Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 0000 [e]e]e}
000 000000

Automated Simulation of Modelica Models with QSS Methods
The Discontinuous Case

Xenofon Floros' Federico Bergero® Frangois E. Cellier' Ernesto Kofman?

" Department of Computer Science, ETH Zurich, Switzerland
{xenofon.floros, francois.cellier}@inf.ethz.ch

2L aboratorio de Sistemas Dinamicos, FCEIA, Universidad Nacional de Rosario, Argentina
CIFASIS-CONICET

{fbergero, kofman}@fceia.unr.edu.ar

March 22nd, 2011

Forderung

N 1TEAZ OI’ENPROB KTI/CTI NE.12101,153 PFES-ES

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 0000 [e]e]e}
000 000000

Outline

Introduction

QSS Methods
OMPD Interface
Simulation Results

Discussion

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 0000 000
000 000000
: :
: :
Outline
Introduction

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion
90000 000000 00000000 0000 000
000 000000
; ;
Introductory Material
; ;

Goal

Y Desi d impl t an interf
OpenMODEL]CA esign and implement an interface

between OpenModelica and
PowerDEVS (OMPD Interface)

Enable the simulation of Modelica
models with QSS methods
PowerDEVS

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion
[¢] le]e]e} 000000 00000000 0000 [e]e]e}
000 000000
I I
Introductory Material
; ;

Why?

Interfacing OpenModelica and PowerDEVS we take advantage of

The powerful modeling tools and market share offered by Modelica

» Users can still define their models using the Modelica language or their favorite
graphical interface.

> No prior knowledge of DEVS and QSS methods is needed.

The superior performance of quantization-based techniques in some particular
problem instances

> QSS methods allow for asynchronous variable updates, which potentially speeds up
the computations for real-world sparse systems.

» QSS methods do not need to iterate backwards to handle discontinuities, they rather
predict them, enabling real-time simulation.

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich
s

Introduction QSS Methods OMPD Interface Simulation Results Discussion
0000 000000 00000000 0000 000
000 000000
I I
Introductory Material
; ;

Modelica-The next generation modeling language

Modelica modeling
environment (free or
commercial)

Graphical editor for
Modelica users

Free Modelica

Textual description L
anguage

Modelica simulation
environment (free or
commercial)

Translation of Modelica
models in C-Code and
Simulation

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction
00000

Introductory Material

QSS methods

Simulation of continuous systems by a digital computer requires discretization.
» Classical methods (e.g. Euler, Runge-Kutta etc.), that are implemented in
Modelica environments, are based on discretization of time.

» On the other hand, the Discrete Event System Specification (DEVS)
formalism, introduced by Zeigler in the 90s, enables the discretization of
states.

» The Quantized-State Systems (QSS) methods, introduced by Kofman in
2001, improved the original quantized-state approach of Zeigler.

» PowerDEVS is the environment where QSS methods have been
implemented for the simulation of systems described in DEVS.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion
[e]ejele] } 000000 00000000 0000 [e]e]e}
000 000000
I I
Introductory Material

PowerDEVS

Model Documentaton Window Help

» Specify system structure
(using DEVS formalism)

» Block implementation
hidden (C++ code)

._’!_;T' I—*_ » Integrators implement the
e QSS methods

» Simulation using
hierarchical master-slave
structure and message
passing

de_dnve_pwm_conparer ()

http://sourceforge.net/projects/powerdevs/

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich

00

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 0000 [e]e]e}
000 000000

Outline

QSS Methods

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 ®00000 00000000 0000 [e]e]e}
000 000000
I I
QSS Definition
; ;

Quantized State Systems Method

Definition
Given a system

x(t) = f(x(1), 1) (1)
with x e R”, t e Rand f : R™" — R”, the QSS approximation is given by

x(t) = f(q(1), 1) @)
where g(t) and x(t) are related componentwise by hysteretic quantization

functions.

Under certain assumptions, the QSS approximation (2) is shown to be
equivalent to a legitimate DEVS model.

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 O@0000 00000000 0000 [e]e]e}
000 000000
I I
QSS Definition
; ;

QSS Method and Perturbed Systems

Defining Ax(t) £ g(t) — x(t), the QSS approximation (2) can be rewritten as:
x(t) = f[x(t) + Ax(t), 1] (3)
Notice that every component of Ax satisfies
[Axi(1)] = [qi(t) — xi(1)] < AQ; (4)
where A Q) is the quantization width (or quantum) in the i-th component.
The effect of the QSS discretization can be studied as a problem of bounded
perturbations over the original ODE.

At each step only one (quantized) state variable that changes more than the quantum
value AQ; is updated producing a discrete event.

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 00e000 00000000 0000 [e]e]e}
000 000000
I I
QSS Definition
; ;

Static Functions & Quantized Integrators
If we break (2) into the individual components we have that:
X1 =fH(x1,..., Xn, t) x1 = fH(q1,...,qn, t)
: = ; ©)
Xn= (X1, .., Xn, 1) Xn=Ta(G1,. .., Qn, t)

Considering a single subcomponent we can define the "simple” DEVS models:

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich
e

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 00000 00000000 0000 [e]e]e}
000 000000
I I
QSS Definition
; ;

Static Functions & Quantized Integrators
If we break (2) into the individual components we have that:
X1 =fH(x1,..., Xn, t) x1 = fH(q1,...,qn, t)
: o : (5)
Xn= (X1, .., Xn, 1) Xn = Ta(q1, ..., Qn, 1)

Considering a single subcomponent we can define the "simple” DEVS models:

[a— Q00 — Ay x

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 00@000 00000000 0000 [e]e]e}
000 000000
I I
QSS Definition
; ;

Static Functions & Quantized Integrators
If we break (2) into the individual components we have that:
X1 =fH(x1,..., Xn, t) x1 = fH(q1,...,qn, t)
: o : (5)
Xn= (X1, .., Xn, 1) Xn = Ta(q1, ..., Qn, 1)

Considering a single subcomponent we can define the "simple” DEVS models:

4= QU= QU A d)] < Quantized negrator >
|)'(i=fi(171a--~:Qn,t)

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface
00000 00000 00000000
000

Simulation Results Discussion
0000 000
000000

QSS Definition

QSS — Example

Solution with AQ = 0.01, u(t) =1

12 T

-02 ! L
0

Let second order LTI system:

X1 (1) = xa(1)
Xo (1) = —x1 () — x2(t) + u(t)

Interfacing OpenModelica and PowerDEVS
e

I
ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 0000e0 00000000 0000 [e]e]e}
000 000000

QSS Definition

QSS - Example

Solution with AQ = 0.05, u(t) = 1

12 T T T T T T

0.8

Let second order LTI system:
x1(t) = xz(t)

| Xo(t) = =x (1) — xz(t) + u(?)

0.6

0.4

0.2

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich
s

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 00000e 00000000 0000 000
000 000000

QSS Definition

QSS — Example

Solution with AQ = 0.1, u(t) = 1

12 T

08
Let second order LTI system:
x1(t) = xz(t)
Xo(t) = =x (1) — xz(t) + u(?)

0.6

0.4

0.2

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 000000 00000000 0000 [e]e]e}
@00 000000
I I
Higher-Order QSS Methods
; ;

Cost vs. Accuracy in QSS

In QSS, we know that the quantum is proportional to the global error bound.
Thus,
» |f we want to increase the global accuracy for a factor of 100, we should
divide the quantum by that factor.

» Since the number of steps is inversely proportional to the quantum, that
modification would increase the number of computations by a factor of 100.

This problem is due to the fact that QSS is only first order accurate, i.e. it does
not use information about the derivatives of f.

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 0000 [e]e]e}
o] o} 000000
I I

Higher-Order QSS Methods
: ;

Second Order QSS (QSS2 Method)

» Same definition and
properties as QSS.

» Second order accurate
method.

» The number of steps grows
with the square root of the
accuracy.

» The quantized variables
have piecewise linear
trajectories thus the state
derivatives are also
piecewise linear and the
state variables piecewise
parabolic.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 000000 00000000 0000 [e]e]e}
[elel] 000000
I I
Higher-Order QSS Methods
; ;

Third Order QSS (QSS3 Method)

» Same definition and
properties as QSS.

» Third order accurate
method.

» The number of steps grows
with the cubic root of the
accuracy.

» The method of choice for
simulating real-world

i systems.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 0000 [e]e]e}
000 000000

Outline

OMPD Interface

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 90000000 0000 [e]e]e}
000 000000

OMPD Interface

OpenModelica Compiler Modifications

Modelica
Source Code

===~ \odelica model

&= Flat Model

U

PowerDEVS PowerDEVS
Structure File Block Code
(model.pds) (modelica_funcs.cpp)

m

m

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 0@000000 0000 [e]e]e}
000 000000

OMPD Interface

The Bouncing Ball Model

model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration”;

Real h(start=1) "height of ball";

Real v "velocity of ball";

Boolean flying(start=true) "true, if ball is flying";
Real v_new;

Boolean impact;

Real dummy; 0.8
Boolean dummy2; B

0.6 7

1.0

equation
der (dummy) = if (dummy>0 and h<=0) then
dummy else h#v; // Dummy part 1
when {sample(0,1)} // Dummy part 2
dummy2 = false; 0.2
end when]

<04

impact = h <= 0.0; 007

der (v) = if flying then -g else 0;
der (h) = v; 0.2 T T T T T
0.0 0.5 1.0 20 25 3.0

15
when {h <= 0.0 and v <= 0.0,impact} then Time [s]
v_new = if edge (impact) then -esv else 0;
flying = v_new > 0;

reinit (v, v_new);
end when;

end BouncingBall;

Interfacing OpenModelica and PowerDEVS ETH Zurich
e

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00@00000 0000 [e]e]e}
000 000000

OMPD Interface

Add Static Blocks for State Variables

der (h) = v; (Eq. 1)
der (dummy) = if (dummy>0 and h<=0) then
dummy else hxv; (Eg. 2)
when {sample(0,1)}
dummy2 = false; (Eq. 3)
end when
impact = h <= 0.0; (Eq. 4)
when {h <= 0.0 and v <= 0.0,impact} then
v_new = if edge (impact) then
-exv else 0; (Eq. 5)
flying = v_new > 0; (Eq. 6)
reinit (v, v_new);

end when;
der(v) = if flying then —g else 0; (Eq. 7)
STATIC FUNCTIONS QUANTIZED INTEGRATORS
» Extract equations (BLT blocks) needed to
compute state derivative variables.
> Place the splitted equations in respective
static function blocks.
» Resolve dependencies in the
inputs/outputs.
: :
Interfacing OpenModelica and PowerDEVS ETH Zurich

00

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 000@0000 0000 [e]e]e}
000 000000

OMPD Interface

Add Zero Crossing Functions

der(h) = v; (Eq. 1)
der (dummy) = if (dummy>0 and h<=0) then
dummy else h#v; (Eq. 2)
when {sample(0,1)}
dummy2 = false; (Eq. 3)
end when
impact = h <= 0.0; (Eq. 4)
when {h <= 0.0 and v <= 0.0, impact} then
v_new = if edge (impact) then
—exv else 0; (Eg. 5)
flying = v_new > 0; (Eq. 6)
reinit (v, v_new);
end when;
der(v) = if flying then -g else 0; (Eq. 7)

» Add zero-crossing functions and the
corresponding zero-cross detectors.

» Resolve dependencies in the
inputs/outputs.

» The zero-cross detectors produce events
at discontinuities and propagate them to
the corresponding static blocks.

ZERO CROSSINGS CROSS DETECTORS

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 0000e000 0000 [e]e]e}
000 000000

OMPD Interface

Add When Blocks

der (h) = v; (Eg. 1)

der (dummy) = if (dummy>0 and h<=0) then
dummy else hxv; (Eq. 2)

when {sample(0,1)}

dummy2 = false; (Eq. 3)

end when

impact = h <= 0.0; (Eq. 4)

when {h <= 0.0 and v <= 0.0, impact} then

v_new = if edge(impact) then

WHEN -e*v else 0; (Eq. 5)

BLOCKS flying = v_new > 0; (Eq. 6)

reinit (v, v_new);
end when;
der(v) = if flying then -g else 0; (Eg. 7)

W
(6 o P Add when-blocks for each generated

when-clause and resolve dependencies.

P If a static function depends on a discrete variable
calculated in a when-block (e.g. flying) an event
is sent to the corresponding static block.

WB P When a cross detector fires, all the discrete
variables are updated via calling the OMC

@ [dummy2 !
function updateDepend().

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000800 0000 [e]e]e}
000 000000

OMPD Interface

Add Sample Blocks

SF

der(h) = v; (Eq. 1)
der (dummy) = if (dummy>0 and h<=0) then
dummy else h#v; (Eq. 2)
when {sample(0,1)}
dummy2 = false; (Eq. 3)
end when
impact = h <= 0.0; (Eq. 4)
when {h <= 0.0 and v <= 0.0, impact} then
v_new = if edge (impact) then
-exv else 0; (Eg. 5)
flying = v_new > 0; (Eq. 6)
reinit (v, v_new);
end when;
der(v) = if flying then -g else 0; (Eq. 7)

» Add one sample block for each sample
statement.

» Connect the sample blocks to the
dependent when-clauses.

SAMPLE
BLOCKS —)

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000080 0000 [e]e]e}
000 000000

OMPD Interface

Add Reinit Blocks

der (h) = v; (Eq. 1)
der (dummy) = if (dummy>0 and h<=0) then
dummy else h+v; (Eq. 2)
when {sample(0,1)}
dummy2 = false; (Eg. 3)
end when
impact = h <= 0.0; (Eq. 4)
when {h <= 0.0 and v <= 0.0, impact} then
v_new = if edge (impact) then
-exv else 0; (Eg. 5)
flying = v_new > 0; (Eq. 6)
reinit (v, v_new);
end when;
der(v) = if flying then -g else 0; (Eq. 7)

> Add reinit blocks for the reinit statements
and connect them to the corresponding
integrators.

REINIT
BLOCKS

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 0000000e 0000 [e]e]e}
000 000000

OMPD Interface

Final Structure

der(h) = v; (Eq. 1)
der (dummy) = if (dummy>0 and h<=0) then
dummy else h+v; (Eq. 2)
when {sample (0, 1)}
dummy2 = false; (Eq. 3)
end when
impact = h <= 0.0; (Eq. 4)
when {h <= 0.0 and v <= 0.0, impact} then
v_new = if edge(impact) then
-exv else 0; (Eg. 5)
flying = v_new > 0; (Eq. 6)
reinit (v, v_new);
end when;
der(v) = if flying then -g else 0; (Eq. 7)

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 0000 [e]e]e}
000 000000

Outline

Simulation Results

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 @000 [e]e]e}
000 000000

Benchmark Framework

Compared Solvers

The goal is to compare the run-time efficiency and accuracy of QSS methods
against the following representative methods and environments:

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich
s

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 @000 [e]e]e}
000 000000

Benchmark Framework

Compared Solvers

The goal is to compare the run-time efficiency and accuracy of QSS methods
against the following representative methods and environments:

» DASSL in OpenModelica v1.5.1 and Dymola v7.4

» State-of-the-art multi-purpose solver used by most simulation environments
today.

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich
s

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 000000 00000000 @000 [e]e]e}
000 000000
I I
Benchmark Framework
; ;

Compared Solvers

The goal is to compare the run-time efficiency and accuracy of QSS methods
against the following representative methods and environments:

» DASSL in OpenModelica v1.5.1 and Dymola v7.4
» State-of-the-art multi-purpose solver used by most simulation environments
today.
» Radau lla in Dymola v7.4
> A single-step (Runge-Kutta) algorithm is supposed to be more efficient than a
multi-step algorithm when dealing with discontinuities (due to step-size control
for the latter methods).

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich
s

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 000000 00000000 @000 [e]e]e}
000 000000
I I
Benchmark Framework
; ;

Compared Solvers

The goal is to compare the run-time efficiency and accuracy of QSS methods
against the following representative methods and environments:

» DASSL in OpenModelica v1.5.1 and Dymola v7.4
» State-of-the-art multi-purpose solver used by most simulation environments
today.
» Radau lla in Dymola v7.4

> A single-step (Runge-Kutta) algorithm is supposed to be more efficient than a
multi-step algorithm when dealing with discontinuities (due to step-size control
for the latter methods).

» Dopri45 in Dymola v7.4

» An explicit Runge-Kutta method which could be more efficient when simulating
non-stiff systems.

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich
s

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 o] lele) [e]e]e}
000 000000

Benchmark Framework

Run-time Efficiency (Execution Time)
Problem

» Measuring the execution time of each simulation across different
environments could be tricky, e.g. it is not enough just to run the
executables and measure the CPU-time elapsed.

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich
e

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 [e] le]e] [e]e]e}
000 000000

I
Benchmark Framework

Run-time Efficiency (Execution Time)
Problem
» Measuring the execution time of each simulation across different
environments could be tricky, e.g. it is not enough just to run the
executables and measure the CPU-time elapsed.
Approach

» We resort in using the reported simulation time that each environment
provides.

;
Interfacing OpenModelica and PowerDEVS ETH Zurich

00

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 [e] le]e] [e]e]e}
000 000000
: :
Benchmark Framework

Run-time Efficiency (Execution Time)
Problem

» Measuring the execution time of each simulation across different
environments could be tricky, e.g. it is not enough just to run the
executables and measure the CPU-time elapsed.

Approach

» We resort in using the reported simulation time that each environment
provides.

» The generation of output files was suppressed in all cases.

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich
e

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 000000 00000000 [e] le]e] [e]e]e}
000 000000
I I
Benchmark Framework
; ;

Run-time Efficiency (Execution Time)
Problem

» Measuring the execution time of each simulation across different
environments could be tricky, e.g. it is not enough just to run the
executables and measure the CPU-time elapsed.

Approach

» We resort in using the reported simulation time that each environment
provides.

» The generation of output files was suppressed in all cases.

Reminder

» The measured CPU time should not be considered as an absolute
ground-truth.

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 000000 00000000 [e] le]e] [e]e]e}
000 000000
I I
Benchmark Framework
; ;

Run-time Efficiency (Execution Time)
Problem
» Measuring the execution time of each simulation across different

environments could be tricky, e.g. it is not enough just to run the
executables and measure the CPU-time elapsed.

Approach
» We resort in using the reported simulation time that each environment
provides.
» The generation of output files was suppressed in all cases.

Reminder

» The measured CPU time should not be considered as an absolute
ground-truth.

» But the relative ordering of the algorithms is expected to remain the
same.

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 [ele] o) [e]e]e}
000 000000

Benchmark Framework

Simulation Accuracy

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 [ele] o) [e]e]e}
000 000000

Benchmark Framework

Simulation Accuracy

» The state trajectories in the benchmark problems cannot be computed
analytically.

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich
s

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 [ele] o) [e]e]e}
000 000000

Benchmark Framework

Simulation Accuracy

» The state trajectories in the benchmark problems cannot be computed
analytically.

» Therefore, we can only approximate the accuracy of the simulations.

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich
s

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 [ele] o) [e]e]e}
000 000000

Benchmark Framework

Simulation Accuracy

» The state trajectories in the benchmark problems cannot be computed
analytically.

» Therefore, we can only approximate the accuracy of the simulations.
» To this end we need to obtain reference trajectories (1™, y™").

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich
s

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 000000 00000000 [e]e] o] [e]e]e}
000 000000
I I
Benchmark Framework
; ;

Simulation Accuracy

» The state trajectories in the benchmark problems cannot be computed
analytically.

» Therefore, we can only approximate the accuracy of the simulations.

» To this end we need to obtain reference trajectories (", y"').

Reference Trajectories

» The default DASSL solver both in Dymola and OpenModelica was used
with
» a very tight tolerance of 10~ 2 and
> requesting 105 output points.
» The difference between both reference trajectories was on the order of 107°
therefore we report only the simulation error against the Dymola solution.

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich
e

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 [elele]] [e]e]e}
000 000000

Benchmark Framework

Simulation Accuracy

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 [elele]] [e]e]e}
000 000000

Benchmark Framework

Simulation Accuracy

» For each state a reference trajectory (t*', y™) is calculated.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 [elele]] [e]e]e}
000 000000

Benchmark Framework

Simulation Accuracy

» For each state a reference trajectory (t*', y™) is calculated.

» Each solver is forced to output 10° equally spaced points to obtain
(t®f, ysi™) without changing the integration step.

» Then, the mean absolute error is calculated as:

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich
s

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 oooe [e]e]e}
000 000000

Benchmark Framework

Simulation Accuracy

» For each state a reference trajectory (t, y™') is calculated.

» Each solver is forced to output 10° equally spaced points to obtain
(t®f, ysi™) without changing the integration step.

» Then, the mean absolute error is calculated as:

“refl
1 sim ref
error = TEd] E lyvi"™" = yi7| (6)
i=1
; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich

00

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 000000 00000000 0000 000
[e]e]e} @00000

Simulated Discontinuous Models

Half-Wave Rectifier

—_
Figure: Graphical representation of the half-wave rectifier in Dymola
I I

Interfacing OpenModelica and PowerDEVS ETH Zurich
s

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 0000 [e]e]e}
[e]e]e) 0O®0000

Simulated Discontinuous Models
;

Simulated trajectories for the half-wave rectifier

0.6

0.5

0.4

03

state trajectories

= capacitor voltage
0.2 B

0.1

0.0 , , , , , , . ,
1 2 3] 5 6 7 8 9«0
time (sec)

I
ETH Zurich

Interfacing OpenModelica and PowerDEVS
e —————————

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 000000 00000000 0000 [e]e]e}
000 [e]e] lele]e}
I I
Simulated Discontinuous Models
; ;

Half-Wave Rectifier (Simulated for 1 sec)

CPU time | Simulation
(sec) Error
DASSL 1073 0.019 1.45E-03
DASSL 107* 0.022 2.35E-04

Dymola Radaulla 107 | 0.031 2 20E-06
Dopri45 10~* 0.024 4.65E-05

QSS3 1072 0.014 2.59E-04

QSS3 10~ 0.026 2.23E-05

QSs3 10~° 0.041 2.30E-06

PowerDEVS | —osss 102 [0242 3.00E-03
QSs2 1073 0.891 3.04E-04

QSS2 10~ 3.063 3.00E-05
DASSL 10°° 0.265 3.80E-03
DASSL 10~* 0.281 5.40E-04

OpenModelica

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 000000 00000000 0000 000
[e]e]e} 000e00

Simulated Discontinuous Models

Switching Power Converter

Model SquareWaveGenerator
Real xl(start=0.0);
Real x2(start=1.0);
Boolean pulse (start=true);
parameter Real freq-led;
equation
der (x1) =freq*4+x2;
der(x2)=if (x1<0) then freg*d else -freqrd;
pulse=(x1>0);
idealClosingSwitch.control = pulse;
end squareWaveGenerator;

L1
g Ao
L=0.00015

+
=0

c1 | |R1

220000

Figure: Graphical representation of the switching power converter in Dymola

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 000000 00000000 0000 000
[e]e]e} 000080
; ;
Simulated Discontinuous Models
; ;

Simulated state trajectories for the switching power converter

....... inductor current |
= capacitor voltage
0
2
=
S
1]
3]
L
©
=
2 |
] !
» 03
0.2
0.1
0.0 n n n n n n n n n 3
1 2 3 4 5 6 7 8 9 x10
time (sec)
; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich

00

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 000000 00000000 0000 [e]e]e}
000 O0000e
I I
Simulated Discontinuous Models
; ;

Switching Power Converter (Simulated for 0.01 sec)

CPU time | Simulation
(sec) Error

DASSL 10°° 0.051 1.82E-04

DASSL 10~* 0.063 7.18E-05

Radaulla 107°° 0.064 1.11E-07

Dymola Radaulla 10~* | 0.062 1.11E-07
Dopri45 1072 0.049 6.38E-06

Dopri45 10~* 0.047 9.76E-06

QSS3 1073 0.049 1.41E-03

PowerDEVS QSS3 10~* 0.062 1.68E-05
QSS3 1078 0.250 8.96E-06

OpenModelica DASSL 10°° 50.496 -

DASSL 10~* 1.035 2.62E-02

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 0000 000
000 000000
: :
: :
Outline
Discussion

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 000000 00000000 0000 @00
000 000000
I I
Discussion
; ;

Conclusions

» An interface between OpenModelica and PowerDEVS is presented and
analyzed.

» The OMPD interface successfully handles discontinuities allowing the
simulation of real-world Modelica models using QSS solvers.

» Comparing QSS3 and DASSL in OpenModelica, a 20-fold decrease in the
required CPU time was achieved for the example models.

» Furthermore in our discontinuous examples, QSS3 is as efficient as DASSL
in Dymola, in spite of the fact that Dymola offers a much more sophisticated
model preprocessing than OMC.

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

00000 000000 00000000 0000 oeo
000 000000

Discussion

Future Work

v

Provide support for stiff QSS solvers.

» Perform more extensive simulations of benchmark problems in order to test
the correctness of the interface and the performance of QSS methods.

Incorporate QSS solvers in future official OpenModelica releases.
Investigate the parallel simulation capabilities of QSS methods.

v

v

; ;
Interfacing OpenModelica and PowerDEVS ETH Zurich
s

R

Introduction QSS Methods OMPD Interface Simulation Results Discussion
00000 000000 00000000 0000 ooe
000 000000
; ;
Discussion

Questions?)

Interfacing OpenModelica and PowerDEVS ETH Zurich

	
	Introduction
	Introductory Material

	QSS Methods
	QSS Definition
	Higher-Order QSS Methods

	OMPD Interface
	

	Simulation Results
	Benchmark Framework
	Simulated Discontinuous Models

	Discussion
	

