
Introduction QSS Methods OMPD Interface Simulation Results Discussion

Automated Simulation of Modelica Models with QSS Methods
The Discontinuous Case

Xenofon Floros1 Federico Bergero2 François E. Cellier1 Ernesto Kofman2

1Department of Computer Science, ETH Zurich, Switzerland
{xenofon.floros, francois.cellier}@inf.ethz.ch

2Laboratorio de Sistemas Dinámicos, FCEIA, Universidad Nacional de Rosario, Argentina
CIFASIS-CONICET

{fbergero, kofman}@fceia.unr.edu.ar

March 22nd, 2011

Project Profile

The OPENPROD project is developing
an open whole-product, model-driven
systems development, modelling and
simulation (M&S) environment that
integrates the leading open industrial
software development platform Eclipse
with open-source modelling and
simulation tools such as OpenModelica
and industrial M&S tools and
applications. The project will enable a
more formalised validation of production
to cut time to market and ensure higher
quality, using open solutions which
will have a high impact, based on easy
uptake and wide dissemination.

A general tendency in product development
is the increasing complexity of technical
systems and the distributed networks in
which they are designed and manufactured.
This complexity involves a higher degree
of automation, a greater number of
technologies and strong coupling of
software and hardware development.
Moreover, strong market trends are towards
more complex products that include
software and hardware components,
requiring more integrated whole-product
development approaches.

In addition, software and hardware
component suppliers are increasingly
involved in the design process of the overall
system.

Original equipment manufacturers already
ask their component suppliers to validate
the functionality of components provided in
the system context at the design stage, long
before the system itself is actually built.

ADOPTION OF COMMON SYSTEM
MODELS
One of the most important paradigm shifts
now occurring is the adoption of common
system models as a foundation for product
and system design. This approach results in
a much more effective product-development
process, since a system can be tested at all
stages of the design.

The integrated holistic environment
developed in OPENPROD will generalise
model-driven approaches to include most
aspects of product development. This will
involve three key concepts:
1. An holistic whole-product model-

driven rapid development and design
environment for both software and

 hardware, also including support for
product business processes;

2. Open-source tools and components for
open reusable solutions; and

3. Standardised model representation of
products primarily based on Modelica
and the unified modelling language
(UML).

Closed proprietary solutions are often a
hindrance to widespread dissemination

OPENPROD Vision of unified modeling framework for model-driven product development from platform independent models (PIM) to
platform specific models (PSM)

Whole product approach
speeds systems development
Integrated open modelling and simulation
environment to cut time to market and
improve quality
• •

OPENPROD
(ITEA 2 ~ 08021)
• • • • • • • • • • • • • • •

n	Partners
Appedge
Bosch Rexroth AG
CEA LIST
EADS Innovation Works
Electricité De France
Equa Simulation AB
ETH Zürich
Fachhochschule Bielefeld
Fraunhofer FIRST
IFP
INRIA Rocquencourt
INSA Lyon
Linköping University
LMS Imagine
MathCore Engineering AB
Metso Automation
Nokia
Plexim GmbH
Pöyry Forest Industry
PSA Peugeot Citroen
Siemens Industrial TurboMachinery AB
Siemens AG, Sector Energy
SKF Sverige AB
Technische Universität Braunschweig
TLK Thermo GmbH
VTT Technical Research Centre of
 Finland
XRG Simulation GmbH

n	Countries involved
Finland
France
Germany
Sweden
Switzerland

n	Project start
June 2009

n	Project end
May 2012

n	Contact

Project Coordinator :
Sune Horkeby
Siemens Industrial Turbomachinery

Email :
sune.horkeby@siemens.com

Project website :
www.openprod.org

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
& Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
& Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

This document will be treated as strictly confidential. It will not be disclosed to anybody not having signed the
ITEA Non-Disclosure Agreement.

Minutes of Meeting
OPENPROD Project Board (PB) Erlangen 2-3 December 2 010

Sune Horkeby 2010-12-17
•••

Present Partner (Short) Mail Address Phone number
Oliver Lenord BR Oliver.Lenord@boschrexroth.de

Nicolas Pernet IFP nicolas.pernet@ifp.fr

Mongi Ben Gaid IFP mongi.ben-gaid@ifpenergiesnouvelles.fr

Daniel Bouskela EDF daniel.bouskela@edf.fr

Audrey Jardin EDF audrey.jardin@edf.fr

Johan Åkesson Modelon johan.akesson@modelon.se +46 46 286 2206

Bernhard Bachmann Ubiele bernhard.bachmann@fh-bielefeld.de

Michaela Huhn TUBS M.Huhn@tu-bs.de

Sune Horkeby (SH) SiemensTU sune.horkeby@siemens.com +46 703 953669

Per Sahlin Equa per.sahlin@equa.se

Steffen Unger First steffen.unger@first.fraunhofer.de

Peter Aronsson MathCore peter.aronsson@mathcore.se

Otto Tronarp MathCore otto.tronarp@mathcore.se

Jean-Peter Ylen VTT jean-peter.ylen@vtt.fi +358405822274

Kilian Link SiemensEn kilian.link@siemens.com

Francois Cellier ETH FCellier@Inf.ETHZ.CH +41(44)632-7474

Sebastien Furic LMS Francoise.Trigueiro@Imsintl.com

Wladimir Schamai EADS Wladimir.Schamai@eads.net

Ahmet Akbal XRG akbal@xrg-simulation.de

Adrian Pop LiU adrpo@ida.liu.se

Sven-Gunnar Sundkvist SiemensTu sven-gunnar.sundkvist@siemens.com +46 122 816 29

Leo Gall SiemensEn leo.gall@siemens.com +49 (9131) 18-82506

Christoph Höger FhG choeger@cs.tu-berlin.de

Stephanie Vogel SiemensEn vogel.stephanie@siemens.com +49 (9131) 18-83350

Peter Fritzson (PF) LiU petfr@ida.liu.se +46 708 281484

Simon Bliudze CEA simon.bliudze@cea.fr

CTI grant
Nr.12101.1;3 PFES-ES

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Outline

Introduction

QSS Methods

OMPD Interface

Simulation Results

Discussion

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Outline

Introduction

QSS Methods

OMPD Interface

Simulation Results

Discussion

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Introductory Material

Goal

OpenMODELICA

PowerDEVS

Design and implement an interface
between OpenModelica and

PowerDEVS (OMPD Interface)

Enable the simulation of Modelica
models with QSS methods

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Introductory Material

Why?

Interfacing OpenModelica and PowerDEVS we take advantage of

The powerful modeling tools and market share offered by Modelica
I Users can still define their models using the Modelica language or their favorite

graphical interface.
I No prior knowledge of DEVS and QSS methods is needed.

The superior performance of quantization-based techniques in some particular
problem instances

I QSS methods allow for asynchronous variable updates, which potentially speeds up
the computations for real-world sparse systems.

I QSS methods do not need to iterate backwards to handle discontinuities, they rather
predict them, enabling real-time simulation.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Introductory Material

Modelica-The next generation modeling language

Graphical editor for
Modelica users

Modelica modeling
environment (free or

commercial)

Textual description Free Modelica
Language

Translation of Modelica
models in C-Code and

Simulation

Modelica simulation
environment (free or

commercial)

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Introductory Material

QSS methods

Simulation of continuous systems by a digital computer requires discretization.

I Classical methods (e.g. Euler, Runge-Kutta etc.), that are implemented in
Modelica environments, are based on discretization of time.

I On the other hand, the Discrete Event System Specification (DEVS)
formalism, introduced by Zeigler in the 90s, enables the discretization of
states.

I The Quantized-State Systems (QSS) methods, introduced by Kofman in
2001, improved the original quantized-state approach of Zeigler.

I PowerDEVS is the environment where QSS methods have been
implemented for the simulation of systems described in DEVS.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Introductory Material

PowerDEVS

I Specify system structure
(using DEVS formalism)

I Block implementation
hidden (C++ code)

I Integrators implement the
QSS methods

I Simulation using
hierarchical master-slave
structure and message
passing

http://sourceforge.net/projects/powerdevs/

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Outline

Introduction

QSS Methods

OMPD Interface

Simulation Results

Discussion

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

QSS Definition

Quantized State Systems Method

Definition
Given a system

ẋ(t) = f (x(t), t) (1)

with x ∈ Rn, t ∈ R and f : Rn+1 → Rn, the QSS approximation is given by

ẋ(t) = f (q(t), t) (2)

where q(t) and x(t) are related componentwise by hysteretic quantization
functions.

Under certain assumptions, the QSS approximation (2) is shown to be
equivalent to a legitimate DEVS model.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

QSS Definition

QSS Method and Perturbed Systems

Defining ∆x(t) , q(t)− x(t), the QSS approximation (2) can be rewritten as:

ẋ(t) = f [x(t) + ∆x(t), t] (3)

Notice that every component of ∆x satisfies

|∆xi (t)| = |qi (t)− xi (t)| ≤ ∆Qi (4)

where ∆Qi is the quantization width (or quantum) in the i–th component.

The effect of the QSS discretization can be studied as a problem of bounded
perturbations over the original ODE.

At each step only one (quantized) state variable that changes more than the quantum
value ∆Qi is updated producing a discrete event.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

QSS Definition

Static Functions & Quantized Integrators

If we break (2) into the individual components we have that:

ẋ1 = f1(x1, . . . , xn, t)

...

ẋn = fn(x1, . . . , xn, t)

QSS
=⇒

ẋ1 = f1(q1, . . . , qn, t)

...

ẋn = fn(q1, . . . , qn, t)

(5)

Considering a single subcomponent we can define the ”simple” DEVS models:

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

QSS Definition

Static Functions & Quantized Integrators

If we break (2) into the individual components we have that:

ẋ1 = f1(x1, . . . , xn, t)

...

ẋn = fn(x1, . . . , xn, t)

QSS
=⇒

ẋ1 = f1(q1, . . . , qn, t)

...

ẋn = fn(q1, . . . , qn, t)

(5)

Considering a single subcomponent we can define the ”simple” DEVS models:

qi = Q(xi) = Q(
∫

ẋi dt) Quantized Integrator

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

QSS Definition

Static Functions & Quantized Integrators

If we break (2) into the individual components we have that:

ẋ1 = f1(x1, . . . , xn, t)

...

ẋn = fn(x1, . . . , xn, t)

QSS
=⇒

ẋ1 = f1(q1, . . . , qn, t)

...

ẋn = fn(q1, . . . , qn, t)

(5)

Considering a single subcomponent we can define the ”simple” DEVS models:

qi = Q(xi) = Q(
∫

ẋi dt) Quantized Integrator

ẋi = fi (q1, . . . , qn, t) Static Function

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

QSS Definition

QSS – Example

Solution with ∆Q = 0.01, u(t) = 1

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

q2(t)

q1(t)

time

q2(t)

Let second order LTI system:

ẋ1(t) = x2(t)
ẋ2(t) = −x1(t) − x2(t) + u(t)

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

QSS Definition

QSS – Example

Solution with ∆Q = 0.05, u(t) = 1

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time

q2(t)

q1(t)

Let second order LTI system:

ẋ1(t) = x2(t)
ẋ2(t) = −x1(t) − x2(t) + u(t)

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

QSS Definition

QSS – Example

Solution with ∆Q = 0.1, u(t) = 1

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time

q2(t)

q1(t)

Let second order LTI system:

ẋ1(t) = x2(t)
ẋ2(t) = −x1(t) − x2(t) + u(t)

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Higher-Order QSS Methods

Cost vs. Accuracy in QSS

In QSS, we know that the quantum is proportional to the global error bound.
Thus,

I If we want to increase the global accuracy for a factor of 100, we should
divide the quantum by that factor.

I Since the number of steps is inversely proportional to the quantum, that
modification would increase the number of computations by a factor of 100.

This problem is due to the fact that QSS is only first order accurate, i.e. it does
not use information about the derivatives of f .

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Higher-Order QSS Methods

Second Order QSS (QSS2 Method)

x

q

∆q

I Same definition and
properties as QSS.

I Second order accurate
method.

I The number of steps grows
with the square root of the
accuracy.

I The quantized variables
have piecewise linear
trajectories thus the state
derivatives are also
piecewise linear and the
state variables piecewise
parabolic.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Higher-Order QSS Methods

Third Order QSS (QSS3 Method)

x

q

∆q

I Same definition and
properties as QSS.

I Third order accurate
method.

I The number of steps grows
with the cubic root of the
accuracy.

I The method of choice for
simulating real-world
systems.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Outline

Introduction

QSS Methods

OMPD Interface

Simulation Results

Discussion

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

OMPD Interface

OpenModelica Compiler Modifications

Modelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

Modelica model

Flat Model

Sorted equations

X
Modified

Code Generator

PowerDEVS
Structure File
(model.pds)

PowerDEVS
Block Code

(modelica_funcs.cpp)

C++ compiler

Simulation

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

OMPD Interface

The Bouncing Ball Model

model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Real v_new;
Boolean impact;
Real dummy;
Boolean dummy2;

equation
der(dummy) = if (dummy>0 and h<=0) then

dummy else h*v; // Dummy part 1
when {sample(0,1)} // Dummy part 2
dummy2 = false;

end when

impact = h <= 0.0;
der(v) = if flying then -g else 0;
der(h) = v;

when {h <= 0.0 and v <= 0.0,impact} then
v_new = if edge(impact) then -e*v else 0;
flying = v_new > 0;
reinit(v, v_new);

end when;

end BouncingBall;

BouncingBall 1: h

h
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Time [s]
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

OMPD Interface

Add Static Blocks for State Variables

h
q

v

h

v

h

qv
E

E

SF

SF

QI

QI

{1}

{7}

dummy

E

SF QI

{2} dummyq

STATIC FUNCTIONS QUANTIZED INTEGRATORS

der(h) = v; (Eq. 1)
der(dummy) = if (dummy>0 and h<=0) then

dummy else h*v; (Eq. 2)
when {sample(0,1)}
dummy2 = false; (Eq. 3)

end when
impact = h <= 0.0; (Eq. 4)
when {h <= 0.0 and v <= 0.0,impact} then
v_new = if edge(impact) then

-e*v else 0; (Eq. 5)
flying = v_new > 0; (Eq. 6)
reinit(v, v_new);

end when;
der(v) = if flying then -g else 0; (Eq. 7)

I Extract equations (BLT blocks) needed to
compute state derivative variables.

I Place the splitted equations in respective
static function blocks.

I Resolve dependencies in the
inputs/outputs.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

OMPD Interface

Add Zero Crossing Functions

h
q

v

h

v

h

qv
E

E

ZC

ZC

h<=0

v<=0

CD

CD

SF

SF

QI

QI

{1}

{7}

dummy

E

SF QI

{2}

ZC

dummy>0

CD

dummyq

ZERO CROSSINGS CROSS DETECTORS

der(h) = v; (Eq. 1)
der(dummy) = if (dummy>0 and h<=0) then

dummy else h*v; (Eq. 2)
when {sample(0,1)}
dummy2 = false; (Eq. 3)

end when
impact = h <= 0.0; (Eq. 4)
when {h <= 0.0 and v <= 0.0,impact} then
v_new = if edge(impact) then

-e*v else 0; (Eq. 5)
flying = v_new > 0; (Eq. 6)
reinit(v, v_new);

end when;
der(v) = if flying then -g else 0; (Eq. 7)

I Add zero-crossing functions and the
corresponding zero-cross detectors.

I Resolve dependencies in the
inputs/outputs.

I The zero-cross detectors produce events
at discontinuities and propagate them to
the corresponding static blocks.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

OMPD Interface

Add When Blocks

h
q

v

h

v

v_new

flying

h

qv
E

E

ZC

ZC

h<=0

v<=0

E

E

CD

CD

SF

SF

QI

QI

{1}

{7}

{5}

{6}

dummy

E

SF QI

{2}

ZC

dummy>0

CD

dummyq

E
{3} dummy2

WHEN
BLOCKS

WB

WB

WB

der(h) = v; (Eq. 1)
der(dummy) = if (dummy>0 and h<=0) then

dummy else h*v; (Eq. 2)
when {sample(0,1)}
dummy2 = false; (Eq. 3)

end when
impact = h <= 0.0; (Eq. 4)
when {h <= 0.0 and v <= 0.0,impact} then
v_new = if edge(impact) then

-e*v else 0; (Eq. 5)
flying = v_new > 0; (Eq. 6)
reinit(v, v_new);

end when;
der(v) = if flying then -g else 0; (Eq. 7)

I Add when-blocks for each generated
when-clause and resolve dependencies.

I If a static function depends on a discrete variable
calculated in a when-block (e.g. flying) an event
is sent to the corresponding static block.

I When a cross detector fires, all the discrete
variables are updated via calling the OMC
function updateDepend().

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

OMPD Interface

Add Sample Blocks

h
q

v

h

v

v_new

flying

h

qv
E

E

ZC

ZC

h<=0

v<=0

E

E

CD

CD

SF

SF

QI

QI

{1}

{7}

{5}

{6}

dummy

E

SF QI

{2}

ZC

dummy>0

CD

dummyq

SAMPLE

sample
(0,1)

E
{3} dummy2

WB

WB

WB

SAMPLE
BLOCKS

der(h) = v; (Eq. 1)
der(dummy) = if (dummy>0 and h<=0) then

dummy else h*v; (Eq. 2)
when {sample(0,1)}
dummy2 = false; (Eq. 3)

end when
impact = h <= 0.0; (Eq. 4)
when {h <= 0.0 and v <= 0.0,impact} then
v_new = if edge(impact) then

-e*v else 0; (Eq. 5)
flying = v_new > 0; (Eq. 6)
reinit(v, v_new);

end when;
der(v) = if flying then -g else 0; (Eq. 7)

I Add one sample block for each sample
statement.

I Connect the sample blocks to the
dependent when-clauses.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

OMPD Interface

Add Reinit Blocks

h
q

v

h

v

v_new

flying

v

h

qv
E

E

ZC

ZC

h<=0

v<=0

E

E

E

CD

CD

SF

SF

QI

QI

reinit

{1}

{7}

{5}

{6}

dummy

E

SF QI

{2}

ZC

dummy>0

CD

dummyq

SAMPLE

sample
(0,1)

E
{3} dummy2

WB

WB

WB

REINIT

REINIT
BLOCKS

der(h) = v; (Eq. 1)
der(dummy) = if (dummy>0 and h<=0) then

dummy else h*v; (Eq. 2)
when {sample(0,1)}
dummy2 = false; (Eq. 3)

end when
impact = h <= 0.0; (Eq. 4)
when {h <= 0.0 and v <= 0.0,impact} then
v_new = if edge(impact) then

-e*v else 0; (Eq. 5)
flying = v_new > 0; (Eq. 6)
reinit(v, v_new);

end when;
der(v) = if flying then -g else 0; (Eq. 7)

I Add reinit blocks for the reinit statements
and connect them to the corresponding
integrators.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

OMPD Interface

Final Structure

h
q

v

h

v

v_new

flying

v

h

qv
E

E

ZC

ZC

h<=0

v<=0

E

E

E

CD

CD

SF

SF

QI

QI

reinit

{1}

{7}

{5}

{6}

dummy

E

SF QI

{2}

ZC

dummy>0

CD

dummyq

SAMPLE

sample
(0,1)

E
{3} dummy2

WB

WB

WB

REINIT

der(h) = v; (Eq. 1)
der(dummy) = if (dummy>0 and h<=0) then

dummy else h*v; (Eq. 2)
when {sample(0,1)}
dummy2 = false; (Eq. 3)

end when
impact = h <= 0.0; (Eq. 4)
when {h <= 0.0 and v <= 0.0,impact} then
v_new = if edge(impact) then

-e*v else 0; (Eq. 5)
flying = v_new > 0; (Eq. 6)
reinit(v, v_new);

end when;
der(v) = if flying then -g else 0; (Eq. 7)

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Outline

Introduction

QSS Methods

OMPD Interface

Simulation Results

Discussion

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Compared Solvers

The goal is to compare the run-time efficiency and accuracy of QSS methods
against the following representative methods and environments:

I DASSL in OpenModelica v1.5.1 and Dymola v7.4
I State-of-the-art multi-purpose solver used by most simulation environments

today.
I Radau IIa in Dymola v7.4

I A single-step (Runge-Kutta) algorithm is supposed to be more efficient than a
multi-step algorithm when dealing with discontinuities (due to step-size control
for the latter methods).

I Dopri45 in Dymola v7.4
I An explicit Runge-Kutta method which could be more efficient when simulating

non-stiff systems.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Compared Solvers

The goal is to compare the run-time efficiency and accuracy of QSS methods
against the following representative methods and environments:

I DASSL in OpenModelica v1.5.1 and Dymola v7.4
I State-of-the-art multi-purpose solver used by most simulation environments

today.

I Radau IIa in Dymola v7.4
I A single-step (Runge-Kutta) algorithm is supposed to be more efficient than a

multi-step algorithm when dealing with discontinuities (due to step-size control
for the latter methods).

I Dopri45 in Dymola v7.4
I An explicit Runge-Kutta method which could be more efficient when simulating

non-stiff systems.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Compared Solvers

The goal is to compare the run-time efficiency and accuracy of QSS methods
against the following representative methods and environments:

I DASSL in OpenModelica v1.5.1 and Dymola v7.4
I State-of-the-art multi-purpose solver used by most simulation environments

today.
I Radau IIa in Dymola v7.4

I A single-step (Runge-Kutta) algorithm is supposed to be more efficient than a
multi-step algorithm when dealing with discontinuities (due to step-size control
for the latter methods).

I Dopri45 in Dymola v7.4
I An explicit Runge-Kutta method which could be more efficient when simulating

non-stiff systems.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Compared Solvers

The goal is to compare the run-time efficiency and accuracy of QSS methods
against the following representative methods and environments:

I DASSL in OpenModelica v1.5.1 and Dymola v7.4
I State-of-the-art multi-purpose solver used by most simulation environments

today.
I Radau IIa in Dymola v7.4

I A single-step (Runge-Kutta) algorithm is supposed to be more efficient than a
multi-step algorithm when dealing with discontinuities (due to step-size control
for the latter methods).

I Dopri45 in Dymola v7.4
I An explicit Runge-Kutta method which could be more efficient when simulating

non-stiff systems.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Run-time Efficiency (Execution Time)
Problem

I Measuring the execution time of each simulation across different
environments could be tricky, e.g. it is not enough just to run the
executables and measure the CPU-time elapsed.

Approach

I We resort in using the reported simulation time that each environment
provides.

I The generation of output files was suppressed in all cases.

Reminder

I The measured CPU time should not be considered as an absolute
ground-truth.

I But the relative ordering of the algorithms is expected to remain the
same.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Run-time Efficiency (Execution Time)
Problem

I Measuring the execution time of each simulation across different
environments could be tricky, e.g. it is not enough just to run the
executables and measure the CPU-time elapsed.

Approach

I We resort in using the reported simulation time that each environment
provides.

I The generation of output files was suppressed in all cases.

Reminder

I The measured CPU time should not be considered as an absolute
ground-truth.

I But the relative ordering of the algorithms is expected to remain the
same.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Run-time Efficiency (Execution Time)
Problem

I Measuring the execution time of each simulation across different
environments could be tricky, e.g. it is not enough just to run the
executables and measure the CPU-time elapsed.

Approach

I We resort in using the reported simulation time that each environment
provides.

I The generation of output files was suppressed in all cases.

Reminder

I The measured CPU time should not be considered as an absolute
ground-truth.

I But the relative ordering of the algorithms is expected to remain the
same.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Run-time Efficiency (Execution Time)
Problem

I Measuring the execution time of each simulation across different
environments could be tricky, e.g. it is not enough just to run the
executables and measure the CPU-time elapsed.

Approach

I We resort in using the reported simulation time that each environment
provides.

I The generation of output files was suppressed in all cases.

Reminder
I The measured CPU time should not be considered as an absolute

ground-truth.

I But the relative ordering of the algorithms is expected to remain the
same.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Run-time Efficiency (Execution Time)
Problem

I Measuring the execution time of each simulation across different
environments could be tricky, e.g. it is not enough just to run the
executables and measure the CPU-time elapsed.

Approach

I We resort in using the reported simulation time that each environment
provides.

I The generation of output files was suppressed in all cases.

Reminder
I The measured CPU time should not be considered as an absolute

ground-truth.
I But the relative ordering of the algorithms is expected to remain the

same.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Simulation Accuracy

I The state trajectories in the benchmark problems cannot be computed
analytically.

I Therefore, we can only approximate the accuracy of the simulations.
I To this end we need to obtain reference trajectories (tref, yref).

Reference Trajectories
I The default DASSL solver both in Dymola and OpenModelica was used

with
I a very tight tolerance of 10−12 and
I requesting 105 output points.

I The difference between both reference trajectories was on the order of 10−6

therefore we report only the simulation error against the Dymola solution.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Simulation Accuracy

I The state trajectories in the benchmark problems cannot be computed
analytically.

I Therefore, we can only approximate the accuracy of the simulations.
I To this end we need to obtain reference trajectories (tref, yref).

Reference Trajectories
I The default DASSL solver both in Dymola and OpenModelica was used

with
I a very tight tolerance of 10−12 and
I requesting 105 output points.

I The difference between both reference trajectories was on the order of 10−6

therefore we report only the simulation error against the Dymola solution.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Simulation Accuracy

I The state trajectories in the benchmark problems cannot be computed
analytically.

I Therefore, we can only approximate the accuracy of the simulations.

I To this end we need to obtain reference trajectories (tref, yref).

Reference Trajectories
I The default DASSL solver both in Dymola and OpenModelica was used

with
I a very tight tolerance of 10−12 and
I requesting 105 output points.

I The difference between both reference trajectories was on the order of 10−6

therefore we report only the simulation error against the Dymola solution.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Simulation Accuracy

I The state trajectories in the benchmark problems cannot be computed
analytically.

I Therefore, we can only approximate the accuracy of the simulations.
I To this end we need to obtain reference trajectories (tref, yref).

Reference Trajectories
I The default DASSL solver both in Dymola and OpenModelica was used

with
I a very tight tolerance of 10−12 and
I requesting 105 output points.

I The difference between both reference trajectories was on the order of 10−6

therefore we report only the simulation error against the Dymola solution.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Simulation Accuracy

I The state trajectories in the benchmark problems cannot be computed
analytically.

I Therefore, we can only approximate the accuracy of the simulations.
I To this end we need to obtain reference trajectories (tref, yref).

Reference Trajectories
I The default DASSL solver both in Dymola and OpenModelica was used

with
I a very tight tolerance of 10−12 and
I requesting 105 output points.

I The difference between both reference trajectories was on the order of 10−6

therefore we report only the simulation error against the Dymola solution.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Simulation Accuracy

I For each state a reference trajectory (tref, yref) is calculated.
I Each solver is forced to output 105 equally spaced points to obtain

(tref, ysim) without changing the integration step.
I Then, the mean absolute error is calculated as:

error =
1
|t ref |

|t ref |∑
i=1

|ysim
i − y ref

i | (6)

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Simulation Accuracy

I For each state a reference trajectory (tref, yref) is calculated.

I Each solver is forced to output 105 equally spaced points to obtain
(tref, ysim) without changing the integration step.

I Then, the mean absolute error is calculated as:

error =
1
|t ref |

|t ref |∑
i=1

|ysim
i − y ref

i | (6)

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Simulation Accuracy

I For each state a reference trajectory (tref, yref) is calculated.
I Each solver is forced to output 105 equally spaced points to obtain

(tref, ysim) without changing the integration step.
I Then, the mean absolute error is calculated as:

error =
1
|t ref |

|t ref |∑
i=1

|ysim
i − y ref

i | (6)

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Benchmark Framework

Simulation Accuracy

I For each state a reference trajectory (tref, yref) is calculated.
I Each solver is forced to output 105 equally spaced points to obtain

(tref, ysim) without changing the integration step.
I Then, the mean absolute error is calculated as:

error =
1
|t ref |

|t ref |∑
i=1

|y sim
i − y ref

i | (6)

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Simulated Discontinuous Models

Half-Wave Rectifier

6. Generating static blocks code : In this step,
the functionality of each static block is defined
via the simulation code provided in the code.cpp
file. Each static block needs to know its inputs
and outputs, identified by the DEVS structure,
as well as the BLT blocks needed to compute
the corresponding state derivatives, described by
the mapped split equations. Then, the existing
code generation module of OMC is employed
to provide the actual simulation code for each
static block, since it has already been optimized
to solve linear and non-linear algebraic loops.

7. Generating the .cpp code file: The code for the
static blocks is output in the .cpp code file along
with other needed information.

5 Simulation Results

5.1 Benchmark Framework

To calculate the reference trajectory we simulate in
Dymola using DASSL with a very low tolerance of
10−12. Then we request a dense output of 105 points.

5.2 Half-Way Rectifier

R=10

R1

R
=50 R2

C
=0.001

+
-

C1

Figure 2: Graphical representation of the HalfWay
Rectifier

5.3 Power Converter

6 Discussion

6.1 Conclusions

6.2 Future Work

7 Acknowledgements

References

[1] Tamara Beltrame and François E. Cellier.
Quantised state system simulation in dy-
mola/modelica using the devs formalism. In
Modelica, 2006.

[2] François E. Cellier and Ernesto Kofman. Con-
tinuous System Simulation. Springer-Verlag,
New York, 2006.

[3] Peter Fritzson, Peter Aronsson, Hakan Lund-
vall, Kaj Nystrom, Adrian Pop, Levon Saldamli,
and David Broman. The openmodelica model-
ing, simulation, and development environment.
Proceedings of the 46th Conference on Simu-
lation and Modeling (SIMS’05), pages 83–90,
2005.

[4] Peter Fritzson and Peter Bunus. Modelica-a
general object-oriented language for continuous
and discrete-event system modeling and simu-
lation. In Annual Simulation Symposium, pages
365–380, 2002.

[5] Peter Fritzson and Vadim Engelson. Modelica
- a unified object-oriented language for system
modelling and simulation. In ECOOP, pages
67–90, 1998.

[6] Ernesto Kofman. A second-order approxima-
tion for devs simulation of continuous systems.
Simulation, 78(2):76–89, 2002.

[7] Ernesto Kofman. Quantization-based simula-
tion of differential algebraic equation systems.
In Simulation, Transactions of the Society for
Modeling and Simulation International, vol-
ume 79, pages 363–376, 2003.

[8] Ernesto Kofman. Discrete event simulation of
hybrid systems. SIAM JOURNAL ON SCIEN-
TIFIC COMPUTING, 25:1771–1797, 2004.

Figure: Graphical representation of the half-wave rectifier in Dymola

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Simulated Discontinuous Models

Simulated trajectories for the half-wave rectifier

0.6

0.5

0.4

0.3

0.2

0.1

st
at

e
tr

aj
ec

to
rie

s

capacitor voltage

0.0
1 2 3 4 5 6 7 8 9

time (sec)
x10

-10

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Simulated Discontinuous Models

Half-Wave Rectifier (Simulated for 1 sec)

CPU time Simulation
(sec) Error

Dymola

DASSL 10−3 0.019 1.45E-03
DASSL 10−4 0.022 2.35E-04

Radau IIa 10−7 0.031 2.20E-06
Dopri45 10−4 0.024 4.65E-05

PowerDEVS

QSS3 10−3 0.014 2.59E-04
QSS3 10−4 0.026 2.23E-05
QSS3 10−5 0.041 2.30E-06
QSS2 10−2 0.242 3.02E-03
QSS2 10−3 0.891 3.04E-04
QSS2 10−4 3.063 3.00E-05

OpenModelica DASSL 10−3 0.265 3.80E-03
DASSL 10−4 0.281 5.40E-04

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Simulated Discontinuous Models

Switching Power Converter

+
-

R
=1

C
=0.00022

L=0.00015

R1C1

L1
0

1

model SquareWaveGenerator
 Real x1(start=0.0);
 Real x2(start=1.0);
 Boolean pulse(start=true);
 parameter Real freq=1e4;
equation
 der(x1)=freq*4*x2;
 der(x2)=if (x1<0) then freq*4 else -freq*4;
 pulse=(x1>0);
 idealClosingSwitch.control = pulse;
end SquareWaveGenerator;

Figure: Graphical representation of the switching power converter in Dymola

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Simulated Discontinuous Models

Simulated state trajectories for the switching power converter

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1 2

st
at

e
tr

aj
ec

to
rie

s

3 4 5 6 7 8 9

time (sec)
x10

-3

inductor current

capacitor voltage

0
0.0

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Simulated Discontinuous Models

Switching Power Converter (Simulated for 0.01 sec)

CPU time Simulation
(sec) Error

Dymola

DASSL 10−3 0.051 1.82E-04
DASSL 10−4 0.063 7.18E-05

Radau IIa 10−3 0.064 1.11E-07
Radau IIa 10−4 0.062 1.11E-07
Dopri45 10−3 0.049 6.38E-06
Dopri45 10−4 0.047 9.76E-06

PowerDEVS
QSS3 10−3 0.049 1.41E-03
QSS3 10−4 0.062 1.68E-05
QSS3 10−5 0.250 8.96E-06

OpenModelica DASSL 10−3 50.496 -
DASSL 10−4 1.035 2.62E-02

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Outline

Introduction

QSS Methods

OMPD Interface

Simulation Results

Discussion

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Discussion

Conclusions

I An interface between OpenModelica and PowerDEVS is presented and
analyzed.

I The OMPD interface successfully handles discontinuities allowing the
simulation of real-world Modelica models using QSS solvers.

I Comparing QSS3 and DASSL in OpenModelica, a 20-fold decrease in the
required CPU time was achieved for the example models.

I Furthermore in our discontinuous examples, QSS3 is as efficient as DASSL
in Dymola, in spite of the fact that Dymola offers a much more sophisticated
model preprocessing than OMC.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Discussion

Future Work

I Provide support for stiff QSS solvers.
I Perform more extensive simulations of benchmark problems in order to test

the correctness of the interface and the performance of QSS methods.
I Incorporate QSS solvers in future official OpenModelica releases.
I Investigate the parallel simulation capabilities of QSS methods.

Interfacing OpenModelica and PowerDEVS ETH Zurich

Introduction QSS Methods OMPD Interface Simulation Results Discussion

Discussion

Questions?

Interfacing OpenModelica and PowerDEVS ETH Zurich

	
	Introduction
	Introductory Material

	QSS Methods
	QSS Definition
	Higher-Order QSS Methods

	OMPD Interface
	

	Simulation Results
	Benchmark Framework
	Simulated Discontinuous Models

	Discussion
	

