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~ Traditionally, continuous system simulation software was designed for the simulation of
dynamical systems described by state-space models, i.e., a set of first-order ordmary
differential equatlons (ODEs).  For the numerical solutlon, explicit integration
algorithms, usually 4 ®_order accurate explicit Runge-Kutta algorithms were used. The
goal was to strictly separate the model description from the numerical solution. In this
way, no iterations were necessary at all, and the simulation software could toggle
between calls to the numerical solver on the one hand, and calls to the program that
captured the state-space model on the other.

The approach was suitable as long as scientists and engineers were content to solve low-
order models of simple devices. As the models grew in complexity, the range of time
constants to be captured by the models spread, i.e., the models became invariably stiff.
Explicit ODE solvers were no longer suitable for the task, because now, their step sizes
were controlled by the numerical stability requirements rather than by accuracy
requirements. Implicit integration algorithms had to be used. Among those, the most
widely used algorithms were a class of linear multi-step methods commonly referred to
as Backward Difference Formulae (BDF). Of those, the currently most robust code is
DASSL. Using such techniques, a Newton iteration has to be performed during each
step, whereby the Jacobian matrix to be inverted is of size n°, where # is the order of the
model, i.e., denotes the number of state equations. A full-blown Newton iteration is
necessary, because any simplification, such as a fixed-point iteration destroys the
numerical stability properties of the BDF method. :

Unfortunately, physical systems do not lend themselves easily to state-space descriptions.
The state-space approach to modeling is an invention of control engineers, who ensure by
design that their models can be described easily in this form. In general, the equations
governing physical systems are algebralcally coupled, not because of neglected fast time
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‘constants, but simply, because physics is essentially acausal, i.e., the equations describing
physical systems are always simultaneous equations.

It is very difficult to manually translate a non-linear circuit containing several transistors
into an explicit state-space form. Manually translating the equations that describe a six-
degree-of-freedom robot into such a form is totally hopeless. Similarly, a model
describing an industrial distillation column contains hundreds or thousands of coupled
simultaneous equations that cannot be converted manually to an explicit state-space form.
In general, physical systems are governed by a set of implicitly described differential
equations with algebraic couplings between the state derivatives and often even between
the states themselves, i, physical systems are usually governed by higher-index
Differential Algebraic Equation (DAE) systems.

- The couplings between states are best dealt with at compile time by symbolically
differentiating the constraint. equations while reducing the number of states, until no
constraints exist any longer among the remaining state variables. This.process can be
automated. There exist numerically efficient algorithms, such as the algorithm by
Pantelides, that is of linear computational complexity, to analytically reduce the
- perturbation index of the DAE system to one, i.e., to get rid of the constraints between
states.

The resulting index-one DAE system can be numerically solved using DASSL.
However, the algebraic coupling equations need to be iterated as well, i.e., each algebraic
coupling leads to an addmonal term in the Jacobian matrix. The resultmg Jacobian will
now be of size (n+w)’, where n denotes the number of states, and w denotes the number
of algebraic couplings.

It is possible to automatically convert the resulting index-one DAE system to an explicit
ODE form using the algorithm by Tarjan. However, this transition is not always
harmless. The reason is that the implicit DAE equations are’ usually sparse. In the
process of inverting the equatlons the sparsity may be lost. :

Inlining is a technique that merges the model equations with the equations describing the
integration algorithm, thereby converting the differential equations to a set of equivalent
difference equations. The process of inlining can be automated, i.e., results in additional
symbolic formulae manipulations at compile time. The user can still describe his model

‘in terms of a higher-index DAE system. All of the necessary transformations occur in a
completely automated fashion at compile time, resulting in a set of implicitly coupled
difference equations. Simulation now simply means to apply Newton iteration to the set
of difference equations at each time step. The Jacobian is still of size (n+w)‘ Le.,
nothing has been gained so far.

It may not be necessary to iterate over all these variables. A fearing algorithm can be
used to find a minimum number of so-called tearing variables, i.e., iteration variables,
thereby reducing the size of the Jacobian matrix dramatxcally Unfortunately, complete
tearing is an np-complete problem, i.e., the algorithm is of exponential computational
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complexity. However, there exist good heuristics of linear computational complexity that
will find a small set of tearing variables, though not necessarily the smallest one. Notice
however that tearing can only be applied after inlining, i.e., the algorithm can only be
applied to the algebraically coupled set of difference equations, not to the index-one DAE
system. Hence, while inlining by itself does not help generate more efficient simulation
equations, inlining with subsequent tearing usually improves the efficiency of the
simulation dramatically.

Attractive alternatives to DASSL provide implicit Runge-Kutta (IRK) algorithms, such as
Radau-Ila. IRKSs are attractive, because they allow larger step sizes to be taken, thereby
reducing the number of Newton iterations needed during simulation. Yet, these
algorithms have not been widely used, because they are more difficult to implement than

the BDF algorithms. The paper will show how inlining leads to elegant implementations
of IRK algorithms. ‘

An additional difficulty relates to the step-size control of these algorithms. Explicit RK
algorithms embed a lower-order algorithm within the higher-order algorithm to have a .
second approximation to compare to. For example, Runge-Kutta Fehlberg 4/5 (RKF4/5)
embeds a 4™ order accurate algorithm within a 5™-order accurate algorithm, and
compares the two approximations obtained in this way for the purpose of step-size
control. BDF algorithms have elegant order-control algorithms built in. They also use
the embedding technique to ‘embed an entire series of algorithms of different orders,
switching between them in order to maximize the efficiency. Step-size control in these
algorithms is less elegant and more costly, but can be done adequately using the
Nordsieck vector approach.

In contrast, no good step-size control mechanisms have been known for IRKs. Finding
embedding IRKs is a very difficult problem, and integrating two completely separate
algorithms in parallel is hopelessly inefficient. Hairer proposed an explicit embedding
algorithm to accompany the IRK for step-size control purposes, arguing that since the
IRK will be propagated to the next step, numerical stability considerations on the
companion algorithm are not ‘as stringent. Unfortunately, eigenvalues of the Jacobian
with large negative real parts may lead to overly conservative error estimates that would
still restrict the step size unnecessarily. Hairer knew about this problem and proposed a
“filter” that would dampen out the contribution of these eigenvalues. Essentially, he now
has an implicit companion method, but he uses a fixed-point iteration that he applies once
in order to improve the error estimate. Unfortunately, fixed-point iteration still destroys
the stability properties. '

In this paper, a fully-implicit stiffly-stable companion method to Radau-Ila is shown that
can be computed almost for free, and that does not share the problems of Hairer’s
approach. The companion embeds another polynomial approximation, but does so
making use of the available information over the last two steps, i.e., the approach is a
hybrid approach: the integration algorithm itself is a single-step IRK, whereas the
companion method is a two-step linear polynomial approximation of one order higher
than the IRK. Whereas the technique will be shown for the 3".order and 5™-order
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accurate Radau-Ila algorithms, the technique can just as easily be applied to Lobatto-IlIc
and other IRK algorithms. Inlining helps to make the implementation of the step-size
control algorithm simple and elegant, and tearing can be used on the resulting set of

algebraically coupled difference equations to reduce the size of the Jacobian to obtam
optimal run-time efficiency.
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