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Abstract

This article describes an extension of the OpenMod-
elica Compiler that translates regular Modelica mod-
els into a simpler language, called Micro—Modelica
(u—Modelica), that can be understood by the re-
cently developed stand—alone Quantized State Sys-
tems (QSS) solvers. These solvers are very efficient
when simulating systems with frequent discontinu-
ities. Thus, strongly discontinuous Modelica models
can be simulated noticeably faster than with the stan-
dard discrete time solvers.

The simulation of two discontinuous models is
analyzed in order to demonstrate the correctness
of the proposed implementation as well as the
advantages of using the QSS stand-alone solvers.

Keywords: OpenModelica, Quantized State
Systems, Micro—Modelica, efficient simulation,
discontinuous systems

1 Introduction

There are numerous reasons to desire efficient sim-
ulation of hybrid dynamical systems. Nowadays
the attention is focused on various aspects of par-
allelizing the simulation process, while keeping un-
touched the heart of any simulation pipeline, namely
the numerical solver. Indeed, for most researchers
and practitioners, the problem of defining an effi-
cient, general-purpose DAE solver is considered to be
solved, with DASSL being the default method for all
commercial simulation tools. Besides DASSL, there
exists a vast variety of solvers targeting different sim-
ulation requirements and families of models.

We argue that the attention should be drawn again

to the "basics" and question the underlying assump-
tion of time discretization that traditional solvers
use. Already at the end of the nineties, Zeigler in-
troduced a new class of algorithms for numerical in-
tegration based on state quantization and the Dis-
crete Event Simulation (DEVS) formalism [18]. Im-
proving the original approach of Zeigler, Kofman de-
veloped a first-order non-stiff Quantized State Sys-
tem (QSS) algorithm in 2001 [16], followed later
by second- and third-order accurate non-stiff solvers,
called QSS2 [13] and QSS3 [15], respectively. Cur-
rently, the family of QSS methods includes also stiff
system solvers (LIQSS [17]) as well as solvers for
marginally stable systems (CQSS [5]).

There is now plenty of evidence that the QSS
solvers offer several advantages over the classical
approaches [17, 7, 15, 14]. QSS methods allow
for asynchronous variable updates, a feature par-
ticularly suited to real-world sparse systems where
a significant reduction of the computational costs is
achieved. Furthermore, QSS algorithms inherently
provide dense output, i.e., they do not need to it-
erate to detect the discontinuities. They rather pre-
dict them. This feature, besides improving on the
overall computational performance of these solvers,
enables real-time simulation. Finally, QSS solvers
come with theoretical global error bounds that other
solvers lack [4] and recently parallel version of QSS
methods have been developed [3].

Originally, QSS algorithms were implemented un-
der DEVS simulation engines such as PowerDEVS
[2]. While these implementations were correct, some
features of the DEVS engines introduced a large over-
head. Recently, a family of stand—alone QSS solvers
were developed in order to overcome this issue [6].
The new solvers achieve a speed-up of one order of
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magnitude over DEVS implementations.

The stand—alone QSS solvers simulate models de-
scribed in a C language interface that contains the
ODEs and zero crossing functions as well as addi-
tional structural information needed by the QSS al-
gorithms. The C interface can be automatically gen-
erated from a simple ODE description by a tool de-
veloped for that purpose.

Modelica [10, 11] is a multi-domain, modern lan-
guage for modeling of complex physical systems. It
is an object-oriented language built on acausal mod-
eling with mathematical equations and designed to
effectively support modular libraries and a standard-
ized model exchange.

There are various commercial environments, such
as Dymola, along with open-source implementations,
such as OpenModelica [9], that support the Model-
ica language specification. All of these tools take
as input a Modelica model and perform a series of
preprocessing steps (model flattening, index reduc-
tion, equation sorting and optimization). An opti-
mized DAE representation of the original system is
achieved and efficient C++ code is generated to per-
form the simulation.

There have been previous attempts to simulate
Modelica models with QSS algorithms. In [8, 7] an
interface between OpenModelica and PowerDEVS
(OMPD interface) has been implemented and ana-
lyzed taking a first step towards using QSS solvers in
the simulation of general Modelica models. The in-
terface allows the automatic transformation of large-
scale models to the DEVS formalism in a suitable
way, thus enabling simulation in the PowerDEVS en-
vironment using QSS methods. However, as this in-
terface uses a DEVS engine it suffers from the previ-
ously mentioned overhead issues.

In this work, we extended the OpenModelica Com-
piler (OMC) in order to automatically translate regu-
lar Modelica models into a subset of the Modelica
language called u—Modelica. Then, we developed
a tool that automatically generates the C interface
structure needed by the stand—alone QSS solver from
the u—Modelica description and simulates it. That
way, our work enables Modelica users to exploit the
benefits of QSS solvers directly from the OpenMod-
elica environment without any further knowledge, us-
ing them just like any other traditional solver.

We also conducted an extensive comparative per-
formance analysis between the QSS solvers and
OpenModelica DASSL over two discontinuous mod-
els. The results show a noticeable improvement in

terms of simulation time and robustness.

The article is organized as follows: Section 2 pro-
vides a brief description of the components needed
for the solver. Section 3 uncovers the details behind
the implemented stand—alone QSS solver, while in
Section 4 specific simulation results of two example
models are presented and discussed. Finally Section
5 concludes this study, lists open problems and offers
directions for future work.

2 Background

2.1 QSS Simulation

Consider a time invariant ODE system:
X(r) = f(x(2)) (D

where x(¢) € R" is the state vector. The QSS method,
[16], approximates the ODE in Eq. 1 as:

X(r) = f(q(1)) 2)

where q(¢) is a vector containing the quantized state
variables, which are quantized versions of the state
variables x(7). Each quantized state variable ¢;(¢) fol-
lows a piecewise constant trajectory via the following
quantization function with hysteresis:

_ [ x()
ailt) = { qi(t™)

if |g;(t7) —xi(t)| = AQ;,
otherwise.

3

where the quantity AQ; is called quantum. In other
words, the quantized state ¢;(z) only changes when
it differs from x;(f) more than AQ;. In QSS, the
quantized states q(¢) are following piecewise con-
stant trajectories, and since the time derivatives, X(t),
are functions of the quantized states, they are also
piecewise constant, and consequently, the states, x(¢),
themselves are composed of piecewise linear trajec-
tories.

Unfortunately, QSS is a first-order accurate
method only, and therefore, in order to keep the simu-
lation error small, the number of steps performed has
to be large.

To circumvent this problem, higher-order methods
have been proposed. In QSS2 [13], the quantized
state variables evolve in a piecewise linear way with
the state variables following piecewise parabolic tra-
jectories. In the third-order accurate extension, QSS3
[15], the quantized states follow piecewise parabolic
trajectories, while the states themselves exhibit piece-
wise cubic trajectories.
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QSS methods have Linearly Implicit counterparts
(LIQSS1, LIQSS2 and LIQSS3) [17]. The LIQSS
methods are explicit (they do not invert matrices or
perform iterations) but, under certain conditions, they
can efficiently integrate stiff systems.

2.2 Stand-Alone QSS Solvers

The stand—alone QSS solver [6] is a tool that imple-
ments the complete QSS family of algorithms with-
out using a DEVS engine.

The tool is composed by two main modules:

1. The simulation engine that integrates the equa-
tion x = f(q,7) assuming that the quantized state
trajectory q(t) is given.

2. The solvers that given x(¢), effectively calculate
q(t) using the corresponding QSS algorithm.

An important feature of QSS methods is that state
variables are updated at different times. Thus, at each
simulation step, only some components of f(q,7) are
evaluated. In consequence, the simulation engine re-
quires the model to be described so that each compo-
nent of f(q,7) can be evaluated separately. Similarly,
each zero crossing condition must be given by a sep-
arate function together with the corresponding event
handler. In addition, structural information describ-
ing the dependencies between variables and equa-
tions must be provided.

All the simulation framework, including the simu-
lation engine, the solvers and the models are written
in plain C.

Since it is very uncomfortable for an end-user to
describe a model providing all this information, the
QSS solver tool includes a translator that generates
the C interface with all the structural information
from a regular ODE description.

This ODE description can have the following com-
ponents:

e ODE:s of the form x; = f;(x,a,d,r) where x are
continuous state, a are algebraic and d are dis-
crete state variables

e Algebraic equations of the form a; =
gj(x,a,d,t) with the restriction that a; can
only depend on aj ... ;1.

e Zero crossing functions of the form z; =
hj(x,a,d,t).

e Associated to each zero crossing function, two
handlers (one for positive and the other for neg-
ative crossings) where discrete as well as con-
tinuous state variables can be updated.

This description is processed by a parser that com-
putes all the structure, including

e the incidence matrices from continuous and dis-
crete state variables to ODE equations,

e the incidence matrices from continuous and dis-
crete state variables to zero crossing functions,

e the incidence matrices from handlers to ODE
equations and zero crossing functions.

This information is then used by a code generator that
produces the C interface describing the model.

3 Simulation of Modelica Models
with Stand—-Alone QSS Methods

As we mentioned above, the stand—alone QSS solver
has a tool to extract the structural information from
a simple ODE description. In order to exploit this
feature, we first developed a language called u—
Modelica and then we extended the stand—alone QSS
parser so it understands this language and converts
it into the ODE description used by the stand—alone
QSS solver.

Then, we extended the OMC so that it generates
u—Modelica models from regular Modelica models.

In this way, regular Modelica models can be auto-
matically simulated by the stand—alone QSS solvers.

In Figure 1 we see the complete compilation and
simulation process involved.

.mo
u-Modelica

.mo
Modelica

OpenModelica
File Compiler File

=

.e
QSS L Simulation i i
Solver File Simulation
Binary

Figure 1: Pipeline of the compilation/simulation pro-
cess

Below, we first introduce the p—Modelica lan-
guage and then we describe the translation process
from Modelica to u—Modelica
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3.1 The u-Modelica subset

The language p—Modelica was defined to be a sub-
set of Modelica as close as possible to the ODE de-
scription accepted by the stand—alone QSS solver. p—
Modelica contains only the necessary Modelica key-
words and structures to define an ODE based hybrid
model.

The u-Modelica language has the following re-
strictions:

e The model is in a flat form, i.e. no classes are
allowed.

o All variables are Real and there are only three
classes of variables: continuous states (x[]),
discrete states(d [1) and algebraics (a[]).

e Parameters also belong to class Real and they
can have arbitrary names.

e Equations are given in explicit ODE form.

e An algebraic variable a[i]l can only de-
pend on previously defined algebraic variables

(al1:i-11).

e Discontinuities are expressed only by when
clauses inside the algorithm section. Con-
ditions on when clauses can only be relations
(<,<,>,>) and, inside the clauses, only as-
signment of discrete state variables (d[]) and
reinits are allowed.

This restricted language is not meant to be used by
an end user, but only as an intermediate language be-
tween OpenModelica and the QSS solver. The end
user is supposed to use the complete Modelica lan-
guage and then use the OMC to get a u-Modelica
file.

3.2 Simulating u—Modelica models with the
stand-alone QSS solver

As we mentioned above, the QSS solver includes a
parser that extracts all the structural information from
an ODE representation.

This parser was extended in order to understand p—
Modelica language. After this extension, the parser
performs the following actions:

e It recognizes Modelica keywords for parame-
ters, and discrete states.

e It takes equations of the form
der(x[i])=expr(), generating the corre-
sponding ODE and structural information.

clauses of the form
when exprl>expr2 then, generating  a
zero crossing function zc=exprl-expr2
with a handler for the positive crossing
containing the expressions that are found
inside the clause. If it then finds a clause
elsewhen expri<expr2 then, it generates
the handler for the negative crossing.

e It recognizes

e [t also generates the structural information cor-
responding to the zero—crossing functions and
the handlers.

3.3 Converting Modelica models to u-
Modelica

In order to complete the process to simulate regular
Modelica models with the stand alone QSS solver, we
added a new output target for the OMC to generate L-
Modelica models.

Most of the work is done by what OMC already
does without any modification: It first simplifies
expressions, sorts the equations and transforms the
DAE into an ODE, producing the necessary code for
solving the algebraic loops. It also recognizes zero
crossing conditions.

Thus, we take the structures generated by OMC
and process them as follows:

1. Find the continuous state variables (those where
the der operator is used), algebraic variables
(those solved in the ODE equation that are
not states), and discrete state variables (those
defined as discrete, including Integer and
Boolean variables.). Boolean variables are re-
placed by real valued variables where 1.0 is true
and 0.0 is false.

2. Parameter names are changed replacing dot(s)
for underscore(s). This is done for all identifiers.

3. Continuous state, discrete state and algebraic
variables (Real x[], Real d[], Real afll)
are defined and code is generated with their ini-
tial values.

4. In each equation of the ODE section, each ap-
pearance of continuous state, discrete state and
algebraic variables is replaced by their corre-
sponding y—Modelica alias x[], a[] ord[].
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5. If the equation is part of an algebraic loop, an ex-
ternal solving C function is generated and a call
to that function is generated in the u-Modelica.

6. For each zero crossing function, when and
elsewhen clauses are generated. The extra
elsewhen is necessary to assign different val-
ues to the discrete state variable associated with
the crossing function.

7. when clauses are emitted also replacing continu-
ous states, algebraic and discrete state variables
in the condition and in the body of the clause.

8. sample operators are expanded using an extra
discrete state variable.

9. elsewhen clauses are emitted as regular when in
the algorithm section.

For example a model of a bouncing ball in Model-
ica:

model bballil
Real y(start = 1),v,a;
Boolean flying(start = true);
parameter Real m = 1;
parameter Real g = 9.8;
parameter Real k = 10000;
parameter Real b = 10;

equation
der(y) = v;
der(v) = a;
flying = y>0;

a = if flying then -g else -g -
- (bx*xv+k*y)/m
end bballil;

would be translated to p-Modelica as follows:

model bballil
constant Integer N = 2;
Real x[N](start=xinit());
discrete Real d[1] (start=dinit());
Real a[1];
parameter Real m = 1.0;

parameter Real g = 9.8;
parameter Real k = 10000.0;
parameter Real b = 10.0;

function xinit
output Real x[N];
algorithm
x[2]:= 1.0 /x y */;
x[1]:= 0.0 /x v */;
end xinit;
function dinit
output Real d[1];

d[1]1:=(1.0) /* flyingx/;
end dinit;
/* Equations */
equation
der(x[2]) = x[1];
al1] = -d[1] * g + (1.0 - d[1]) *
(C(-b) * x[1] + (-k) * x[2]) / m - g);
der (x[1]) = alll;
algorithm
/* Discontinuities */
when x[2] > 0.0 then

d[1] := 1.0;
elsewhen x[2] < 0.0 then
d[1] := 0.0;
end when;
end bballil;

We see easily that the model has two continuous
states, one algebraic and one discrete state variable
together with a discontinuity on x [2] that updates the
discrete state.

When the original Modelica model contains an al-
gebraic loop, it will be detected by OMC and u-
Modelica will include a piece of code of the form

function fsolvelb
input Real iO;
input Real iil;
output Real 00;
output Real ol;
output Real 02;

external "C"

end fsolvelb;

equation

&;il],a[2],a[3])=fsolve15(x[2],d[l])

together with a C function that solves the loop us-
ing GNU Scientific Library (GSL) [12].

This call indicates that variables a[1:3] are com-
puted by a simple C external function, so the QSS
parser treats it as a regular function for obtaining the
structural information.

In the mentioned external function we improved
what was done by OMC taking into account a feature
of linear algebraic loops. A linear algebraic equation
usually has the form A -z = b (with z being the un-
known), where A usually depends on discrete state
variables only. Thus, when the change in the contin-
uous state variable only affects the term b, then it is

algorithm not necessary to invert matrix A in that step.
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4 Examples and Simulation Results

In this section we analyze the results obtained using
the tools presented in this work.

4.1 Benchmark Framework

As benchmark problems we focused on two systems
exhibiting heavily discontinuous behavior, namely a
buck converter and a DC-DC buck interleaved cir-
cuit. All models were constructed using the Model-
ica Standard Library 3.1 and can be downloaded from
[1].

For each of the examples we used the modified
OMC (r11645) to generate the corresponding -
Modelica model and then the QSS solver to simulate
them. In each case, we compare the run-time effi-
ciency and accuracy of the QSS methods against the
standard DASSL solver of OpenModelica v1.8.1.

In order to measure the execution time for
each simulation algorithm, the reported simula-
tion time from each environment was used. Al-
though OpenModelica provides several ways to
measure the CPU time needed for simulation (in-
cluding a profiler) we observed significant dif-
ferences in the reported timings. After con-
sulting the OpenModelica developers we finally
used time ./model_executable -1lv LOG_STATS
to measure the pure simulation time. We note here
that the timing results obtained this way are signifi-
cantly smaller than the "official" simulation time re-
ported in the OMShell or the profiler. Therefore, the
speedups we get can be considered to be rather con-
servative.

Testing has been carried out on a Dell 32bit desk-
top with a quad core processor @ 2.66 GHz and 4 GB
of RAM and in a Intel 17-970 (32 bits) @ 3.20GHz
and 2 GB of RAM.

The measured CPU time should not be considered
as an absolute ground-truth since it will vary from
one computer system to another, but the relative or-
dering of the algorithms is expected to remain the
same.

Calculating the accuracy of the simulations can
only be performed approximately, since the state tra-
jectories of the models cannot be computed analyt-
ically. To estimate the accuracy of the simulation
algorithms for a given setting, reference trajectories
(tef y™f) have to be obtained. To this end, the
LIQSS2 solver was used with a tight tolerance of
1077

To calculate the simulation error, each simulated

5
T=0.0001 L1

L=0.00015

Figure 2: Buck Circuit

trajectory was compared against the reference solu-
tion. To achieve this goal, we forced all solvers to
output points on the same equidistant grid obtaining
simulation trajectories (t*f,yi™) without changing
the integration step. Then, the normalized mean ab-
solute error is calculated as:

mean(Jy™ — y*)

error =

“)

mean(|y"'|)

4.2 Buck circuit

In Figure 2, a DC-DC converter circuit, known as
Buck Circuit, is sketched. The circuit has two contin-
uous state variables, namely the current through the
inductor L1 and the voltage across the capacitor C1.
The presence of the switch introduces hybrid behav-
ior to the system. For the simulation error we focus
on the C1.V state variable. The model was simulated
for 0.01 sec. and the ground-truth trajectory can be
seen in Fig 3.

T T
Buck Converter

Voltage on the capacitor (V)
=) @

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Time (sec)

Figure 3: Buck Circuit - Simulation

Initially we simulated the model in OMC using the
default number of 500 output points. We observed
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that the DASSL solver in OMC fails to detect and
handle correctly the events. On the other hand, when
we forced OMC to output more points the error de-
creases because the extra evaluation needed to gener-
ate the output forces DASSL to re-evaluate the zero
crossing functions, thus detecting the events. This is
why we compared OMC'’s native DASSL solver with
different precisions and different number of output
points against the QSS solver using the stiff LIQSS2
and LIQSS3 methods. The results are summarized in
Table 1.

Indeed we observe that for 500 output points the
DASSL solver in OMC doesn’t manage to reduce the
achieved error when tightening the precision require-
ments, a clear sign that it fails to simulate correctly
the model. When the output points are increased to
10000 the OMC results get closer to the ground-truth
trajectory and the error is reduced.

Therefore, it makes sense to compare the runtime
efficiencies for the case of 10000 points where we
clearly see that QSS methods are more efficient than
DASSL in OMC. To perform the simulation for an
achieved error of the order of 107>, LIQSS3 required
12 msec while DASSL needed 74 msec Therefore,
the use of the LIQSS3 solver instead of the stan-
dard DASSL in OpenModelica speeds up the sim-
ulation by a factor of 6x. The achieved reduction in
both simulation accuracy and time is depicted graph-
ically in Fig. 4. The results are plotted in a log-log
plot where the closer the lines are to the origin the
better the corresponding algorithm performs.

Performing an internal comparison between the
QSS methods, we see that the third-order LIQSS3
method is slightly more efficient than LIQSS2, es-
pecially when the tolerance requirement, thus the
achieved error, gets smaller. This is expected, since
the LIQSS2 solver needs to take smaller steps com-
pared to LIQSS3 to reach the desired accuracy (e.g.
for an error of 10 LIQSS2 needs 53391 steps while
LIQSS3 only used 11314). Thus, we can conclude
that the third-order LIQSS3 algorithm should be
preferred for practical applications. We see also
that as QSS algorithms provide dense output, the
number of output points does not affect the simula-
tion timings.

Finally, another characteristic of the QSS methods
is evident from the obtained results. We verify that in
general DASSL performs significantly less steps than
any of the QSS methods. However, each one of these
steps is much more complicated and time-consuming
than the ones performed in a QSS solver, as it in-

Mean simulation error

volves -in general- estimation of the whole function
f(-). On the other hand, each step in QSS updates
one state variable, therefore requiring the evaluation
of the corresponding fj(-). As the simulated systems
get bigger, more complex and sparse, evaluating fj(+)
is much more efficient than the global f(-).

N @ LIQSS2
3 [ -

Liass3
—>— OMC-DASSL

o
1 <<
N
\s
N %
4 ».

) ’ " Simulation time(riosec) * "
Figure 4: CPU time vs Error for the buck converter
model (10000 output points)

4.3 Interleaved DC-DC Circuit

Figure 5 depicts the model of an interleaved buck
converter. This circuit is similar to the buck converter
analyzed above but it contains several switching sec-
tions that are activated at different times in order to
reduce the output voltage ripple. In this case, we con-
sider a circuit with four branches.

To build this model, all the components were taken
from the MSL 3.1, except for the booleanDelay that
implements a boolean delay that outputs its received
boolean input after a fixed period T. The delay has no
memory, i.e. when an input is received, any sched-
uled output is cancelled and overwritten by the new
input.

boolean pulse boolean delays

| ~
~
|

~
buck subsystem

01

5

Figure 5: DC-DC interleaved circuit

|-}

We have simulated this model for 0.01 sec. again
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Table 1: This table depicts the simulation results of various solvers for the buck converter circuit for a requested
simulation time of 0.01 sec. The comparison performed includes required CPU time (in msec), number of steps
taken, as well as the simulation accuracy relative to the reference trajectory obtained with LIQSS2 and tolerance

of 107".
500 output points 10000 output points
CPU time Simulation | CPU time | Steps | Simulation
Steps
(msec) Error (msec) Error
LIQSS3 10?2 4 3351 5.84E-03 4 3351 5.83E-03
LIQSS3 1073 8 4163 7.31E-04 8 4163 7.32E-04
LIQSS3 1074 12 6804 4.60E-05 12 6804 4.61E-05
0SS LIQSS3 107 20 11314 | 1.07E-06 20 11314 | 1.08E-06
LIQSS2 10° 4 3863 7.83E-03 4 3863 7.84E-03
LIQSS2 1073 8 6715 1.32E-03 8 6715 1.32E-03
LIQSS2 104 12 18519 | 1.15E-04 12 18519 | 1.15E-04
LIQSS2 1073 32 53391 | 6.42E-06 32 53391 | 6.42E-06
DASSL 1073 22 4273 3.56E-03 70 5249 2.66E-04
OpenModelica | DASSL.  10~* 28 5636 3.17E-03 72 5955 1.75E-04
DASSL 1073 32 7781 3.28E-03 74 7623 2.40E-05
focusing on the capacitor voltage, getting the simu- ]
lated trajectory seen in Fig 6. The same experiments = B\
as for the buck circuit case were performed and listed £ . S
in Table 2 where we made the same comparisons as 3 R ] /
in the previous example (Sec 4.2). 2 o : & i OMtEEEZSL
6 - - - T - e
DC-DC Interleaved E— - i i . 4L -

Ve

0
0 0.001 0.002 0.003 0.004 0.005

Time (sec)

0.006 0.007 0.008 0.009

Figure 6: DC-DC Interleaved - Simulation

We see from Fig. 7 that for obtaining a mean error
of the order of 10~3 OpenModelica’s DASSL takes
488 msec while it takes LIQSS2 12 msec and 60 msec
for LIQSS3. This shows 40x and 8x speedups for
LIQSS2 and LIQSS3. The difference in timings be-
tween LIQSS2 and LIQSS3 is because the implemen-
tation of LIQSS3 is not yet completely optimized and
some problems are still present. Also, when asking

0.01

100
Simulation time (msec)

Figure 7: CPU time vs Error for the DC-DC inter-
leaved model (10000 output points)

the QSS solver for 10000 number of output points,
neither the error nor the number of steps changes be-
cause of the dense output.

In Figure 8 we show the different steady state val-
ues obtained with different setups. We see that the
discontinuity detection of OMC is heavily influenced
by the number of output steps. Here we included
Dymola 6.0 result in order to provide a generally-
accepted ground-truth solution. We note here that no
timing measurements were conducted with Dymola.

5 Conclusion and Future Work

In this article, the integration of the novel stand-
alone QSS solvers in the OpenModelica environment
is presented and analyzed. The implementation has
been tested successfully for both correctness and ef-
ficiency in simulating real-world Modelica models.
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Table 2: This table depicts the simulation results of various solvers for the DC-DC interleaved circuit for a
requested simulation time of 0.01 sec. The comparison performed includes required CPU time (in msec),
number of steps taken, as well as the simulation accuracy relative to the reference trajectory obtained with

LIQSS2 and tolerance of 10~7.

500 output points 10000 output points
CPU time Simulation | CPU time | Steps | Simulation
Steps
(msec) Error (msec) Error

LIQSS3 102 32 18396 1.32E-02 32 18396 1.32E-02

LIQSS3 1073 60 33426 7.31E-04 60 33426 7.31E-04

LIQSS3 10~ 48 29408 1.57E-04 48 29408 1.57E-04

0SS LIQSS3 1077 64 39951 6.48E-06 64 39951 6.48E-06
LIQSS2 1077 12 10715 4.08E-03 12 10715 4.08E-03

LIQSS2 1073 20 29082 3.63E-04 20 29082 3.63E-04

LIQSS2 10~ 56 73218 1.26E-04 56 73218 1.26E-04

LIQSS2 1077 128 198001 8.80E-06 128 198001 8.80E-06

DASSL 1073 310 14421 4.96E-02 428 17571 2.37E-02
OpenModelica | DASSL 10~ 363 22375 5.03E-02 442 18574 2.37E-02
DASSL 1077 496 31387 5.41E-02 488 23625 5.57E-03

535

OMC-DASSL(1e-3, 500 points)

53

5.25

OMC-DASSL(1e-3,i10000 points)

52

OMC-DASSL (1e-5, 10000)
515 Dymola 6-DASSL (1e-5,10000 points)
LIQSS2 (1e-7, 10000 points)
LIQSS2 (1e-3, 10000 points)

5.1

N T

0.00272 0.00273 0.00274 0.00275 0.00276 0.00277 0.00278 0.00279 0.0028 0.00281 0.00282

Time (sec)

Figure 8: Comparison of the final steady state for dif-
ferent setups

Comparisons on two example models were per-
formed, demonstrating the increased efficiency of
the stiff LIQSS solvers over the default DASSL
solver of OpenModelica. Consistent speedups were
achieved and the required CPU time was reduced
up to 40 times. Furthermore, for the two systems
simulated we observed that the default DASSL solver
failed to generate the correct results if we didn’t force
many output points. Increasing the number of output
points, though, means increasing the number of steps
taken by the DASSL algorithm, thus the computation
time. On the other hand, not only the QSS solvers

simulated correctly the models at all setups but, be-
cause of the dense output they inherently generate,
the number of steps taken remains constant regard-
less of how many output points are requested.

However, there still remain open problems to be
addressed in the future. First of all, our proposed so-
lution was tested on few examples. A larger set of
models has to be simulated and tested for correctness,
as well as efficiency, of the implementation. In par-
ticular, we should focus on large-scale hybrid mod-
els because their dynamics should uncover the power
and efficiency of QSS methods. To this end, the u-
Modelica has to be extended to handle more complex
systems.

An interesting line of research could be the utiliza-
tion of the u-Modelica language as an intermediate
language to enable other tools to include Modelica
models. Its simplicity makes the burden on the com-
piler a lot lighter.

The ultimate goal is to integrate the family of QSS
solvers (by use of the u-Modelica translation step)
in OpenModelica as native solvers. To achieve this
the QSS solver should generate output results in the
format expected by the OpenModelica environment.
Finally, we need to note that work is also ongoing on
improving the QSS solver itself.
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