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Preface 

During the last decade, integrated model-based design of complex cyber-physical systems (which mix physical dynamics 
with software and networks) has gained significant attention. Hybrid modeling languages based on equations, supporting 
both continuous-time and event-based aspects (e.g. Modelica, SysML, VHDL-AMS, and Simulink/ Simscape) enable high 
level reuse and integrated modeling capabilities of both the physically surrounding system and software for embedded 
systems. Using such equation-based object-oriented (EOO) modeling languages, it has become possible to model complex 
systems covering multiple application domains at a high level of abstraction through reusable model components.  

The interest in EOO languages and tools is rapidly growing in the industry because of their increasing importance in 
modeling, simulation, and specification of complex systems. There exist several different EOO language communities 
today that grew out of different application areas (multi-body system dynamics, electronic circuit simulation, chemical 
process engineering). The members of these disparate communities rarely talk to each other in spite of the similarities of 
their modeling and simulation needs.  

The EOOLT workshop series aims at bringing these different communities together to discuss their common needs and 
goals as well as the algorithms and tools that best support them. 

Despite the fact that this is a new not very established workshop series, there was a good response to the call-for-papers. 
Eleven papers were accepted for full presentations and two papers for short presentations in the workshop program out of 
eighteen submissions. All papers were subject to rather detailed reviews by the program committee, on the average four 
reviews per paper. The workshop program started with a welcome and introduction to the area of equation-based object-
oriented languages, followed by paper presentations. Discussion sessions were held after presentations of each set of 
related papers. 

On behalf of the program committee, the Program Chairs would like to thank all those who submitted papers to 
EOOLT'2010. Many thanks to the program committee for reviewing the papers. The venue for EOOLT'2010 was Oslo, 
Norway, in conjunction with the MODELS'2010 conference. 

 

Linköping, September 2010 
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Abstract
In this study, a system is presented and analyzed that au-
tomatically translates a model described within the Mod-
elica framework into the Discrete Event System Specifica-
tion (DEVS) formalism.

More specifically, this work interfaces the open-source
implementation of Modelica, OpenModelica, and one
particular software tool for DEVS modeling and simula-
tion, the PowerDEVS environment, which implements the
Quantized State Systems (QSS) integration methods intro-
duced by Kofman.

The interface enables the automatic simulation of large-
scale models with both DASSL (using the OpenModelica
run-time environment) and QSS (using PowerDEVS) and
extracts features, such as accuracy and simulation time, that
allow a quantitative comparison of these integration meth-
ods. In this way, meaningful insight can be obtained on
their respective advantages and disadvantages when used
for simulating real-world applications. Furthermore, the
implemented interface allows any user without any knowl-
edge of DEVS and/or QSS methods to simulate their sys-
tems in PowerDEVS by supplying a Modelica model as
input only.

Keywords OpenModelica, DASSL, PowerDEVS, QSS,
sparse system simulation

1. Introduction
Modelica [4, 5] is a an object-oriented, equation-based lan-
guage that enables a standardized way to model complex
physical systems containing, e.g., mechanical, electrical,
electronic, hydraulic, thermal, control, electric power, or
process-oriented subcomponents. The Modelica language

3rd International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. October, 2010, Oslo, Norway.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/047/

EOOLT 2010 website:
http://www.eoolt.org/2010/

allows the representation of continuous and hybrid models
with a set of non-causal equations.

Modelica modeling environments, such as Dymola, Sci-
cos, and the open-source OpenModelica software [3], after
performing a series of preprocessing steps (model flatten-
ing, sorting and optimizing the equations, index reduction),
convert the model to a set of explicit ODEs of the form:

ẋ = f(x, t) (1)

The built-in simulation environments provide routines
(solvers) that invoke the right-hand side evaluation of Eq. 1
at discrete time steps tk, in order to compute the next value
of the state vector xk+1. At least in the case of Dymola
and OpenModelica, efficient C++ code is generated in or-
der to perform the simulation. Both software environments
make use of time slicing, i.e., their underlying simulation
algorithms are based on time discretization rather than state
quantization.

Recently, a new class of algorithms for the numerical
integration of ODEs based on state quantization and the
DEVS formalism introduced by Zeigler [13] was proposed.
A first-order non-stiff Quantized State System (QSS1) al-
gorithm was introduced by Kofman in 2001 [6], followed
by second and third-order accurate non-stiff solvers, called
QSS2 [10] and QSS3 [9], respectively. The family of QSS
methods presented are implemented in PowerDEVS, [11],
a DEVS-based simulation software. In the mean time, also
stiff QSS solvers as well as QSS solvers for dealing with
marginally stable systems were introduced.

QSS methods have been theoretically analyzed to ex-
hibit nice stability, convergence, and error bound proper-
ties, [2, 9, 10], and in general come with the following ben-
efits over classical approaches:

• Most of the classical methods that use discretization
of time, need to have their variables updated in a syn-
chronous way. This means that the variables that show
fast changes are driving the selection of the time steps.
In a stiff system with widely-spread eigenvalues, i.e.,
with mixed slow and fast subsystems, the slowly chang-
ing state variables will have to be updated much more

107



frequently than necessary, thus increasing substantially
the computation time of the simulation. On the other
hand, the QSS methods allow for asynchronous vari-
able updates, allowing each state variable to be updated
at its own pace, and specifically when an event triggers
its evaluation. Furthermore as most systems are sparse,
when a state variable xi changes its value, it suffices to
evaluate only those components of f in Eq. 1 that de-
pend on xi, allowing for a significant reduction of the
computational costs.

• Dymola and OpenModelica handle discontinuities us-
ing zero-crossing functions that need to be evaluated
at each step, and when they change their sign, the solver
knows that a discontinuity occurred. Then an iterative
process is initiated in order to detect the exact time of
that event. In contrast, QSS methods provide dense out-
put and do not need to iterate to detect discontinuities,
but rather predict them. This feature, besides improv-
ing on the overall computational performance of these
solvers, enables real-time simulation. Since in a real-
time simulation the computational load per unit of real
time must be controllable, Newton iterations are usually
not admitted for use in real-time simulation.

• Another important advantage of DEVS methods arises
in the context of hybrid systems, where continuous
time, discrete time, and discrete event models can co-
exist as subcomponents of an overall system. DEVS
methods [8] provide a unified simulation framework for
hybrid models, because all of these model types can be
represented as valid DEVS models.

Therefore, state quantization and the QSS methods ap-
pear promising in the context of simulating certain classes
of real-world problems. However in order to simulate sys-
tems in PowerDEVS directly, the user will have to man-
ually convert his or her model to an explicit ODE form.
This is only feasible in the case of very small systems.
PowerDEVS unfortunately is not object oriented. For this
reason, it is much more convenient for a user to formulate
models in the Modelica language than in PowerDEVS.

This works aims to bridge the gap between the powerful
object-oriented modeling platform of Modelica on the one
hand and the equally powerful simulation platform of Pow-
erDEVS on the other. The interface between OpenModel-
ica and PowerDEVS, introduced in this article, allows a
modeler to formulate his or her model in the Modelica lan-
guage, while simulating it in PowerDEVS. The necessary
compilation of the Modelica model to PowerDEVS is fully
automatic, and the user does not need to know anything
about either DEVS or QSS in order to take advantage of it.

1.1 Relevance of Work
The run-time efficiency of the DASSL and QSS solvers,
when used to simulate Modelica models, has so far not
been compared in an automated, large-scale framework. In
earlier publications describing QSS methods, [6, 7, 8, 10],
there can be found examples that demonstrate the superior-
ity of the run-time efficiency of QSS methods, when sim-
ulating sparse and discontinuous systems, but the compar-

ison has invariably been restricted to small-scale models
that could be easily modeled in PowerDEVS directly.

Furthermore, there have been other approaches, [1, 12],
to implement Modelica libraries that allow for DEVS mod-
els inside a Modelica environment, but these approaches
require from the users to understand the DEVS framework,
as they would have to model their system in the DEVS
formalism in order to make use of these libraries. In that
context, the object orientation of continuous-time models
is lost.

In contrast, our approach enables a Modelica user to
simulate a Modelica model using QSS solvers without any
explicit manual transformation. Furthermore, it allows for
the automatic transformations of large-scale models to the
DEVS formalism, which is a difficult if not unfeasible task
even for experts in DEVS modeling.

The article is organized as follows: Section 2 provides a
brief introduction of the QSS methods. Section 3 describes
theoretically what is needed in order to simulate a Model-
ica model without discontinuities employing the QSS algo-
rithms. In Section 4, the actual implementation of the inter-
face between OpenModelica and PowerDEVS is presented.
Section 5 describes the simulation results comparing the
DASSL solver of the OpenModelica run-time environment
with the QSS methods as implemented in PowerDEVS. Fi-
nally, Section 6 concludes this study, lists open problems,
and offers directions for future work.

2. QSS Simulation
Let a time invariant ODE system:

ẋ(t) = f(x(t)) (2)

where x(t) ∈ Rn is the state vector. The QSS1 method
approximates the ODE in Eq. 2 as:

ẋ(t) = f(q(t)) (3)

where q(t) is a vector containing the quantized state vari-
ables. Each quantized state variable qi(t) follows a piece-
wise constant trajectory via the following quantization
function with hysteresis:

qi(t) =

{
xi(t) if |qi(t−)− xi(t)| = ∆Qi,
qi(t

−) otherwise. (4)

where ∆Qi is called quantum. Thus, the quantized state
qi(t) changes if and only if it differs more than the value
of the quantum from the state variable xi(t). In QSS1, the
quantized states q(t) are following piecewise constant tra-
jectories, and since the time derivatives, ẋ(t), are functions
of the quantized states, they are also piecewise constant,
and consequently, the states, x(t), themselves are com-
posed of piecewise linear trajectories.

Unfortunately, QSS1 is a first-order accurate method
only, and therefore, in order to keep the simulation error
small, a large number of short integration steps needs to be
calculated.

To circumvent this problem, higher-order methods have
been proposed. In QSS2 [10], the quantized state variables
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evolve in a piecewise linear way with the state variables
following piecewise parabolic trajectories. In the third-
order accurate extension, QSS3 [9], the quantized states
follow piecewise parabolic trajectories, while the states
themselves exhibit piecewise cubic trajectories.

Eq. 3 reveals one of the key concepts and advantages of
QSS methods. During simulation, steps are only performed
when a quantized variable qi(t) changes substantially, i.e.
when it deviates by more than a quantum from the corre-
sponding state xi(t). Thus, QSS methods inherently focus
on the part of the system that is active at a certain time
point, which is particularly attractive for the simulation of
sparse models of large real-world systems.

3. Modelica Models Simulation with QSS
and DEVS

The Modelica language enables high-level modeling of
complex systems. However, at the core of every Model-
ica model lies an Ordinary Differential Equation (ODE)
system or, in general, a Differential Algebraic Equation
(DAE) system that mathematically represents the system
under consideration. We shall now show how a Modelica
model can be simulated using QSS methods. For simplic-
ity, we shall assume that the model is described by an ODE
system.

Let us write again Eq. 3 expanded to its individual com-
ponent equations:

ẋ1 = f1(q1, . . . , qn, t)

...

ẋn = fn(q1, . . . , qn, t)

(5)

If we consider a single component of Eq. 5, we can split it
into two equations:

qi = Q(xi) = Q(

∫
ẋi dt) (6)

ẋi = fi(q1, . . . , qn, t) (7)

The DEVS formalism [13] allows to describe the above
equations via a coupling of simpler DEVS models. More
specifically:

• The first equation (Eq. 6) can be represented by an
atomic DEVS model, called Quantized Integrator,
with ẋi as input and qi as output.

• The second equation (Eq. 7) can also be represented
as an atomic DEVS model, called Static Function,
that receives the sequence of events, q1, . . . , qn, and
calculates the sequence of state derivative values, ẋi.

Thus in absence of discontinuities, we can simulate Eq.
5 using a coupled DEVS model consisting of the coupling
of n Quantized Integrators and n Static Functions. A block
diagram representing the final DEVS model is shown in
Fig. 1.

The model depicted in Fig. 1 contains all possible con-
nections between the state variables. However, real-world

f1

f2

fn

x1

x2

xn

q1

q2

qn

Figure 1. Coupled DEVS model for QSS simulation of
Eq. 5

systems are sparse as each state normally depends on a
small subset of other states only. Thus, the graphical DEVS
structure is typically sparse for most practical applications.

4. OpenModelica to PowerDEVS (OMPD)
Interface

This section describes the work done to enable the simula-
tion of Modelica models in PowerDEVS using QSS algo-
rithms.

4.1 What is Needed by PowerDEVS
Let us first concentrate on what PowerDEVS requires in or-
der to perform the simulation of a Modelica model. As de-
picted in Fig. 1, an essential component of a PowerDEVS
simulation is the graphical structure. In PowerDEVS, the
structure is provided in the form of a dedicated .pds struc-
ture file that contains information about the blocks (nodes)
of the graph as well as the connections (edges) between
those blocks. More specifically, we need to add in the struc-
ture:

• A Quantized Integrator block for each state variable
with ẋi as input and qi as output.

• A Static Function block for each state variable that
receives as input the sequence of events, q1, . . . , qn, and
calculates ẋi.

• A connection is added between two blocks if and only
if there is a dependence between them.

Having correctly identified the DEVS structure, we need to
specify what needs to be calculated inside each of the static
function blocks. The different blocks need to have access
to different pieces of information.

In the current implementation, a .cpp code file is gener-
ated that contains the code and parameters for all blocks in
the structure. The generated code file contains the follow-
ing information:
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• For each Quantized Integrator block, the initial con-
dition, error tolerance, and integration method (QSS1,
QSS2, QSS3).

• For each Static Function, the equations/expressions
needed in order to calculate the derivative of each state
variable in the system. Furthermore, the desired error
tolerance is provided together with a listing of all input
and output variables of the specific block.

4.2 What is Provided by OpenModelica
In Section 4.1, we described what must be contained in the
files needed to perform simulations in PowerDEVS. The
PowerDEVS simulation files should be generated automat-
ically exploiting the information contained in the Modelica
model supplied as input. Luckily, existing software used to
simulate Modelica models, such as Dymola or OpenModel-
ica, produces simulation code that contains all information
needed by PowerDEVS. Thus, we were able to make use of
an existing simulation environment by modifying the exist-
ing code generation modules to produce the desired simu-
lation files.

This work is based on modifying the OpenModelica
Compiler (OMC), since it is open-source and has a con-
stantly growing contributing community. OMC takes as in-
put a Modelica source file and translates it first to a flat
model. The flattening consists of parsing, type-checking,
performing all object-oriented operations such as inher-
itance, modifications, etc. The flat model includes a set
of equation declarations and functions, with all object-
oriented structure removed. Then the equations are ana-
lyzed, sorted in Block Lower Triangular (BLT) form, and
optimized. Finally, the code generator at the back end of
OMC produces c++ code that is then compiled. The result-
ing executable is used for the simulation of the model.

The information needed to be extracted from the OMC
compiler is contained mainly in the DLOW structure where
the following pieces of information are defined:

• Equations: E = {e1, e2, . . . , eN}
• Variables: V = {v1, v2, . . . , vN} = VS

⋃
VR

where VS is the set of state variables with |VS | = NS ≤
N and VR the set of all other variables in the model.

• BLT blocks: subsets of equations {ei} needed to be
solved together because they are part of an algebraic
loop.

• Incidence matrix: An N×N adjacency matrix denoting,
which variables are contained in each equation.

The OMPD interface utilizes the above information and
implements the following steps:

1. Equation splitting : The interface extracts the indices
of the equations needed in order to compute the deriva-
tive of each state variable. To achieve this, it builds a de-
pendence graph, where the nodes are the equations, and
the edges represent dependences between these equa-
tions. The interface traverses the graph backwards from
each state derivative until it cannot no longer reach any
additional nodes.

2. Mapping split equations to BLT blocks : Having ex-
tracted the indices of the equations that calculate each
state derivative, the equations are mapped back to BLT
blocks of equations. This is needed in order to pass this
information to the part of the OpenModelica compiler
that is responsible for solving linear/non-linear alge-
braic loops.

3. Mapping split equations to DEVS blocks : The split
equations are also mapped onto the static blocks of
the DEVS structure. Since the state variables and the
equations needed to compute them have been identified,
they are assigned sequentially to static blocks in the
DEVS structure. Each static block corresponds then to
a state variable, and the lookup of equations in static
blocks can be performed efficiently if needed in the
future.

4. Generating DEVS structure : In order to correctly
generate the DEVS structure of the model, the depen-
dences between the state variables that are computed in
each static block have to be resolved. This is accom-
plished by employing the incidence matrix and the map-
ping of equations to DEVS blocks from step 3 to find
the corresponding inputs for each block. In Fig. 2, an
example of a DEVS structure automatically generated
for model M1 is depicted.

5. Generating the .pds structure file: Having correctly
produced the DEVS structure for PowerDEVS, out-
putting the respective .pds structure file is straightfor-
ward.

6. Generating static blocks code : In this step, the func-
tionality of each static block is defined via the simula-
tion code provided in the code.cpp file. Each static block
needs to know its inputs and outputs, identified by the
DEVS structure, as well as the BLT blocks needed to
compute the corresponding state derivatives, described
by the mapped split equations. Then, the existing code
generation module of OMC is employed to provide the
actual simulation code for each static block, since it has
already been optimized to solve linear and non-linear
algebraic loops.

7. Generating the .cpp code file: The code for the static
blocks is output in the .cpp code file along with other
needed information.

4.3 Example Model M1

Various tests have been performed in order to ensure that
the implemented OMPD interface is performing the desired
tasks correctly. Here are presented the results of processing
the following second-order non-linear model through the
implemented interface:

model M1
Real x1;
Real x2;
Real u2;

equation
der(x1)=x2-x1/10;
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Figure 3. Simulation results for model M1. In (a), the reference trajectory of state variable x2 is depicted. It was computed
using DASSL by setting the tolerance to 10−12. In (b) and (c), the simulation errors of Dymola and OpenModelica relative
to the reference solution are plotted with the tolerance value now set to 10−3. The achieved accuracy is indeed in the order
of 10−3 with the errors converging to zero in both simulations. In (d), (e), and (f), the simulation errors of QSS1, QSS2,
and QSS3 are depicted. Again we observe that the desired accuracy of 10−3 is approximately attained. In QSS2 and QSS3,
the errors decay also, but a small amplitude high-frequency oscillation around the steady-state remains. In QSS1, the errors
don’t converge to zero, but remain of the order of 10−3, which is still within specs.
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Figure 2. Automatically generated DEVS structure for
M1

der(x2)=u2-x1;
u2=(1-u2-x2)^3;

end M1;

The following information has been extracted from the
OMC compiler:

Variables (3)

=========
1: $u2:VARIABLE sys3, Real type: Real ...
2: $x2:STATE sys3, Real type: Real ...
3: $x1:STATE sys3, Real type: Real ...

Equations (3)
=========
1 : $u2 = (1.0 - $u2 - $x2) ^ 3.0
2 : $DER$x1 = $x2 - $x1 / 10.0
3 : $DER$x2 = $u2 - $x1

BLT blocks
2,
1,
3,

In other words, OMC has identified that model M1 has 2
state variables, x1 and x2, 1 algebraic variable, u2, and 3
equations:

u2 = (1− u2 − x2)3 {1}

ẋ1 = x2 −
x1

10
{2}

ẋ2 = u2 − x1 {3}
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Each of the equations is placed in a BLT block. These are
sorted according to the execution order as follows: {2},
{1}, {3}.

The automatically generated DEVS structure contained
in the .pds file is illustrated in Fig. 2. Since both state vari-
ables are depending on each other, the obtained structure is
full. The BLT blocks needed to calculate each state deriva-
tive are shown inside the static function blocks.

5. Simulation Results
In this section, the simulation results obtained by use of
the OPMD interfaced are presented and discussed. First
in order to provide a simple working example of the im-
plemented interface, model M1 was simulated using all
three currently implemented QSS methods of PowerDEVS
as well as the standard DASSL solvers of OpenModelica
and Dymola. The stand-alone version of PowerDEVS con-
tains additional QSS-based solvers for simulating stiff and
marginally stable systems, but in the OPMD, only QSS1,
QSS2, and QSS3 were included until now.

The article also presents preliminary results regarding
the performance of QSS algorithms in comparison with
DASSL when simulating sparse systems.

5.1 Simulation of a Simple Model (M1)
In Fig. 3, the simulation results obtained for model M1 are
depicted. In Fig. 3(a), the reference trajectory of state vari-
able x2 is plotted. To obtain the reference trajectory, Dy-
mola was employed using the default DASSL solver while
setting the tolerance value to 10−12. In the remaining pan-
els, the simulation errors relative to the reference solution
are shown that were obtained by setting the desired toler-
ance to 10−3. Fig. 3(b) shows the simulation error obtained
by Dymola using DASSL. Fig. 3(c) depicts the simulation
error obtained by OpenModelica using DASSL. Figs. 3(d-
f) graph the simulation error obtained by OpenModelica
with PowerDEVS using QSS1, QSS2, and QSS3, respec-
tively.

We observe that all solvers accomplish the desired
task of keeping the global simulation error approximately
within 10−3. Using DASSL, this is not obvious, because
DASSL only controls the local simulation error of a single
integration step. Errors can in principle accumulate over
time, but this didn’t happen in this simple example. QSS-
based algorithms all control the global simulation error,
and consequently, are expected to perform as desired. In
this simple example, the simulation errors decrease over
time in all solvers except for QSS1. Yet, whereas the errors
approach zero in the case of DASSL, a small-amplitude,
high-frequency oscillation remains in the cases of QSS2
and QSS3.

These steady-state oscillations are bad news, because
they will foce small step sizes upon us in steady state,
if we decide for whatever reason to simulate the system
over a longer time period. Such steady-state oscillations are
observed frequently in the non-stiff QSS solvers. They will
disappear when the OPMD is extended to the stiff LIQSS1,
LIQSS2, and LIQSS3 solvers.

In QSS1, the errors do not decay over time in this exam-
ple. After all, this is only a simple first-order non-stiff ODE
solver. However, the errors remain approximately within
10−3, i.e., the simulation still performs within the desired
specifications.

Based on these results and a number of additional exam-
ple models studied, we conclude that the OMPD interface
is able to simulate arbitrary linear or non-linear Modelica
models without discontinuities.

In the following experiments, only the QSS3 algorithm
is compared to DASSL, since it is a third-order accurate
method and is expected to be more efficient than the other
implemented QSS methods.

5.2 Benchmark Framework
One of the goals of this study was to compare the perfor-
mance of the standard DASSL solver of OpenModelica
with the most efficient among the hitherto implemented
methods of the QSS family, namely QSS3. Since the cur-
rent interface implementation allows only for non-stiff
models without discontinuities, we only focus on studying
the effect of the sparsity of a model on the CPU perfor-
mance of both algorithms. To achieve our goal, we need to
be able to automatically generate models of arbitrary size
and sparsity.

For the benchmark, we chose to generate linear models
of the form:

ẋ = A · x (8)

where x ∈ Rn is the vector of state variables. Matrix A
controls the dynamics of the generated system. Since we
needed to control the eigenvalues of the system and avoid
producing stiff systems, we constructed A as follows:

1. Generate real-valued random eigenvalues drawn from a
Gaussian distribution : eig ∼ −N (5, 2).

2. Create a diagonal matrix D = diag(eig).

3. Create a random orthogonal matrix M.

4. Then matrix A = M ·D ·MT has the desired eigenval-
ues eig.

The constructed matrix A is a full matrix. Sparsity s is de-
fined as the number of connections to every state variable.
To achieve a certain sparsity level s, we set the n− s abso-
lute smallest elements of each row of A to zero. The abso-
lute smallest elements were eliminated in order to minimize
the impact on the eigenvalue locations of the resulting ma-
trix Ã. Having constructed a matrix Ã of given size n and
sparsity s, it is straightforward to generate an equivalent
Modelica model.

For the comparison simulations, the OpenModelica
1.5.0 environment was used with DASSL as the standard
solver. The tolerance was set to 10−3, and the simulation
end time was set to 3 sec for both OpenModelica and Pow-
erDEVS. Furthermore, the output file generation was dis-
abled for both environments in order to measure the pure
simulation time.

For each parameter configuration (n, s), 100 Modelica
models were randomly generated and given as input to the
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Figure 4. Simulation results for automatically generated models with n = 30 state variables and varying sparsity. In (a), the
mean CPU time needed for simulating these systems using QSS3 and OpenModelica is plotted (red squares and black crosses,
respectively).In (b), the logarithm of the ratio between the CPU time of OpenModelica and QSS3 is shown. Observing both
plots, we conclude that QSS3 is more efficient than DASSL when simulating sparse systems (s < 13) Most real-world
large-scale systems belong to that category.

standard OpenModelica compiler and via the OMPD inter-
face to PowerDEVS. The CPU time needed for the simu-
lation was measured for each generated executable. In or-
der to obtain more reliable results, each simulation was re-
peated 10 times, and the median over all 10 repetitions was
considered as the CPU time needed for each simulation.
For each parameter setting (n, s) the mean of the CPU time
measurements is reported along with ± 1 standard devia-
tion.

Two types of experiments were conducted. First, the
number of states n was kept constant with the sparsity s be-
ing varied, and then the reverse procedure was performed
by fixing the sparsity s while varying the number of states.
For each experiment, the CPU time was measured for sim-
ulations performed with DASSL and QSS3, respectively.
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Figure 5. The stiffness ratio of the generated models in
Sec. 5.3 is depicted. We observe that the resulting models
exhibit approximately the same stiffness for different spar-
sity values.

5.3 Fixed Number of States - Varying Sparsity
In the first experiment, the number of states n in the gen-
erated models was fixed to n = 30 states. Then start-
ing from a sparsity of s = 1, meaning that only one
non-zero connection was preserved for the computation
of each state derivative, the number of connections was
gradually increased until we reached the full model with
s = 30 connections. In Fig. 4(a), the obtained average CPU
time is plotted against s for QSS3 (red squares) and for
DASSL (black crosses). We observe that QSS3 is consid-
erably faster than DASSL for sparse models (low values
of s), whereas DASSL gets more efficient than QSS3 for
approximately s ≥ 13 connections.

This result is not overly surprising. In fact, it was ex-
pected. Whereas QSS3 benefits from sparsity as it only
updates states and state derivatives asynchronously if and
when there is a need for it, DASSL benefits in a fully con-
nected model from the fact that it calls the right-hand equa-
tions only once per iteration, i.e., maybe thrice per step,
whereas QSS3 updates each state derivative separately. In
a non-sparse model, there is nothing that QSS3 can exploit.

However, real-world large-scale systems are always
sparse. It simply doesn’t happen in real life that a state
derivative in a 30-th order model depends on all 30 state
variable. Usually each state equation depends on two or
three state variables only. Hence the case with s = 3 is
probably the most relevant for all practical purposes.

The areas where each algorithm is superior in terms of
CPU performance are more clearly visible in Fig. 4(b),
where the logarithm of the ratio between the CPU times
of DASSL and QSS3 is plotted against s. A positive log-
ratio value means that QSS3 is more efficient than DASSL,
whereas a negative value indicates the opposite.
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In Fig. 5, the stiffness ratio of the generated models is
plotted. The stiffness ratio is defined as the ratio of the
largest to the smallest eigenvalue of matrix Ã and is used
as an indicator of a model being stiff or not. The resulting
stiffness ratio of the models used is kept smaller than 10
and does not vary much with s. Therefore, we can conclude
that the differences in the measured execution times are not
a result of a significant difference in the stiffness ratios of
the models used.

5.4 Fixed Sparsity - Varying Number of States
Next, we studied how the simulation performance is af-
fected when the number of connections per state variable
is kept constant, whereas the number of states is modified.
In Fig. 6, the sparsity s is set to 2 inputs per state, and
the number of states is increased from 10 to 150. We ob-
serve that up to n = 130 states, QSS3 is more efficient in
terms of needed CPU time. On the other hand, if we in-
crease the sparsity s to 5 connections per state variable,
the range where QSS3 is superior to DASSL is reduced to
about n = 70 states, as depicted in Fig. 7.
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Figure 6. Sparsity s is set to 2 connections per state, and
the number of states is increased from 10 to 150. We ob-
serve that up to 130 states, QSS3 is more efficient in terms
of required CPU time. However, the computational cost of
QSS3 increases with the model size much faster for QSS3
than for DASSL due to inefficiency in the current Pow-
erDEVS implementation.

In both cases, the CPU time needed by QSS3 is increas-
ing much faster than the CPU time that DASSL needs as the
complexity of the model increases. This means bad news
for PowerDEVS. PowerDEVS evidently does not handle
large systems very well.

On the other hand, it can been shown that the computa-
tional load of the QSS3 algorithm grows only linearly with
the number of states. Thus, the measurement results are in
contradiction with theory.

The reason is that we measure not only the time needed
by the QSS3 algorithm for integration, but also the time
needed by PowerDEVS for administrating the simulation.

PowerDEVS was not designed to simulate large DEVS
models. After all, the PowerDEVS users were expected

to construct their models manually, which clearly limits
the size of the models that users may want to simulate in
PowerDEVS. For this reason, the designers of PowerDEVS
did not spend much thought on an efficient implementation
of the underlying simulation engine. In particular, block
are implemented as a linearly linked list, and PowerDEVS
traverses that list in a linear fashion when looking for the
next model to be executed. This kills the overall efficiency
of the implementation, and what we measured in Fig. 6 for
larger numbers of states is primarily not simulation time,
but rather the quadratic growth pattern of a linear search
algorithm. Re-implementing the blocks as an equilibrated
binary tree, a trivial programming exercise, will reduce the
growth pattern of the search time to n · log n and will
make PowerDEVS perform considerably better for larger
models.
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Figure 7. Sparsity s is set to 5 connections per state, and
the number of states is increased from 10 to 150. Now,
QSS3 is more efficient for up to 70 states.

6. Discussion
6.1 Conclusions
In this article, an interface between the OpenModelica en-
vironment and PowerDEVS is presented and analyzed. The
OPMD interface implemented until now does not handle
discontinuities yet, but it represents the first effort to auto-
matically bridge the gap from the powerful Modelica mod-
eling language standard to the also very powerful state-
quantization based (QSS) simulation methods. The cur-
rently available interface allows a Modelica user to simu-
late arbitrarily complex non-stiff Modelica models without
discontinuities using the PowerDEVS simulation software.
Future extensions of the interface shall handle stiff and dis-
continuous models as well.

Preliminary results exhibit the superiority of QSS3 over
the standard DASSL solver when simulating sparse mod-
els. More rigorous experiments will need to be performed
in order to reach concrete conclusions about the perfor-
mance of each algorithm. An inefficiency in the current
implementation of PowerDEVS when simulating large sys-
tems was observed and will be addressed in the next distri-
bution of PowerDEVS.
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6.2 Future Work
We have shown that the implemented OMPD interface
successfully allows a user to simulate an arbitrary Modelica
model without discontinuities using PowerDEVS and the
QSS methods. However there are open problems that need
to be addressed in the future.

The OMPD interface should be extended to cover mod-
els with discontinuities. QSS methods are intrinsically well
suited for simulating discontinuous models. Therefore, it is
of great importance to add this functionality to the OMPD
interface. Most importantly, we shall then be able to per-
form large-scale comparisons between DASSL and QSS
algorithms for a variety of real-world models that are in-
herently discontinuous.

On the other hand, as discussed in Section 5.4, Pow-
erDEVS needs to be implemented more efficiently in or-
der to take advantage of all theoretical properties of the
QSS methods. In particular, the current simulation engine
is quite inefficient in the way it searches through the blocks
to find the one that produces the next event in the simula-
tion. This issue can be addressed by employing a more ef-
ficient search strategy, e.g. by organizing the atomic mod-
els in an equilibrated binary tree structure. These modifi-
cations are already being implemented, and we are look-
ing forward to incorporating these modifications in the next
PowerDEVS distribution.
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