=1*+ A 2)

The most common approach is by expanding a Taylor
series around time *:
. AP
Cx(A = x(7) + AL () S)+

2
)

which is an infinite-order polynomial in At. It is quite
evident that the higher-order terms in this polynomial
lose their importance when At is made sufficiently small.
That is, to compute the polynomial approximation suf-
ficiently accurately, we can either consider many terms
of the Taylor series (high-order approximation) with a
large step size, or a few terms with a small step size.
Except for a few “exotic” approaches, all currently
used algorithms follow this basic idea. However, it is
not the only conceivable one and this approach is per-
haps not even the most natural one. Thus we could
argue along the following lines: as Af is made smaller
and smaller, the nonlinearities in the state-space
description also become more and more negligible:

i=fx,0—>i= A x 4)

It is therefore sensible to search for an algorithm which
solves the linear initial-value problem

x(t)=x%, xR (5)

in an optimal way. For this problem, however, we know
the analytic solution. If all eigenvalues A, of the matrix
A are distinct, we may write

x=A-x

x()= 2 coexpilt) ¢, ER A, €C (6)
k=1

For multiple eigenvalues, we obtain some additional
terms of the form c¢tlexp(idf), where [€&
[0,1,...,(L —1)] with L a multiple of eigenvalue 2,.
By this approach, we can compute the true solution of
the linear problem by a finite rather than an infinite
sum. For nonlinear systems, we may use the same
approach by linearizing around a working point. The
linear part, of which we have to compute the eigen-
values, is the Jacobian of the system:

_¥fx, 0
=

J(@) (7)

x=x(t)

In this approach, the solution is approximated by a sum
of (complex) exponentials rather than by a polynomial
sum. Besides the classical methods for eigenvalue com-
putation (Smith ez al. 1974, 1977), there also exist some
iterative methods (Peters and Wilkinson 1970) which
are probably better for our purpose, as the eigenvalues
change only slightly from one step to the next.

A third approach may be to look for algorithms which
make use of a Fourier series decomposition rather than
a Taylor series expansion. This approach was tried quite
early by Brock and Murray (1952). It had little success,
however, as the recomputation of the Fourier coef-
ficients after each step was very expensive. However,
at that time the fast Fourier transform (FFT) (Brigham

3555

Ordinary Differential Equation Models

1074) was not yet developed. This is a method which
also permits a high degree of parallelization (pipelining)
for improved efficiency (Bergland 1972). The time
appears to have come to elaborate on that approach
once more. In particular, this method has some potential
for the solution of oscillatory problems (complex A,),
which we shall discuss in Sect. 7.

2. Numerical Stability

Let us return to the linear problem of Eqn. (5). The
values of A for which this problem has a stable solution,
that is,

lim x(f) — 0
—> 0

are given by the condition that all eigenvalues of A must
have a negative real part, that is, all eigenvalues must
lie in the open left-hand complex half-plane.

Is this fact also reflected by the numerical solution?
Only if this is the case is the numerical solution said to
converge to the true solution. Let us look at the linear
approximation of the Taylor series first:

x(ff 4+ At) = x(t*) + At~ X(t*) (8)

which is known as Euler’s integration rule. Substituting
in Eqn. (5),

x(¢* + Af) = x(r*) + At- A - x(t¥)
= (I + At- A)x(t*) 9)

A stable solution is found for all A such that
|1+ At- A| <1 that is, all A, multiplied by Ar must lie
in a circle of radius 1 around the point —1 (Fig. 1).
Therefore, given a stable system described by matrix A
with eigenvalues A, the step size At must be chosen
sufficiently small to keep all A, At within the domain of
numerical stability. Outside this domain, the numerical
algorithm is unstable.

Let us now discuss what happens when we modify

Euler’s integration rule such that the derivative is used -

at point (£* + At) instead of ¢*:

x{t* + Af) = x(*) + At - (" + Af) (10)
Substituting in Eqn. (5), we obtain
x(t* + Ay = (I — At- A)7L-x(t*) (11)

Figure 1
(a) Domain of analytic stability; (b) domain of
numerical stability of Euler’s integration rule

3556

Figure 2
D(l)main of stability of modified Euler’s integration
rule

Here we obtain the domain of stability shown in Fig. 2.
This time we have derived an algorithm which exhibits
stability throughout the negative half-plane (the so-
called A-stable algorithm). Unfortunately, we may now
also observe a numerically stable solution in the case of
algebraically unstable problems.

Each numerical integration scheme has a stability
domain in the (A - Af) plane which is characteristic of it.
A numerical algorithm that reflects the analytic stability
correctly cannot exist, as the numerical algorithm can-
not distinguish between the points + and —c. There-
fore, either both points exhibit stability behavior or
both exhibit instability.

More about numerical stability can be found in any
book dealing with numerical initial value problems
(e.g., Bjorck and Dahlqvist 1974, Gear 1971, Lambert
1973).

3. Explicit versus Implicit Integration

Looking at the above two algorithms, an important
difference can be seen with respect to computability. In
the former case—that is, forward Euler integration—
we use the (known) state x at time f, to compute the
first derivative x at time £,. Now, the Euler formula can
be used to compute the new state x at time (4, + Af)
and so on. Such a scheme is called explicit. In the latter
case (backward Euler integration) this approach fails
and we have to solve simultaneously a set of nonlinear
algebraic equations:

x(t* + Af) = x(t*) + At - X(t* + A
=x(t*) + At f(x(t* + AD), " + A (12)

We call such an algorithm implicit. Obviously, explicit
integration is easier to perform and is therefore more
commonly used in simulation. However, implicit inte-
gration generally exhibits better stability properties.
The predictor—corrector methods use an explicit inte-
gration step for predicting the next state and then correct
this prediction by a second implicit scheme using the
previously computed prediction on the right-hand side.
For example, we may have for the explicit predictor
(forward Euler)
xX(t%) = fx(*), r*
(%) = flx ("), 1) } 13)

xXP(t* + Af) = x(*) + Ar- X(tY)

Ordinary Differential Equation Models

and for the implicit corrector (backward Euler)

P + AN = f(xP (@ + AD), F + A 14
x(e* + Aty = x(¢%) + At P(* + At)} 1

This is not necessarily the best algorithm to use, as a
very small modification can raise this first-order approxi-
mation to a second-order approximation.

4. One-Step versus Multistep Methods

So far we have considered only first-order approxi-
mations of the Taylor series which can directly be evalu-
ated from the state-space description. For more accurate
evaluations, we require higher-order derivatives. These
are most commonly approximated by one of two
approaches.

(a) Additional function evaluations are performed at
some auxiliary time instants #; € [¢*, * + Af]. Such
methods are called one-step methods, the most
prominent being the Runge-Kutta methods
(Fehlberg 1968).

(b) Older function values from previous steps are used
to approximate the higher-order derivatives. Such
methods are called multistep methods, the most
prominent being the Adams methods (Lambert
1973).

Quite obviously, these two classes of algorithm
behave somewhat differently in several respects.

(a) Multistep methods require precisely one function
evaluation per step, whereas one-step methods
require several. Multistep methods store numerical
information over many steps, whereas one-step
methods discard all previous information at the end
of each step. Therefore, multistep methods are
generally more economical for problems with con-
stant numerical properties, that is, for systems
which are linear or close to linear. One-step
methods behave better for highly nonlinear systems,
that is, for systems with varying numerical
properties.

(b) One-step methods are self-starting, whereas multi-
step methods need to be started either by low-order
approximations or by use of a one-step method.
Therefore one-step methods are more economical
for integration over a few steps, whereas multistep
methods may be better for longer integration.

(c) Multistep methods need to be restarted after each
discontinuity. Therefore, one-step methods are
better for strongly discontinuous problems.

(d) Step-size control is easier to perform on one-step
than on multistep methods. To allow nevertheless
for a more or less economic step-size adjustment,
modern multistep methods relate the set of (k + 1)

ESC5-V*

function values back to the vector of states and
the first up to kth state derivatives (the so-called
Nordsieck vector). In this way, a step-size adjust-
ment results in a recomputation of new supporting
function values rather than in a complete restart of
the algorithm.

5. Semianalytic Methods

A very modern approach, which also may be strongly
parallelized (Halin ef al. 1980), is to combine numerical
methods with methods of computer science. If, for
instance, the normal state-space representation X =
f(x, ¢) is explicitly given (no external driving functions
in a real-time environment), one may easily compute

x'=g—]:(x,t) F=ee (15)

algebraically at compile time (Joss 1976), and these are
then evaluated in a straightforward manner at run time
for the evaluation of the higher-order Taylor series
terms. In this way, the run-time execution may be
economized at the expense of a slower compilation.

6. Stiff Problems

Let us now describe a few classes of problem which call
for special integration techniques. In many problems in
both engineering and physics, the eigenvalues of their
Jacobian matrix exhibit a widespread range of
eigenmodes.

If we remember the charts of stability domains in the
(A - A¥) plane, it is quite clear that stiff problems require
very small step sizes to be taken to keep all A, - Az within
the stable domain, except when an A-stable method is
applied. Unfortuantely, there exist no higher-order A-
stable approximations. For this reason, the speci-
fications are somewhat weakened by requiring that a
method be (A, «)-stable with « only slightly less than
90° (Fig. 3).

Such methods exist and are good for all sufficiently
damped “stiff” systems. These methods fail entirely
when applied to highly oscillatory problems which have

Domain of stability for stiff problems

3557

Ordinary Differential Equation Models

eigenvalues close to the imaginary axis. The best cur-
rently known methods with such behavior are the
backward-difference formulae (BDF methods), which
are also often called Gear algorithms, as the first
efficient implementation of such an algorithm was made
by Gear (1971). BDF methods belong to the implicit
multistep formulae. The most up-to-date implemen-
tations have been developed by Hindmarsh (1983).

7. Highly Oscillatory Problems

As we have seen, we still lack an appropriate algorithm
for problems with eigenvalues close to the imaginary
axis (Gear 1983). Recently, Petzold (1978) developed
a pseudostroboscopic method for this purpose. The idea
behind this algorithm is fairly simple. First, we integrate
with one algorithm using a small step size over a few
periods of the fact oscillation. During this integration
we store all maxima values. Then we use these maxima
as the supporting values of another problem, which no
longer shows these fast oscillations (equivalent to the
envelope), to extrapolate by the use of another inte-
gration algorithm with a large step size to a new point
on the envelope. In this way we lose the information on
the phase of the fast oscillation, but retain the infor-
mation on frequency and shape. It is evident that this
method can be used to sweep out precisely one pair of
complex eigenvalues close to the imaginary axis. The
method must fail when several such pairs of eigenvalues
lie close to each other.

For this class of problems (and for multiple eigen-
values), the Fourier methods mentioned in Sect. 1 may
prove beneficial in the future.

8. Linear Problems

Itis of interest to note that hardly any currently available
simulation software (apart from special-purpose pro-
grams for linear network analysis) offers special inte-
gration techniques for the analysis of linear systems. In
fact, this important class of problems certainly deserves
special treatment:.

As stated above, explicit integration schemes are
mostly preferred to implicit schemes (except for stiff
systems), owing to a smaller computational overhead,
although the implicit formulae exhibit far better stability
behavior. In the case of linear models, however, the
nonlinear function iteration reduces to the inversion
of an n X n matrix. Moreover, if the model is time-
invariant, this matrix needs to be inverted only once.
Therefore, implicit algorithms are highly recommended
for linear-system integration.

Moreover, we can make use of the linear structure to
an even greater extent. Given a linear ODE system of
the form

X=Ax+ Bu
y=Cx+ Du

xER ueR" yeRe (16)

3558

the question is whether there exists a set of difference
equations of the form

£[(k + DAL} = Fi(kAr) + Gu(kAt)
$l(k + DAL = HE[(k + DA + Tuf(k + DAL
teER uelR" yeRr (17)
which represents the desired solutions correctly at each
sampling point, that is:
(kAL = x(kAf)
J(kAr) = y(kAl)

The answer is yes (except for the variations of u(z)
within the sampling intervals). By use of the z transform
method (Jury 1964 and Digital Control: Practical Design
Considerations), we derive

(18)

F=exp(AAr) G= Lt exp(At)Bdr (19)

H=C I=D

which (at least for time-invariant systems) can be com-
puted once and for all, producing an excellent method
for the “integration” of such systems. A variant of this
method (Tustin’s integration) which is sometimes used
is described by Howe (1982).

9. Noisy Systems

Problems in electrical engineering often exhibit some
stochastic properties which are not negligible. Such
problems provide difficulties since there are no algor-
ithms coping reasonably well with such problems. All
polynomial extrapolation methods must fail, as white
noise is everywhere discontinuous, whereas polynomials
are everywhere continuous functions. Any step-size
control mechanism or order-adjustment algorithm must
fail to produce anything meaningful, as all these algor-
ithms are based inherently on deterministic behavior.
We must resort to the traditional fixed-step, fixed-order
algorithms with a “sufficiently small” step size and hope
for the best. Cellier (1979) gives arecipe for the selection
of an appropriate step size. However, this method also
fails when the signal-noise ratio is too low. Analog
computation may then still be the best answer.

See also: Ordinary Differential Equation Models: Symbolic
Manipulation; - Moving-Boundary Models: Numerical
Solution

Bibliography

Bergland G D 1972 A parallel implementation of the
fast Fourier transform algorithm. IEEFE Trans. Comput.
21(4), 366-70

Bjorck A, Dahlqvist G 1974 Numerical Methods. Prentice-
Hall, Englewood Cliffs, New Jersey, p. 576

Brigham E O 1974 The Fast Fourier Transform. Prentice-
Hall, Englewood Cliffs, New Jersey, p. 252

Ordinary Differential Equation Models

Brock P, Murray F J 1952 The use of exponential sums in
step-by-step integration. Math. Tables Aids Comput. 6,
63-78

Cellier F E 1979 Combined continuous/discrete system
simulation by use of digital computers: Techniques and

_ tools. Ph.D. thesis, ETH Zurich, p. 266

Fehlberg E 1968 Classical Sth-, 6th-, 7th-, and 8th- Order
Runge-Kutta Formulas, Report NASA TR R-287.
National Aeronautics and Space Administration, Wash-
ington, DC, p. 82

Gear C W 1971 Numerical Initial Value Problems in Ordi-
nary Differential Equations. Prentice-Hall, Englewood
Cliffs, New Jersey, p. 253

Gear C W 1983 Stiff software: What do we have and
what do we need? In: Aiken R (ed.) Stiff Computation.
Ozxford University Press, Oxford

Halin H J et al. 1980 The ETH multiprocessor project:
parallel simulation of continuous systems. Simulation
35(4), 109-23

Hindmarsh A C 1983 Stiff system problems and solutions
at LLNL. In: Aiken R (ed.) Stiff Computation. Oxford
University Press, Oxford

Howe R 1982 Digital simulation of transfer functions.
In: Proc. Summer Comput. Simul. Conf. AFIPS Press,
Arlington, Virginia, pp. 57-63

Joss J 1976 Algorithmisches differentieren. Ph.D. thesis,
ETH Zurich, p. 69

Jury E 1 1964 Theory and Application of the z-Transform
Method. Wiley, New York, p. 330

Lambert J D 1973 Computational Methods in Ordinary
Differential Equations. Wiley, New York, p. 278

Peters G, Wilkinson J H 1970 Ax = ABx and the gen-
eralized eigenproblem. SIAM J. Numer. Anal. 7, 479-
92

Petzold L R 1978 An Efficient Numerical Method for
Highly Oscillatory Ordinary Differential Equations,
Report UTUCDCS-R-78-933. University- of Illinois,
Urbana-Champaign, p. 131

Smith BT, Garbow B S etal. 1974, 1977 Matrix Eigensystem
Routines—EISPACK Guide, Lecture Notes in Com-
puter Science, Vol. 6. p. 387, Vol. 51. p. 343. Springer,
Berlin

Yen T 1979 Computational Methods in Engineering Bound-
ary Value Problems. Academic Press, New York, p. 309

F. E. Cellier

3559

