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Abstract 

This paper introduces a new Modelica library for 
modeling and simulation of systems with distributed 
parameters in one space dimension.  The resulting 
partial differential equations of either the parabolic 
or hyperbolic types are being converted to sets of 
ordinary differential equations using either the 
method of lines or the finite volume approach.  Some 
simple examples serve to document the utilization of 
the new library. 
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1 Introduction  

1.1 History of General-purpose PDE Solvers 

Lumped parameter systems have been successfully 
modeled and simulated using general-purpose simu-
lation software for several decades.  With the advent 
of Modelica, it has become unnecessary to model 
and simulate any physical systems with lumped pa-
rameters using either general programming lan-
guages, like C++, or special-purpose simulation lan-
guages, like Adams or Spice.  Modelica is capable of 
converting any lumped parameter model of a physi-
cal system to executable code that is as efficient in 
its execution as the best manually coded spaghetti 
programs of the past.  Modelica can also successfully 
compete with special-purpose simulation codes, like 
Spice or Adams, in the simulation of electronic cir-
cuits [5] and multi-body systems [15]. 

The modeling and simulation of distributed pa-
rameter systems using general-purpose simulation 
software has not been as successful.  In the 70s and 
early 80s, a number of general-purpose simulation 
codes, like FORSIM VI [4], were developed for the 
purpose of modeling and simulating at least some 

classes of systems with distributed parameters.  
FORSIM VI, for example, was designed for simulat-
ing parabolic PDEs in one or two space dimensions.  
Hyperbolic PDEs could be simulated as well, but the 
resulting simulation code was not as efficient.  Ellip-
tic PDEs could sometimes be converted to equivalent 
parabolic problems using invariant embedding. 

Around the same time frame, another program, 
ELLPACK [11], was developed that was designed 
for solving elliptic PDEs in two or three space di-
mensions.  The ELLPACK project was very ambi-
tious, and the code grew rapidly to a size that made 
the code difficult to use and maintain.  In order to 
make ELLPACK easier to use, the designers of the 
code developed a preprocessor for translating an ab-
stract model description down to a set of Fortran 
subroutine calls.  Yet, as new algorithms were added 
constantly to the software, maintenance of the pre-
processor became soon too difficult.  Hence a com-
piler-compiler was developed that could be used to 
generate a new version of the preprocessor from an 
abstract description thereof.  Yet in spite of all of 
those efforts, the resulting simulation programs were 
highly inefficient at run time. 

Whereas one of the primary mantras of modeling 
and simulation environments is to be able to protect 
the user from having to fully understand the numeri-
cal properties of the underlying solver algorithms, 
this demand could never be fully satisfied when deal-
ing with PDEs. The run-time efficiency of the result-
ing simulation code depends too heavily on the cho-
sen discretization method, and no logic was found 
that could relieve the user from having to make hard 
choices manually. 

Sometimes codes like ELLPACK have been 
used to quickly try out different combinations of al-
gorithms and compare them with each other.  In this 
way, the user could more quickly determine, which 
combination of algorithms might work best.  How-
ever, once this decision has been reached, the final 
code nevertheless had to be hand-coded, because the 



real problems were not limited to the PDE solvers 
themselves, but more often than not were related to 
how the code dealt with complex geometries, i.e., 
how physical boundary conditions were converted to 
boundary conditions that the PDE solver could make 
use of [14]. 

For all of these reasons, the use of general-
purpose simulation software for the simulation of 
distributed parameter systems became unfashionable 
again.  The researchers dealing with these types of 
systems simply gave up, and most of today’s simula-
tion codes are specially designed codes for very 
small classes of problems only. 

1.2 A Renaissance for General PDE Solvers 

One technique that has proven to be more robust 
than other approaches is the finite element method 
[9].  The success of this technique is based on its 
ability for dealing effectively with complex geome-
tries.  Originally developed for simulating elliptic 2D 
and 3D problems, finite element methods have 
quickly also been adapted to the discretization of 
parabolic and hyperbolic PDEs [12]. 

FEMLAB is a general-purpose numerical PDE 
solver based on the finite element method.  FEM-
LAB was developed in recent years for the simula-
tion of multi-physics applications.  The code is capa-
ble of simulating models involving multiple PDEs 
[13]. 

FEMLAB started out as a MATLAB toolbox.  
Yet, its developers learnt quickly the same truth that 
the ELLPACK developers had learnt before them: a 
general-purpose PDE solver becomes soon unman-
ageable without a preprocessor capable of interpret-
ing an abstract model definition.  They also learnt 
that they needed to offer CAD support for entering 
the device geometry. 

FEMLAB was more successful than ELLPACK, 
in part, because the computers have meanwhile be-
come faster, and in part, because they were less am-
bitious in the sense that they didn’t insist on incorpo-
rating each and every algorithm that has ever been 
developed for the numerical solution of PDEs. 

FEMLAB has recently changed its name to 
COMSOL.  This software represents currently the 
gold standard of general-purpose numerical PDE 
solvers for multi-physics applications. 

1.3 A Role for Modelica? 

Modelica has become the de facto standard for mod-
eling and simulation of physical systems with 

lumped parameters.  Does it have a role to play in 
numerical PDEs also? 

Modelica, or rather its implementations, such as 
Dymola, offer not much that is unique or special 
w.r.t. their simulation engine.  The only feature 
worth mentioning in this respect is a fairly robust 
root solver (discontinuity handler).  The true power 
of Modelica lies in its ability to deal with differential 
and algebraic equations (DAEs) in a very flexible 
and truly object-oriented manner. 

Today’s numerical PDE solvers, including 
COMSOL, offer numerically advanced algorithms, 
but are very primitive w.r.t. their user interface.  The 
complexity and elaboration of the user interface is at 
approximately the same level that the Continuous 
System Simulation Languages (CSSLs) were prior to 
the advent of the CSSL standard [2]. 

Would a language like Modelica have made a 
big impact in the 1960s, had it been available?  The 
answer to this question is no.  The computers of 
those times were far too small and too slow to ade-
quately host a language like Modelica.  The re-
searchers of those days dealt with much simpler 
models, models that could be handled by the tools 
available to them, not because they lacked a better 
understanding of physics, but simply, because their 
computers couldn’t handle more complex models. 

Are distributed parameter problems structurally 
simpler than lumped parameter problems?  The an-
swer to that question is also no.  Physics in general 
deals with 3D fields, and lumped parameter models 
are simply abstractions of distributed parameter 
problems. 

If we wish to bend a pipe, we first heat up the 
area where the pipe is to be bent.  If we were to 
simulate the physics of bending a pipe, we would 
have to solve a 3D distributed parameter problem 
with one PDE describing the heat diffusion problem 
and another PDE describing the mechanical stresses 
and strains within the material.  These PDEs would 
furthermore have to be solved in a geometry that 
changes over time as a function of the numerical so-
lution of the two PDEs. 

Researchers aren’t currently simulating such 
processes, they aren’t dealing with partial differential 
and algebraic equations (PDAEs) yet, because the 
computers of today are too small and too slow to 
adequately handle such problems. 

Yet, it is not too early to ponder about the lan-
guage constructs and numerical algorithms that will 
be needed in support of such endeavors, once the 
computers shall have advanced to a level, where they 
can deal with such models effectively and efficiently. 



2 PDELib for 1D Numerical PDEs 

Since the Standard Modelica Library doesn’t offer 
any support yet for modeling distributed parameter 
systems, we decided to take a first, and very modest, 
step towards the much larger and more grandiose 
aim outlined in the introduction. 

To this end, we revisited some of the programs 
of the past, in particular FORSIM VI, and decided to 
re-implement some of the algorithms and capabilities 
offered by FORSIM VI in a Modelica experimental 
library.  The results of that effort are being presented 
in this paper. 

In order to keep things simple, we decided to 
limit the tool to the numerical solution of parabolic 
and/or hyperbolic PDEs in a single space dimension, 
the class of 1D numerical PDEs. 

Since 1D PDEs are solved on a straight line be-
tween point A and point B, the geometry plays no 
role yet in these problems.  The spatial discretization 
is straightforward; finite elements aren’t needed or 
even useful yet for the spatial discretization; and the 
resulting simulation code can still be simulated fairly 
efficiently and rapidly using almost any half-way 
suitable numerical algorithm. 

The aim of the project was to create an experi-
mental tool that can be used to study some properties 
of numerical PDEs that haven’t received much cov-
erage yet in the open literature. 

One of the numerical problems to be studied is 
the propagation of discontinuities through a 1D hy-
perbolic PDE.  Such discontinuities cause a new 
class of numerical problems.  Once the discontinuity 
has reached the boundary condition of the PDE, it 
can no longer be isolated in time.  At any moment in 
time, the discontinuity exists somewhere within the 
spatial domain covered by the PDE.  Thus, tradi-
tional event handling cannot be used to deal with this 
type of discontinuities. 

A structural problem to be studied concerns the 
numerical solution of 1D PDAEs.  Can Modelica 
help in translating a 1D PDAE into a simulation code 
that can be simulated effectively and efficiently? 

Two algorithms were implemented in the first 
official release of PDELib: the method of lines [6], 
and a dialect of the finite volumes approach [10]. 

 
 

3 Method of Lines 

Given the 1D diffusion equation: 

 
The method of lines discretizes the spatial deriva-
tives, while keeping the temporal derivatives con-
tinuous.  In a first approximation, we may write: 

 
Plugging Eq.(2) into Eq.(1), we find: 

 
In this way, we have converted a PDE into a stiff set 
of ODEs that can now be simulated using any off-
the-shelf stiff ODE solver, such as DASSL. 

The method of lines is fairly easy to implement. 
The chosen approximation is third order accurate.  If 
the user wishes to use a more accurate approximation 
formula, this can be done easily. 

Care must be taken in a correct implementation 
of the boundary conditions.  As the discretization 
approaches the boundary, biased discretization for-
mulae in place of central formulae must be used in 
order not to make use of grid points outside the 
simulated domain. 

The approach works fairly well, especially in the 
case of parabolic PDEs such as the diffusion equa-
tion.  The spatial discretization of a parabolic PDE 
by means of the method of lines leads invariably to a 
stiff set of ODEs, but modern numerical ODE 
solvers are good at dealing with those. 

This is the approach that FORSIM VI took.  In 
order to relieve the user of having to remember dif-
ferent discretization formulae, FORSIM VI offered a 
set of Fortran subroutines for computing spatial de-
rivatives both in the bulk and in the vicinity of the 
domain boundaries. 

PDELib also hides the details of the discretiza-
tion formulae from the user, but does so using a 
Graphical User Interface (GUI) as shown in Fig.1. 



 
Figure 1:  Model of 1D diffusion equation in PDELib 

 
PDELib offers a method-of-lines (MOL) integra-

tor block.  This is a vector integrator block that inte-
grates  the  vector  of  temporal  derivatives,  dui /dt 
(marked as “R” on the integrator block), into the vec-
tor of states, u (marked as “Var”), while considering 
the vector of initial conditions (IC) as well as the left 
and right boundary conditions (BCL and BCR). 

The blue box computes the spatial derivatives.  
In its parameter window, the user can select the ap-
proximation order to be used.  Biased formulae of 
suitable approximation accuracy automatically re-
place the central formulae in the vicinity of the two 
domain boundaries. 

The WorldModel box is used to provide general 
information, such as the grid width of the spatial dis-
cretization. 

Since the diffusion equation with the chosen ini-
tial and boundary conditions has an analytical solu-
tion, that solution is also computed in the block DAN 
for comparison. 

Simulation results are shown in Fig.2. 

 
Figure 2:  Diffusion equation simulation results 

 

Since Dymola hasn’t been designed for simulating 
PDEs, there is currently no support for 3D graphics 
in Dymola.  The graph shows the temperature, u, at 
different space locations as a function of time. 

The analytical results were superposed with the 
simulation results.  In the simulation, the space was 
discretized into 40 segments of equal size.  With 40 
segments, the simulation results are still noticeably 
different from the analytical results. 

 
The MOL approach is less well suited for deal-

ing with hyperbolic PDEs, because their discretiza-
tion leads to marginally stable ODE systems, rather 
than stiff ODE systems.  Unfortunately, the numeri-
cal ODE solvers provided with Dymola and most 
other ODE simulators are not geared to accurately 
integrate marginally stable systems of ODEs. 

The numerical condition of the model can some-
times be improved by using upwind discretization 
schemes [3].  In these schemes, the spatial deriva-
tives are on purpose computed using biased formulae 
also in the bulk.  FORSIM VI and PDELib offer op-
tional upwind discretization schemes. 

4 Finite Volume Method 

Another discretization technique that has been suc-
cessfully applied to numerically simulating hyper-
bolic PDEs is the Finite Volume Method (FVM).  
Just like the MOL technique, also the FVM approach 
comes in many different variants.  Hence it may be 
useful to provide a toolkit that enables a user to 
compose a FVM from a set of component models. 

In one space dimension, the FVM consists in 
subdividing the spatial domain into intervals, also 
called cells or finite volumes.  The integral of the 
unknown function, u, is approximated over each of 
these cells at each time step.  Let us denote the ith 
cell by: 

 
The average value of the function u over this cell 

is then: 

 
How can we estimate the value of Ui?  Consider-

ing the mass conservation law, we note that the aver-
age within the cell can only change due to fluxes at 
the boundaries, assuming that neither source nor sink 



is present in the cell.  Mass conservation can be ex-
pressed mathematically in the following form: 

 
where f denotes the flux function.  The change of 
total mass inside the cell equals the flux entering the 
cell minus the flux leaving it. 

Let us integrate Eq.(6) over time from t to t+Δt 
and divide the equation by Δt and Δx.  We obtain: 

 
Plugging Eq.(5) into Eq.(7), we obtain: 

 
where: 

 
is the average flux over one time step. 

We can reinterpret Eq.(8) as a discrete approxi-
mation of a differential equation: 

 
Using this simple trick, we have reduced also the 

FVM to a Continuous-Time/Discrete-Space (CTDS) 
method. 

How do we approximate the average flux?  Dif-
ferent approximations have been proposed.  A simple 
approximation is the upwind flux: 

 
i.e., the average flux across a border between cells 
during one integration step is proportional to the av-
erage value of u in the upwind cell. 

5 Examples 

In the following section of the paper, some of the 
models currently available as examples in PDELib 
are shown. 

5.1 Linear Advection Equation 

The advection equation is one of the simplest PDEs 
to be found.  Given a constant speed, c, the linear 
advection equation can be written as: 

 
This problem was encoded using the MOL approach 
with the initial condition: 

 
and with the boundary condition: 

 
applied at the left boundary of the domain.  The 
MOL model is shown in Fig.3. 

 
Figure 3:  MOL model of linear advection equation 

 
Some simulation results are shown in Fig.4. 

 
Figure 4:  MOL simulation of linear advection equation 



The same problem was also solved using the FVM 
technique with upwind flux computation.  The model 
is shown in Fig.5. 

 
Figure 5:  FVM model of linear advection equation 

 
This model generates the simulation results shown in 
Fig.6: 

 
Figure 6:  FVM simulation of linear advection equation 

 
The index of the FVM solution is off by two seg-
ments due to the ghost cells used in this approach for 
computing the solution in the vicinity of the domain 
boundary [8]. 

5.2 Burger’s Equation 

The inviscid Burger´s equation is the non-linear PDE 

 
If we choose as initial condition: 

 
and as boundary conditions: 

 
the problem has the analytical solution: 

 

The MOL implementation of Burger´s equation 
is shown in Fig.7. 

 
Figure 7:  MOL model of Burger’s equation 

 
Some simulation results are shown in Fig.8. 

 
Figure 8:  MOL simulation of Burger’s equation 
 
The results look excellent, but they are deceiv-

ing.  The simulation here used 20 segments.  Using 
10 segments, the numerical results start deviating 
from the analytical results after only 0.2 seconds of 
simulated time.  With 20 segments, the simulation 
results are more accurate, but the numerical simula-
tion turns unstable after roughly 0.6 seconds.  The 
more segments are being used, the faster the simula-
tion becomes numerically unstable. 

An FVM implementation of Burger´s equation is 
shown in Fig.9. 

 
Figure 9:  FVM model of Burger’s equation 

 



In this example, the FVM implementation uses a 
Lax-Friedrichs flux together with Local Double 
Logarithmic Reconstruction (LDLR) [1,7,10]. 

Some simulation results are shown in Fig.10. 

 
Figure 10:  FVM simulation of Burger’s equation 

 
The FVM simulation remains numerically stable 

independent of the number of cells in use.  Unfortu-
nately, the results obtained are less accurate than us-
ing the MOL approach.  The indices are again off by 
two because of the ghost cells. 

6 Conclusions 

What have we accomplished?  We have been able to 
create an experimental library that enables experi-
enced analysts to quickly try out different combina-
tions of algorithms that can be used for the simula-
tion of 1D parabolic and hyperbolic PDEs.  Yet, we 
have failed in our aim to protect the user from having 
to understand the numerical properties of PDE 
solvers. 

We chose a mathematical rather than a physical 
interface to our library, because it makes the tool 
more flexible and more general in its applicability.  
However, it was precisely that decision that made us 
fail in our endeavor of delivering a tool to the end 
user that can be applied blindly and reliably.  This 
simply cannot be done at a mathematical level. 

Yet, this is not a major problem.  Modelica, due 
to its object-oriented philosophy, is good at informa-
tion hiding.  In the future, we shall be able to place a 
physical layer on top of the mathematical layer that 
offers solutions to particular subsets of PDEs, just as 
COMSOL does.  Each physical module then decom-
poses its models internally into a combination of 
modules programmed at the mathematical layer. 

We chose a blocks philosophy for our library.  
Each mathematical model is composed as a block 
diagram.  In the long run, this decision will prove to 
have been a mistake.  We shall need to learn to trust 
Modelica to make the right causality decisions for 

us.  Otherwise, we shall never be able to solve 
PDAEs. 

We had made the same mistake initially in the 
design of MultiBondLib [15], our multi-bond graph 
library.  Initially, we formulated holonomic con-
straints between bodies using blocks from the Blocks 
library.  If we use an adder: 

 
Figure 11:  Adder of the Blocks library 

 
from the Blocks library, we force Modelica to com-
pute y = u1 – u2, but maybe the correct causality 
ought to be u2 = u1 – y.  By using blocks from the 
Blocks library, we are tying Modelica’s hands un-
necessarily, which may lead to situations, where 
Modelica can no longer find a solution to the prob-
lem. 

Yet for the time being, the decision to program 
PDELib using blocks rather than models helped us 
restrict the sources of errors.  During the initial phase 
of the research, the phase of determining the most 
suitable numerical algorithms, the use of blocks may 
be a good thing. 

Finally, Dymola doesn’t offer any support yet 
for 3D graphics.  Although it is possible to export 
simulation results to MATLAB and produce 3D 
graphics using that software, this is a hassle.  Dyna-
sim should develop a 3D graphics package that can 
be used to plot vectors of variables against time.  The 
package should furthermore be tied to the 3D View 
Control window to give the users an opportunity to 
look at their 3D graphs from different angles. 
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