
Support for Dymola in the Modeling and Simulation
of Physical Systems with Distributed Parameters

 Farid Dshabarow François E. Cellier, Dirk Zimmer

 ABB Turbo Systems AG ETH Zürich
 Switzerland Switzerland

 Farid.Dshabarow@CH.ABB.Com {FCellier,DZimmer}@Inf.ETHZ.CH

Abstract

This paper introduces a new Modelica library for
modeling and simulation of systems with distributed
parameters in one space dimension. The resulting
partial differential equations of either the parabolic
or hyperbolic types are being converted to sets of
ordinary differential equations using either the
method of lines or the finite volume approach. Some
simple examples serve to document the utilization of
the new library.

Keywords: Distributed Parameter Systems, Nu-
merical PDEs, Method of Lines, Finite Volume
Method

1 Introduction

1.1 History of General-purpose PDE Solvers

Lumped parameter systems have been successfully
modeled and simulated using general-purpose simu-
lation software for several decades. With the advent
of Modelica, it has become unnecessary to model
and simulate any physical systems with lumped pa-
rameters using either general programming lan-
guages, like C++, or special-purpose simulation lan-
guages, like Adams or Spice. Modelica is capable of
converting any lumped parameter model of a physi-
cal system to executable code that is as efficient in
its execution as the best manually coded spaghetti
programs of the past. Modelica can also successfully
compete with special-purpose simulation codes, like
Spice or Adams, in the simulation of electronic cir-
cuits [5] and multi-body systems [15].

The modeling and simulation of distributed pa-
rameter systems using general-purpose simulation
software has not been as successful. In the 70s and
early 80s, a number of general-purpose simulation
codes, like FORSIM VI [4], were developed for the
purpose of modeling and simulating at least some

classes of systems with distributed parameters.
FORSIM VI, for example, was designed for simulat-
ing parabolic PDEs in one or two space dimensions.
Hyperbolic PDEs could be simulated as well, but the
resulting simulation code was not as efficient. Ellip-
tic PDEs could sometimes be converted to equivalent
parabolic problems using invariant embedding.

Around the same time frame, another program,
ELLPACK [11], was developed that was designed
for solving elliptic PDEs in two or three space di-
mensions. The ELLPACK project was very ambi-
tious, and the code grew rapidly to a size that made
the code difficult to use and maintain. In order to
make ELLPACK easier to use, the designers of the
code developed a preprocessor for translating an ab-
stract model description down to a set of Fortran
subroutine calls. Yet, as new algorithms were added
constantly to the software, maintenance of the pre-
processor became soon too difficult. Hence a com-
piler-compiler was developed that could be used to
generate a new version of the preprocessor from an
abstract description thereof. Yet in spite of all of
those efforts, the resulting simulation programs were
highly inefficient at run time.

Whereas one of the primary mantras of modeling
and simulation environments is to be able to protect
the user from having to fully understand the numeri-
cal properties of the underlying solver algorithms,
this demand could never be fully satisfied when deal-
ing with PDEs. The run-time efficiency of the result-
ing simulation code depends too heavily on the cho-
sen discretization method, and no logic was found
that could relieve the user from having to make hard
choices manually.

Sometimes codes like ELLPACK have been
used to quickly try out different combinations of al-
gorithms and compare them with each other. In this
way, the user could more quickly determine, which
combination of algorithms might work best. How-
ever, once this decision has been reached, the final
code nevertheless had to be hand-coded, because the

real problems were not limited to the PDE solvers
themselves, but more often than not were related to
how the code dealt with complex geometries, i.e.,
how physical boundary conditions were converted to
boundary conditions that the PDE solver could make
use of [14].

For all of these reasons, the use of general-
purpose simulation software for the simulation of
distributed parameter systems became unfashionable
again. The researchers dealing with these types of
systems simply gave up, and most of today’s simula-
tion codes are specially designed codes for very
small classes of problems only.

1.2 A Renaissance for General PDE Solvers

One technique that has proven to be more robust
than other approaches is the finite element method
[9]. The success of this technique is based on its
ability for dealing effectively with complex geome-
tries. Originally developed for simulating elliptic 2D
and 3D problems, finite element methods have
quickly also been adapted to the discretization of
parabolic and hyperbolic PDEs [12].

FEMLAB is a general-purpose numerical PDE
solver based on the finite element method. FEM-
LAB was developed in recent years for the simula-
tion of multi-physics applications. The code is capa-
ble of simulating models involving multiple PDEs
[13].

FEMLAB started out as a MATLAB toolbox.
Yet, its developers learnt quickly the same truth that
the ELLPACK developers had learnt before them: a
general-purpose PDE solver becomes soon unman-
ageable without a preprocessor capable of interpret-
ing an abstract model definition. They also learnt
that they needed to offer CAD support for entering
the device geometry.

FEMLAB was more successful than ELLPACK,
in part, because the computers have meanwhile be-
come faster, and in part, because they were less am-
bitious in the sense that they didn’t insist on incorpo-
rating each and every algorithm that has ever been
developed for the numerical solution of PDEs.

FEMLAB has recently changed its name to
COMSOL. This software represents currently the
gold standard of general-purpose numerical PDE
solvers for multi-physics applications.

1.3 A Role for Modelica?

Modelica has become the de facto standard for mod-
eling and simulation of physical systems with

lumped parameters. Does it have a role to play in
numerical PDEs also?

Modelica, or rather its implementations, such as
Dymola, offer not much that is unique or special
w.r.t. their simulation engine. The only feature
worth mentioning in this respect is a fairly robust
root solver (discontinuity handler). The true power
of Modelica lies in its ability to deal with differential
and algebraic equations (DAEs) in a very flexible
and truly object-oriented manner.

Today’s numerical PDE solvers, including
COMSOL, offer numerically advanced algorithms,
but are very primitive w.r.t. their user interface. The
complexity and elaboration of the user interface is at
approximately the same level that the Continuous
System Simulation Languages (CSSLs) were prior to
the advent of the CSSL standard [2].

Would a language like Modelica have made a
big impact in the 1960s, had it been available? The
answer to this question is no. The computers of
those times were far too small and too slow to ade-
quately host a language like Modelica. The re-
searchers of those days dealt with much simpler
models, models that could be handled by the tools
available to them, not because they lacked a better
understanding of physics, but simply, because their
computers couldn’t handle more complex models.

Are distributed parameter problems structurally
simpler than lumped parameter problems? The an-
swer to that question is also no. Physics in general
deals with 3D fields, and lumped parameter models
are simply abstractions of distributed parameter
problems.

If we wish to bend a pipe, we first heat up the
area where the pipe is to be bent. If we were to
simulate the physics of bending a pipe, we would
have to solve a 3D distributed parameter problem
with one PDE describing the heat diffusion problem
and another PDE describing the mechanical stresses
and strains within the material. These PDEs would
furthermore have to be solved in a geometry that
changes over time as a function of the numerical so-
lution of the two PDEs.

Researchers aren’t currently simulating such
processes, they aren’t dealing with partial differential
and algebraic equations (PDAEs) yet, because the
computers of today are too small and too slow to
adequately handle such problems.

Yet, it is not too early to ponder about the lan-
guage constructs and numerical algorithms that will
be needed in support of such endeavors, once the
computers shall have advanced to a level, where they
can deal with such models effectively and efficiently.

2 PDELib for 1D Numerical PDEs

Since the Standard Modelica Library doesn’t offer
any support yet for modeling distributed parameter
systems, we decided to take a first, and very modest,
step towards the much larger and more grandiose
aim outlined in the introduction.

To this end, we revisited some of the programs
of the past, in particular FORSIM VI, and decided to
re-implement some of the algorithms and capabilities
offered by FORSIM VI in a Modelica experimental
library. The results of that effort are being presented
in this paper.

In order to keep things simple, we decided to
limit the tool to the numerical solution of parabolic
and/or hyperbolic PDEs in a single space dimension,
the class of 1D numerical PDEs.

Since 1D PDEs are solved on a straight line be-
tween point A and point B, the geometry plays no
role yet in these problems. The spatial discretization
is straightforward; finite elements aren’t needed or
even useful yet for the spatial discretization; and the
resulting simulation code can still be simulated fairly
efficiently and rapidly using almost any half-way
suitable numerical algorithm.

The aim of the project was to create an experi-
mental tool that can be used to study some properties
of numerical PDEs that haven’t received much cov-
erage yet in the open literature.

One of the numerical problems to be studied is
the propagation of discontinuities through a 1D hy-
perbolic PDE. Such discontinuities cause a new
class of numerical problems. Once the discontinuity
has reached the boundary condition of the PDE, it
can no longer be isolated in time. At any moment in
time, the discontinuity exists somewhere within the
spatial domain covered by the PDE. Thus, tradi-
tional event handling cannot be used to deal with this
type of discontinuities.

A structural problem to be studied concerns the
numerical solution of 1D PDAEs. Can Modelica
help in translating a 1D PDAE into a simulation code
that can be simulated effectively and efficiently?

Two algorithms were implemented in the first
official release of PDELib: the method of lines [6],
and a dialect of the finite volumes approach [10].

3 Method of Lines

Given the 1D diffusion equation:

The method of lines discretizes the spatial deriva-
tives, while keeping the temporal derivatives con-
tinuous. In a first approximation, we may write:

Plugging Eq.(2) into Eq.(1), we find:

In this way, we have converted a PDE into a stiff set
of ODEs that can now be simulated using any off-
the-shelf stiff ODE solver, such as DASSL.

The method of lines is fairly easy to implement.
The chosen approximation is third order accurate. If
the user wishes to use a more accurate approximation
formula, this can be done easily.

Care must be taken in a correct implementation
of the boundary conditions. As the discretization
approaches the boundary, biased discretization for-
mulae in place of central formulae must be used in
order not to make use of grid points outside the
simulated domain.

The approach works fairly well, especially in the
case of parabolic PDEs such as the diffusion equa-
tion. The spatial discretization of a parabolic PDE
by means of the method of lines leads invariably to a
stiff set of ODEs, but modern numerical ODE
solvers are good at dealing with those.

This is the approach that FORSIM VI took. In
order to relieve the user of having to remember dif-
ferent discretization formulae, FORSIM VI offered a
set of Fortran subroutines for computing spatial de-
rivatives both in the bulk and in the vicinity of the
domain boundaries.

PDELib also hides the details of the discretiza-
tion formulae from the user, but does so using a
Graphical User Interface (GUI) as shown in Fig.1.

Figure 1: Model of 1D diffusion equation in PDELib

PDELib offers a method-of-lines (MOL) integra-

tor block. This is a vector integrator block that inte-
grates the vector of temporal derivatives, dui /dt
(marked as “R” on the integrator block), into the vec-
tor of states, u (marked as “Var”), while considering
the vector of initial conditions (IC) as well as the left
and right boundary conditions (BCL and BCR).

The blue box computes the spatial derivatives.
In its parameter window, the user can select the ap-
proximation order to be used. Biased formulae of
suitable approximation accuracy automatically re-
place the central formulae in the vicinity of the two
domain boundaries.

The WorldModel box is used to provide general
information, such as the grid width of the spatial dis-
cretization.

Since the diffusion equation with the chosen ini-
tial and boundary conditions has an analytical solu-
tion, that solution is also computed in the block DAN
for comparison.

Simulation results are shown in Fig.2.

Figure 2: Diffusion equation simulation results

Since Dymola hasn’t been designed for simulating
PDEs, there is currently no support for 3D graphics
in Dymola. The graph shows the temperature, u, at
different space locations as a function of time.

The analytical results were superposed with the
simulation results. In the simulation, the space was
discretized into 40 segments of equal size. With 40
segments, the simulation results are still noticeably
different from the analytical results.

The MOL approach is less well suited for deal-

ing with hyperbolic PDEs, because their discretiza-
tion leads to marginally stable ODE systems, rather
than stiff ODE systems. Unfortunately, the numeri-
cal ODE solvers provided with Dymola and most
other ODE simulators are not geared to accurately
integrate marginally stable systems of ODEs.

The numerical condition of the model can some-
times be improved by using upwind discretization
schemes [3]. In these schemes, the spatial deriva-
tives are on purpose computed using biased formulae
also in the bulk. FORSIM VI and PDELib offer op-
tional upwind discretization schemes.

4 Finite Volume Method

Another discretization technique that has been suc-
cessfully applied to numerically simulating hyper-
bolic PDEs is the Finite Volume Method (FVM).
Just like the MOL technique, also the FVM approach
comes in many different variants. Hence it may be
useful to provide a toolkit that enables a user to
compose a FVM from a set of component models.

In one space dimension, the FVM consists in
subdividing the spatial domain into intervals, also
called cells or finite volumes. The integral of the
unknown function, u, is approximated over each of
these cells at each time step. Let us denote the ith
cell by:

The average value of the function u over this cell

is then:

How can we estimate the value of Ui? Consider-

ing the mass conservation law, we note that the aver-
age within the cell can only change due to fluxes at
the boundaries, assuming that neither source nor sink

is present in the cell. Mass conservation can be ex-
pressed mathematically in the following form:

where f denotes the flux function. The change of
total mass inside the cell equals the flux entering the
cell minus the flux leaving it.

Let us integrate Eq.(6) over time from t to t+Δt
and divide the equation by Δt and Δx. We obtain:

Plugging Eq.(5) into Eq.(7), we obtain:

where:

is the average flux over one time step.

We can reinterpret Eq.(8) as a discrete approxi-
mation of a differential equation:

Using this simple trick, we have reduced also the

FVM to a Continuous-Time/Discrete-Space (CTDS)
method.

How do we approximate the average flux? Dif-
ferent approximations have been proposed. A simple
approximation is the upwind flux:

i.e., the average flux across a border between cells
during one integration step is proportional to the av-
erage value of u in the upwind cell.

5 Examples

In the following section of the paper, some of the
models currently available as examples in PDELib
are shown.

5.1 Linear Advection Equation

The advection equation is one of the simplest PDEs
to be found. Given a constant speed, c, the linear
advection equation can be written as:

This problem was encoded using the MOL approach
with the initial condition:

and with the boundary condition:

applied at the left boundary of the domain. The
MOL model is shown in Fig.3.

Figure 3: MOL model of linear advection equation

Some simulation results are shown in Fig.4.

Figure 4: MOL simulation of linear advection equation

The same problem was also solved using the FVM
technique with upwind flux computation. The model
is shown in Fig.5.

Figure 5: FVM model of linear advection equation

This model generates the simulation results shown in
Fig.6:

Figure 6: FVM simulation of linear advection equation

The index of the FVM solution is off by two seg-
ments due to the ghost cells used in this approach for
computing the solution in the vicinity of the domain
boundary [8].

5.2 Burger’s Equation

The inviscid Burger´s equation is the non-linear PDE

If we choose as initial condition:

and as boundary conditions:

the problem has the analytical solution:

The MOL implementation of Burger´s equation
is shown in Fig.7.

Figure 7: MOL model of Burger’s equation

Some simulation results are shown in Fig.8.

Figure 8: MOL simulation of Burger’s equation

The results look excellent, but they are deceiv-

ing. The simulation here used 20 segments. Using
10 segments, the numerical results start deviating
from the analytical results after only 0.2 seconds of
simulated time. With 20 segments, the simulation
results are more accurate, but the numerical simula-
tion turns unstable after roughly 0.6 seconds. The
more segments are being used, the faster the simula-
tion becomes numerically unstable.

An FVM implementation of Burger´s equation is
shown in Fig.9.

Figure 9: FVM model of Burger’s equation

In this example, the FVM implementation uses a
Lax-Friedrichs flux together with Local Double
Logarithmic Reconstruction (LDLR) [1,7,10].

Some simulation results are shown in Fig.10.

Figure 10: FVM simulation of Burger’s equation

The FVM simulation remains numerically stable

independent of the number of cells in use. Unfortu-
nately, the results obtained are less accurate than us-
ing the MOL approach. The indices are again off by
two because of the ghost cells.

6 Conclusions

What have we accomplished? We have been able to
create an experimental library that enables experi-
enced analysts to quickly try out different combina-
tions of algorithms that can be used for the simula-
tion of 1D parabolic and hyperbolic PDEs. Yet, we
have failed in our aim to protect the user from having
to understand the numerical properties of PDE
solvers.

We chose a mathematical rather than a physical
interface to our library, because it makes the tool
more flexible and more general in its applicability.
However, it was precisely that decision that made us
fail in our endeavor of delivering a tool to the end
user that can be applied blindly and reliably. This
simply cannot be done at a mathematical level.

Yet, this is not a major problem. Modelica, due
to its object-oriented philosophy, is good at informa-
tion hiding. In the future, we shall be able to place a
physical layer on top of the mathematical layer that
offers solutions to particular subsets of PDEs, just as
COMSOL does. Each physical module then decom-
poses its models internally into a combination of
modules programmed at the mathematical layer.

We chose a blocks philosophy for our library.
Each mathematical model is composed as a block
diagram. In the long run, this decision will prove to
have been a mistake. We shall need to learn to trust
Modelica to make the right causality decisions for

us. Otherwise, we shall never be able to solve
PDAEs.

We had made the same mistake initially in the
design of MultiBondLib [15], our multi-bond graph
library. Initially, we formulated holonomic con-
straints between bodies using blocks from the Blocks
library. If we use an adder:

Figure 11: Adder of the Blocks library

from the Blocks library, we force Modelica to com-
pute y = u1 – u2, but maybe the correct causality
ought to be u2 = u1 – y. By using blocks from the
Blocks library, we are tying Modelica’s hands un-
necessarily, which may lead to situations, where
Modelica can no longer find a solution to the prob-
lem.

Yet for the time being, the decision to program
PDELib using blocks rather than models helped us
restrict the sources of errors. During the initial phase
of the research, the phase of determining the most
suitable numerical algorithms, the use of blocks may
be a good thing.

Finally, Dymola doesn’t offer any support yet
for 3D graphics. Although it is possible to export
simulation results to MATLAB and produce 3D
graphics using that software, this is a hassle. Dyna-
sim should develop a 3D graphics package that can
be used to plot vectors of variables against time. The
package should furthermore be tied to the 3D View
Control window to give the users an opportunity to
look at their 3D graphs from different angles.

References

[1] Artebrant, H., Schroll, J., Limiter-free Third Or-
der Logarithmic Reconstruction. SIAM Journal
on Scientific Computation 28 (2006) 359-381

[2] Augustin, D.C, Fineberg, M.S., Johnson, B.B.,

Linebarger, R.N., Sansom, F.J., Strauss, J.C.: The
SCi Continuous System Simulation Lanugage
(CSSL). Simulation 9 (1967) 281-303

[3] Carver, M.B., Hinds, H.W.: The Method of Lines

and the Advective Equation. Simulation 31
(1978) 59-69

[4] Carver, M.B., Stewart, D.G., Blair, J.M., Se-

lander, W.N.: The FORSIM VI Simulation Pack-

age for the Automated Solution of Arbitrarily De-
fined Partial and/or Ordinary Differential Equa-
tion Systems. Atomic Energy of Canada, Ltd.,
Chalk River, Ontario, 1978

[5] Cellier, F.E., Clauß, C., Urquía, A.: Electronic

Circuit Modeling and Simulation in Modelica. In:
Proceedings of the Sixth Eurosim Congress on
Modelling and Simulation, Ljubljana, Slovenia
(2007) Vol. 2, 1-10

[6] Cellier, F.E., Kofman E.: Continuous System

Simulation. Springer-Verlag, New York, 2006

[7] Díaz López, J.: Shock Wave Modeling for Mode-
lica.Fluid Library Using Oscillation-free Loga-
rithmic Reconstruction. In: Proceedings of the
5th International Modelica Conference, Vienna,
Austria (2006) Vol.2 641-649

[8] Dshabarow, F.: Support for Dymola in the Mod-

eling and Simulation of Physical Systems with
Distributed Parameters. MS Thesis, ETH Zu-
rich, Switzerland, 2007

[9] Hughes, T.J.R.: The Finite Element Method: Lin-

ear Static and Dynamic Finite Element Analysis.
Dover Publications, 2000

[10] LeVeque, R.J.: Finite Volume Methods for Hy-

perbolic Problems, Cambridge University Press,
2002

[11] Rice, J.R., Boisvert, R.F.: Solving Elliptic Prob-

lems Using ELLPACK. Springer-Verlag, New
York, 1984

[12] Thomée, V.: Galerkin Finite Element Methods

for Parabolic Problems, 2nd Edition. Springer-
Verlag, Berlin, 1997

[13] van Schijndel, A.W.M.: Modeling and Solving

Building Physics Problems with FemLab. Build-
ing and Environment 38 (2003) 319-327

[14] Wu, Q.M., Cellier, F.E.: Simulation of Bipolar

High-voltage Devices in the Neighborhood of
Breakdown. Mathematics and Computers in
Simulation 28 (1986) 271-284

[15] Zimmer, D., Cellier, F.E.: The Modelica Multi-

bond Graph Library. In: Proceedings of the 5th
International Modelica Conference, Vienna,
Austria (2006) Vol. 2, 559-568

Farid Dshabarow received his MS
degree in computer science from the
Swiss Federal Institute of Technol-
ogy (ETH) Zurich in 2007. He is
now working at ABB Turbo Sys-
tems, where he deals with gas dy-
namics simulations in turbochargers

and software for calculating and visualizing tur-
bocharger characteristics.

François E. Cellier received his BS
degree in electrical engineering in
1972, his MS degree in automatic con-
trol in 1973, and his PhD degree in
technical sciences in 1979, all from the

Swiss Federal Institute of Technology (ETH) Zurich.
Dr. Cellier worked at the University of Arizona as
professor of Electrical and Computer Engineering
from 1984 until 2005. He recently returned to his
home country of Switzerland. Dr. Cellier's main sci-
entific interests concern modeling and simulation
methodologies, and the design of advanced software
systems for simulation, computer aided modeling,
and computer-aided design. Dr. Cellier has authored
or co-authored more than 200 technical publications,
and he has edited several books. He published a text-
book on Continuous System Modeling in 1991 and a
second textbook on Continuous System Simulation
in 2006, both with Springer-Verlag, New York.

Dirk Zimmer received his MS degree
in computer science from the Swiss
Federal Institute of Technology
(ETH) Zurich in 2006. He gained
additional experience in Modelica and
in the field of modeling mechanical
systems during an internship at the

German Aerospace Center (DLR) in 2005. Dirk
Zimmer is currently pursuing a PhD degree with a
dissertation related to computer simulation and mod-
eling under the guidance of Profs. François E. Cellier
and Walter Gander. His research interests focus on
the simulation and modeling of physical systems
with dynamically changing structure.

