METHOBOLOGY IN SYSTEMS MODELLING AND SIMULATION
B.P. Zeigler, M.S. Elzas, G.J. Klir, T.I. Oren (eds.)
® North-Holland Publishing Company, 1979

COMBINED CONTINUOUS/DISCRETE SYSTEM SIMULATION
LANGUAGES --- USEFULNESS, EXPERIENCES AND
FUTURE DEVELOPMENT

Frangois E. Cellier
Institute for Automatic Control
The Swiss Federal Institute of Technology Zurich
Physikstr. 3
CH-8006 Zurich
Switzerland

Combined system simulation is a relatively new tech-
nique for the simuiation of a «class of systems
having properties suitable to both c¢ontinuous sys-
tem simulation and discrete event simulation, two
techniques well known to the simulation community.
This combined technique has first been proposed by
Fahrland [13,147]. ' '

This paper surveys the techniques "and methodology
involved 1in this simulation approach, Major aspects
considered are numerical behaviour and dinfcormation
processing., It 1is shown that this technique is
applicable to a much Targer class of problems than
originally suggested by Fahrland [13,14].

I) INTRODUCTION:

The term "“"combined simulation" is not yet sufficiently well wunder-
stood din the 1literature to mean one and only one specific metho-
dology or problem class. For example, one can find references where
combined simulation dis used as synonym for hybrid simulation. This
term, therefore, first requires some definition to clarify how it is
going to be used in this paper.

If one speaks of simulation as a technique one usually thinks of a
specific solution ~tool (digital simulation, analog simulation,
hybrid simulation). On the other hand the term "system simulation”
refers to a specific class of systems under dinvestigation (con-
tinuous system simulation, discrete system simulation). However, as
early as 1967 Kiviat [17, p.5] stated that it is common to find the
terms “"simulation" and "system simulation" used interchangeably. In
this paper we do not have primarily a specific simulation metho-
dology in mind, but rather the simulaticn of one specific class of
problems which we call combined systems. However, vrestricting our-
selves to fully digital solutions onlyy simulation of this class of
problems does suggest the use of a specific simulation methodology
which we are going to discuss in detail. Although the term "combined
system simulation"” 4is thus appropriate, we will wuse the term
"combined simulation" as well for simplicity.

It remains to define what the term "combined systems” means pre-
cisely. It can be paraphrased as follows:

201

202 F.E. CELLIER

Combined systems are systems described, either during the
whole period under investigation oy during a part of it, by
a fized or vartable set of differential equations where at
least one state variable or one state derivative 18 not con-
tinuous over a simulation run,

Using this definition the famcus pilot ejection study (which is pro-
bably the best known test case for continuous system simulation)
will also fall into this class of problems, since the acceleration
of the ejector seat and the first time derivative of its angular
position (both state derivatives in the system's definition) are
discontinuous at the moment when the ejector seat is disengaged from
the mounting raiis.

The most comprehensive volume on combined simulation published to
date [27] cites two examples of continuous systems -- the above men-
tioned pilot ejection study and an analysis of a slip clutch. Both
do belong to the «class of combined systems according to our new
definition. This shows that the definition used here is not entirely
in accordance with the "commen® use of this term {as a matter of
fact, a proper definition for this term has never been given!). We
must vredefine the term "continuous system" as well to keep it con-
sistent with our definition for combined systems.

Continuous systems are systems described by a fimed set of
differential equations with state variables and first state
derivatives both being continuous over the whole simulation
rUn.

This definition restricts the term "continuous system" to a more
narrow sense than is commonly used.

According to these definitions for combined and continuous systems,
most of the more complex "continuous" systems belong to the class of
problems under investigation. The motivation for this definition
will be given in due course,

As the traffic control example presented in [8] shows, one and the
same physical system may be modeled either 4in an entirely con-
tinuous, entirely discrete, or 1in combined fashion. The term
"combined system" is, therefore, rather an attribute of the selected
model than of the underlying physical process, and we should thus
better talk of “combined models® than of "combined systems". As
explained in [34], one should in anhy event not expect to simulate a
physical system but rather a model derived from the physical system
via an experimental frame (within which data can be collected repre-
senting the behaviour of the real system under specified experi-
mental conditions). Hopefully, under novel experimental conditions
the constructed simulation program will produce data representative
of the data to be observed when the real system is observed under
these new conditions. However, since we will disregard the problem
of modeling 1in this paper entirely, we shall use the terms "model®
and "system" interchangeably.

COMBINED CONTINUCUS/DISCRETE SYSTEM SIMULATION LANGUAGES 203

II}) HISTORICAL DEVELOPMENT:

Surveying simulation languages and packages - for combined system
simulation available on the software "market" we may find that most
of them are extensions of existing "pure" discrete simulation
languages/packages. As examples we may mention:

GASP-IT --> GASP-I .
SIMSCRIPT-II.5 --> C-SIMSCRIPT
SIMULA-67 ~~> CADSIM.

The reason for this is the following: Although a numerically well
performing package for continuous system simulation is much mare
difficult to achieve than one for discrete system simulation, the
language structures for the latter are much more complex than for
the former. Thus, extending discrete simulation Tanguages to encom-
pass combined problems is a much easjer task to achieve than exten-
ding a continuous simulation language for that purpose.

Extensions of discrete simulation packages have been performed in
most cases either by the original designers or at least by former
users of the original software. However, these people usually having
a background in operations research, normally do not consider the
requirements of systems' analysts for continuous systems from either
the numerical or information point of view. For example, one may
find that one specific integration algorithm has been coded into the
control routine, or that no provision has been made for parallel
structures, adequate run-time control procedures, etc..

We have already seen that most so-called "continuous" systems are
really "combined" systems according to our definition. On the other
hand there exist many systems, which may be <conveniently described
by purely discrete simulation elements. As a result there is & much
greater impact of combined simulation on the treatment of continuous
processes than of discrete processes. This allows for the conclusion
that the state-of-the-art of combined system simulation languages is
by no means satisfactory yet.

I1I) USEFULNESS OF COMBINED SYSTEM SIMULATION:

In references [14,15] it has been shown, that there exist problems
which cannot be modeled in a proper way by either purely discrete or
purely continuous simulation elements. (The author believes,
however, that for most problems it is possible to find either an
entirely discrete or an entirely continuous formulation, but the
work required for converting the problem may be «considerable and
even may not be desirable.) Examples given in the above references
include a steel soaking pit and slabbing mill and also a chemical
batch process. The arguments given in these references to justify
the new combined approach to these processes are certainliy correct.
However, we shall show that the needs for combined simulation lan-
guages are even more evident and elementary thanh explained in these
references.

204 F.E. CELLIER

Reference [30] describes control of the motion of +trains by SCR's
(silicon controlled rectifiers). For this purpose a current has to
follow a sine wave within a prespecified tolerance range. This was
achieved by controlling the SCR's in a way that the current always
switches back and forth between basically two different models where
reaching the tolerance bound is the condition for switching to the
other model. A simulation using CSMP-S/360 required approximately
US $400 for one half period of the sine wave, whereas a simulation
using GASP-V required only US $13 for two whole periods of the sine
wave. (The CSMP program was coded using only standard features of-
fered by the CSMP language.) Thus the reduction factor in computing
time was -more than 100 for this example. The reason for this is that
CSMP utilizes the step size control mechanism of the integration
algorithm for event TJocation which is a rather inefficient method
for location of state-events and an extremely inefficient method feor
location of time-events. (For the definition of the terms state- and
time-event see [27].) Any other continuous simulation language would
behave in the same way as CSMP, so this is not a shortcoming of the
particular language CSMP, but a problem of the inadequate underlying
solution technique applied.

Fig.1 depicts schematically what happens to the integration step
size at event times;,

lAt&smml ; ! :
I f | '
1 | | :
o |
| |
]
I I | -—
i \ | | SIMULATION
[l CLOCK
[|
| Lo [
¢£3r(eAsp)[o [
. i |
E (| |
| 1 ,_ [
|
!
|
[
! — .
1o t1 to 13 ¥ 4 glroUCI?(AﬂON

Fig.1: Integration step sizes of continuous and combined languages
versus the simulation clock.

COMBINED CONTINUQUS/DISCRETE SYSTEM SIMULATION LANGUAGES 205

Using a continuous simulation language the step size will be reduced
heavily when a discontinuity is encountered since the integration
algorithm is unable to compute a step properly over discontinuities.
This fact has been used in "~ these languages to "localize" event
times. However, since the program cannot know that there is a dis-
continuity taking place (no language element is provided to expliain
this to the system) the algorithm will "think" that the set of equa-
tions suddenly became extremely stiff and reduce the step size to
cope with the new situation.

Having Tocated the event, the algorithm will carefully explore the
possibility to make the step size Targer again, but is not allowed
to enlarge the step size immediately since this would lead to insta-
bility behaviour in a real stiff case.

A combined simulation language, on the other hand, will provide for
a language element to describe discontinuities. Now the step size
will be reduced by an event iteration procedure inherent in the pro-
gram to locate the unknown event time 1in case of state-events
{(events 1, 2 and 4 on Fig.l1) taking place, whereas the step size
will simply be reset to the known event time in case of a time-event
{event 3 on Fig.1) taking place. After accomplishment of the event
the integration algorithm will be restarted and use the internally
provided (and hopefully efficient) algorithm to obtain a good guess
for the new "first" step size to be used. Note, that the independent
axis on the graph denotes the simuiation.clock and not CPU-time.

Considering the numerical aspects of the problem one should describe
the above mentioned control system rather by combined simulation
techniques than by purely continuous simulation. This gives the re-
quired motivation for our redefinition of combined and continuous
simulation stated in the introduction. (Note that the example would
definitely belong to the class of continucus systems according to
the "common" use of the term.) Considering the aspect of informa-
tion processing CSMP obvicusly offers modeling elements {such as a
switch function) which it 'is wunable to preprocess into properly
executable code. Again this is not a problem of the language CSMP,
but holds for all CSSL-type languages, Some of the languages (like
DARE-P [18]1}) are somewhat more modest in the facilities they offer
in this respect, for which they are blamed by many users. The
author, however, believes that it dis more faithful to offer few
facilities than to write a beautiful manual offering many nice fea-
tures, which effectively cannct be properly used. On the other hand
the reaction of these users proves that the facilities are useful
and needed. For this reason the author feels, that in a future revi-
sion of the CSSL specifications [36] combined simulation facilities
should be taken into account, opposing herein to the opihion ex-
pressed in [1]. (A vrevision of the CSSL specifications will be
necessary anyway, if for no other reason, the original definition
contains over 40 syntactical errors as shown in [22].)

As can be seen from the previously stated: The precblem of combined
simulation can be subdivided into the numerical aspects (executabi-
1ity of thé run-time system) and into the aspects of information
processing (definition of the descriptive input language). These two
problems are now to be considered more carefully.

2086 F.E. CELLIER

IV) NUMERICAL ASPECTS:

IV,1) Structure of the run-time package:

Experience has shown that for the execution of combined simulation
the following concept is to be used: A combined problem may be sub-
divided into

~a) a discrete part consisting of all elements used for discrete
simulation,

b) a continuous part consisting of all elements used for continuous
simulation and

c) an interface part describing the conditions when to switch from
{a) to (b) and vice-versa.

During the execution of a combined simulation we are, therefore,
either performing entirely discrete simulatfion (with its well known
properties) or entirely continuous simulation (with {its also well
known properties), whereas execution of simultaneously combined con-
tinuous and discrete simulation does not exist. Thus a combined
simulation run-time package must be composed of

a) a discrete simulation run-time package,
b) a continuous simulation run-time package and

c) some algorithms describing the activities to be taken, when
branching from (a) to (b) or vice-versa is required.

The numerical requirements for the subsystems (a) and (b) are both
well known and discussed on many occasions and, thus, need not be
considered here again. An excellent survey of the major simulation
systems for problem class {a) is [19], whereas the problem class (b)
is surveyed in [1,4,20]. Once this structure has been understood we
can restrict ourselves merely to combining previously developed
software for discrete and continuous simulation to obtain a good
run-time package for combined simulation as well,

In the following we will restrict our view on subsystem {(c).

A) Conditions for changing to continupus simulation when executing
discrete simulation:

Let the simulation clock be advanced to event time tl1. Executing
discrete simulation means that the system is about to perform
event-handiing at time ¢tl1. We have to execute discrete simu-
lation until all events scheduled for time t1 have been per-
formed. We have then to switch to continuous simulation if there
are differential equations currently involved 1in the combined
simulation (for some intervals of time there may be none).
Otherwise we reset the simulatien clock to the next event time
and continue with executing discrete simulation until again
there are no events left to be performed for this new event

COMBINED CONTINUOUS/DISCRETE SYSTEM SIMULATION LANGUAGES 207

time. Therefore, no special algorithms need to be developed for
this case. After event handling being performed the integration
aigorithm needs to be restarted. This is especially important in
case multi-step methods are being used.

B) Conditions for changing to discrete simulation when executing
continuous simulation:

Continuous simulation has to be performed either up to the next
scheduled event time (for time-events) or until a state-
condition is met triggering execution of a state-event,
whichever comes first. In both cases the step-size control
mechanism of the dintegration algorithm has to be disabled. In
the former case (handling of a time-event) the step-size simply
has toc be reduced down to the scheduled event time, in the
latter case (handling of a state-event) a new step-size control
algorithm must be activated for iteration of the solution to the
unknown event-time. Again these algorithms are not really .new.
Any good iteration procedure (like Newton-Raphson) can solve the
problem. The author recommends a combination of +the inverse
Hermite interpolation {fast convergence) with Regula-falsi (un-
limited convergence range). This ijteration scheme has been de-
scribed in detail in [7].

C) Selection of the initial subsystem:

Having discussed the conditions for branching from (a) to (b)
and vice-versa it remains to determine the subsystem to be used
first at initialization time t0. The rule 7s simply to start
with the discrete subsystem. This will then check whether there
are any events to be treated at time t0 and if not transfer
control to. the continuous simulation package in which case the
taken activity would be none (this under the assumption that
differential equations form part of the system's description at
time (t0+dt}, otherwise proceed as described above).

IV.2) Unsolved problems:

In the author's opinion the best among existing coded packages
utilizing the ideas above is GASP-V [7,8]. Many problems have been
tested ‘using this software and the results were quite promising.
There are still two unsolved problems:

A) Takind the definition of Pritsker [27] for event times:

"An event oceurs at any point in time beyond which the
status of aq system cannot be projected with certainty”

it is clear that an infinite density of events must not occcur.
This may, however, happen in at least the following two cases:

a) A system is modeled by a set of PDE's and discontinuities
exist. In this case the discontinuity may "walk" through
space with the time and can no longer be Tocalized 1in the

208

F.E. CELLIER

way proposed in section IV.1. As an example Tet us consider
a Jlong electric wire where a current is imposed at one end
which suddenly (at time t1) changes d{ts wvalue. This dis-
continuity will remain in the system for some time and
"flow" through the wire. If there are effects of reflection
assumed at the other end, it may even remain in the systenm
forever. Thus, in this example we will find, that for any
instant of time t t1 the system will be discontinuocus at one
particular point .in space (x1) which is moving around.

b) The behaviour of the continucus subsystem is stochastic in
nature. The spectrum of a random number stream has infinite
frequencies which has the effect that it is nowhere dif-
ferentiable. If such a random number js superposed to the
input of an integrator, we face-the problem mentioned above.
This holds of course only for stochastic behaviour of the
continuous subsystem and not for the discrete subsystem.
Stochastie interarrival +times of customers to a queue, for
instance, will not effect the numerical behavicur of the
system, since new samples for the random numbers are only
computed at event times, whereas in between these variables
are constant.

Zeigler [34, <Chapter 91 has shown that the existence of an in-
finite density of events always vresults in an illegitimate
model. In the case of (a) it is, theoretically, always possible
to respecify the model so that the new equivalent model 1is no
longer illegitimate. In this new formulation the propagation of
discontinuities will follow the axes of the coordinate system.
This is well known as the "method-of-characteristics". In the.
case of the linear wave equation we know that the characteris-
tics are sitraight parallel 1lines and the required variable
transformation is easy to achieve. For complex situaiions (non-
linear cases), however, to find the characteristics of the
problem (which are now curves bended in time and space}] s ai-
most equivalent to solving the entire problem. Thus while we can
solve the problem (a) theoretically, in practice the required
computations for obtaining the variable transformations are ex-
tremely tedious and may prevent us from doing so.

Therefore, we usually find another solution for this problem: In
using the method-of-lines approach [3,6] we found that the inte-
gration over time is not much effected in most applications by
these discontinuities whereas the computation of the spatial de-
rivatives is heavily disturbed. Therefore, we first try to
identify (for each step) in which discretization interval the
discontinuity is situated at the moment, then we split up the
region and compute the spatial derivatives independentiy for the
two parts lying to the left and to the right of the disconti-
nuity. This procedure can easily be expanded for several space
dimensions as well.

The case of ({b) s in principle more difficult to treat.
Zeigler's <characterization of illegitimate models was developed
only for discrete event models. However, his discussion of the
intrinsic limitation of the class of continuous systems which
can be simulated by digital computers [34, Chapter 51 and [35]

COMBINED CONTINUDUS/DISCRETE SYSTEM SIMULATION LANGUAGES 208

may be applied to the present problem. According to this ana-
lysis, there must always be a non zero inferval separating com-
puter updates of the model's state. Thus the computer must guess
what the behaviour of the model is in the interval separating
computational instants -- the problem of "bridging the gap".
Since the computer s given a description of the model compo-
nents and their coupling it can guess correctiy only if certain
conditions enabling perfect interpolation in the gap hold. Poly-
nomial trajectories, commonly assumed in integrating differen-
tial equation models, serve this purpose.

In the <case of stochastic continuous models it is not easy to
justify the assumption of polynomial trajectories. For example,
if the model contains a white noise component then ho means of
bridging the gap exist 1in pr1nc1p1e This is because, by defini-
tion, the correlatjon betwsen sample values, however closely
spaced in time, is zero. Even if the noise is not white, current
nurerical methods are not geared to exploiting autocorrelations
specified by the model for optimum choice of integration step.
As a result, most step size control algorithms will produce ex-
tremely pessimistic guesses for the step sizes to be wused, re-
sulting in high computational costs.

We found the follewing approach useful in many applications:
First we compute one run by setting the noise to zero using
variable step integration (the continuous subsystem is now de-
terministic). In this run we collect statistics (histogram) of
the wutilized step sizes dt. From the cumulative frequency curve
we select the 0.7 Tevel point (10% of the step sizes fall below
this point). Now we compute a new run, this time with inclusion
of the noise, where we keep the step size dt fixed at this 0.1
level point. A disadvantage of this scolution is, of course, that
we now have no measurement for the quality of the approximation.
We must thus be very careful in the interpretation of results
obtained in this way. Furthermore, the proposed method can be
applied only, 1if +the signal/noise ratio {is high. For a Tow
signal/noise ratiec we do not know any good numerical technique
to go round this prcblem.

As explained by Elzas [12] the user of a simulation package
wishes either to obtain reliable results or have a “bell" ring
when an algorithm dis wunable to perform proper work. Under no
circumstances does he want to obtain results which are wrong. So
far this can be guaranteed with a high confidence in the case of
ODE probiems only, whereas for PDE problems numerical difficul-
ties need not necessarily be detected by the package, resulting
in inaccurate or even entirely wrong results. More vresearch
needs to be devoted to this problem. It arises from the fact
that we always use a fixed grid for the spatial discretization
and thus have no control on the error resulting from this dis=~
cretization. Adaptive algorithms would be required (similar to
the variable-step algorithms for numerical integration) to solve
this problem. Some attempts have been made in several places to
find a solution, but these have not been successful so far. Also
in this respect, packages like GASP-V [7,8] or FORSIM-VI {[3] may
prove very useful, since they allow to design new exper?mcwts in
a very flexible and simple manner.

210 F.E. CELLIER

V) ASPECTS OF INFORMATION PROCESSING:

So far we have discussed the numerical behaviour of a run-time sys-
tem able to perform combined simulation, Now it remains to guestion
what 1is the easiest and most convenient way for the user to formu-
late combined problems to the computer, so that the computer will be
able to produce properly ececutable run-time code. For this we will
have to identify the structural elements of combined simulatien lan-
guages.

V{l) The elements of the Tanguage:

A combined simulation lTanguage will primarily consist of the well
known elements of continuous and discrete simulation languages.
There are few additional elements required to weld these two subsys-
“tems together.

"A) The state-event:

The only essential new element {5 the state-event describing
conditions of the continuous subsystem status when to branch to
the discrete subsystem., A typical situation 1is dillustrated in
the following:

When the angular wvelocity of a DC-motor erosses a
threshold of 1500 RPM in the positive divection, the mo-
tor has to be loaded.

This situation could, for example, be coded using a ‘CONDIT'-
statement in the continuous subsystem:

CONTPROCS

CONDIT EV1: OMEGA POS CROSS
1500.0 TOL<1.0E-3 END;

and the vreaction to this would then be coded by an event de-
scription in the discrete subsystem:

DISCPROCS
EVENTS
EV1: TL := 200.0 END;

L

(the torque load (TL) 1is to be reset to 200.0). The CONDIT-
statement is similar to a CSMP FINISH condition, except that the
time of the cressing is iterated until a prespecified tolerance
is met (TOL=1,0E-3), and in that the simulation run is not ter-
minated, but control is handed over to the discrete simulation
system. After event handling as described by the discrete sub-
system (DISCPROCS) control is returned to the continuous subsys-
tem (CONTPROCS) where the new value of TL will be used scmewhere
on the right hand side of the egual sign.

B)

C)

COMBINED CONTINUOUS/DISCRETE SYSTEM SIMULATION LANGUAGES 211

‘Operations of the continuous subsystem on the discrete subsys-

tem:

There are none.

Operations of the discrete subsystem on the continucus subsys-
tem:

It dis most commonly found that not only parameters of the con-
tinuous subsystem (as the torque load: TL above) <change their
values at event times but that some of the equations are re-
placed by others. This situation can be taken care of by the
following language elements:

a) The "one out of n" situation:

There are n possible "models" out of which one is always ac-
tive, This sjtuation can best be expressed by a CASE-state-
ment:)

CASE NMOD OF
where NMOD is an integer number pointing to .the currently
active model. This Tlanguage element is used in general to

describe n different functional ways of behaviour of one
model component.

b) The "k out of n" situation:

Another frequently found situation s 111Qstrated by the
foliowing example:

There are n cars in a system, out of which k are
moving arcound and (n-k) are parked somewhere.

This situation can be represented by the following syntac-
tical construct:

FOR I:=17 TO N DO
IF CARLIJ1 THEN

where CAR is a booTean array with the values "true" for cars
moving around and "false" for parked cars.

For n = 1 this case degenerates to a simple IF c1ause;

c) Example:

Let us consider a mechanical system with a dry friction
force (TFR) modeled somewhere 1in the system. This can be
shown by the following graph:

212 F.E. CELLIER

| TFR
Ta - ® tg &= CM

» OMEGA
. -Ty
y _’TZ

Fig.2: Dry friction force graphed versus velocity

In this example we face the typical "one out of n" situa-
tion, where n = 3 are the three continuous branches of the
discontinuous TFR-function. Each of them is represented by a
different equation and by a different set of state condi-
tions.

This situation could thus be coded as shown inm Fig.3. Using
this formalism for describing a combined system, the resul-
ting description s not much more complicated than for
normal CSSL-type languages, but allows the preprocessor to
produce properly executable run-time code.

V.2) Requirements of the language:

When developing a new language for combined system simulation the
following points should be remembered:

a)'The language should provide for flexible structures.
b) It should be extendable (open-ended operator set).

c) Both syntax and semantics of the language should be easy to
learn and to remember. '

d) The language should contain as few elements as possible but as
many as are required.

e) Models should be codable by as few elements as possible.

f) The preprocessor should contain provisions for faithfully detec-
ting coding errors.

COMBINED CONTINUDOUS/DISCRETE SYSTEM SIMULATION LANGUAGES 213

SYSTEM
CONTPROCS

-3

MODEL DRYFRICTION (TFR <- T, OMEGA)
(* COMMENT: <- SYMBOLIZES A LEFT ARROW AND IS USED TO
SEPARATE INPUT FROM QUTPUT VARIABLE LISTS *)
CASE NL OF
T: TFR = T1 + CM*OMEGA;
CONDIT MOD2: OMEGA NEG CROSS + 0.0 TOL=1.0E-3 END
END;
2: TFR = T;
CONDIT MOD1: T POS CROSS + T2 TOL=1,0E-3 END;:
CONDIT MOD3: T NEG CROSS - T2 TOL=71.0E-3 END
END;
3: TFR = -T1 + CM*OMEGA;
CONDIT MOD2: OMEGA POS CROSS -+ 0.0 TOL=1,0E-3 END
END
END (* DRY FRICTION *)

END (* CONTINUOUS SUBSYSTEM *)

DISCPROCS
EVENTS
MOGD1: NL := 1 END;
MOD2: NL := 2; OMEGA := 0.0 END;
MOD3: NL := 3 END

END (* TIME EVENTS DESCRIPTION *)
END (* DISCRETE SUBSYSTEM *)
END (* SYSTEM DESCRIPTION *)

Fig.3: Combined description of a dry friction force

g) The TJanguage must contain all elements required to enable the
preprocessor to produce numerically well-conditioned run-time
code.

Some of these requirements are contradictory. For example: If we
want to enable the preprocessor to detect as many errors as pos-
sible, made by the wuser when formulating his model, the language
must contain some redundancy. This certainly competes with the wish
to have as short user's programs as possible,

Flexible structures: We want to obtain a universality of the pro-
gram's applicability. This problem has been considered carefully
when designing the (SSL-type languages which are in existence and
also in designing the SIMULA-67 Tlanguage for discrete simulation
[(10]1. So we need not discuss.this here again.

Extendability: Two different points wmust be considered: On one hand,
we want to enable the user of such a language to extend it for his
personal needs. This requires a superposed macros-structure [4.,9]).
This, however, need not necessarily form an Jintegral part of the
language definition, as it is interpreted by the preprocessor. The
macros-handlier can as well be realized by a stand-alone program pre-
ceeding the normal preprocessing [5]. This would then allow for more
flexible macros-structures (interpretative macros-language) without

214 F.E. CELLIER

calling for too high core memory requirements for its realization.
On the other hand the system's specialist should alsc be given the
possibility to extend the basic language definiticn itself. For this
purpose the preprocessor should be constructed in such a way that it
can be easily augmented to accommodate new ideas. For this purpose
the most recent compiler building techniques employing structured
proegramming and structured data representation should be applied, as
described for dinstance by Wirth [33]. The author suggests, there-
fore, to design the Tanguage as much as possible as a determi-
nistic, one pass, left to rigth language {DLR-1 language), for which
the syntax is to be described fermally either by use of a BNF-nota-
tion .or by use of syntax diagrams. Compilers for such languages can
be written in a straight forward manner and are, thus, -easily
readable.

Ease of learning syntax and semantics: Two main goals are to be
achieved: It should be easy to write programs by one's self and it
should as well be easy %o read programs coded by somebody else,
These two goals tend to compete with each other. To meet the former
goal we want the different elements of the language to use the same
syntactical constructs as much as possible. To meet the latter goal
we want to be as flexible as possible in choocsing appropriate mne-
monics and c¢close to conversational english constructs,

To give an exampie for the competing nature of the two goals Tet wus
consider once more the dry friction example given above (Fig.3}. To
meet the second goal we introduce the '=' symbol in the notation of
equations of the parallel section and the ':=' symbol in the nota-
tion of statements of the procedural section. By these means the in-
herent difference between parallel and procedural sections is ¢lari-
fied, in that, for instance,

is a meaningless equation., This rule will thus help to improve the
readability o¢f programs, it will at the same time, however, compli-
cate the writing of programs since it simply introduces an additio-
nal not necessarily required syntactical construct to remember.

Few Tanguage elements: The Tanguage should be constituted of as few
elements as possible to make it easily learnable. On the other hand
- we require wmany language elements to obtain short user's preograms.
If there are not encugh primitives offered by the language, the co~
ding of complex problems becomes very difficult and the resulting
sgurce program will be long. This problem is best solved by provi-
ding a hierarchical structure of both language and documentation. By
means of this the user can first read an introductory manual which
teaches him how te utilize the basic features reguired for modeling
simple problems., This can be learned in a short time. Later on, when
he realizes that his problem is more dintricate than he thought in
the beginning he may study another manual which enables him to use
advanced features of the languade. The user must be able to code
simple situations in a simple manner, but should be assisted when

COMBINED CONTINUOUS/DISCRETE SYSTEM SIMULATION LANGUAGES 215

coding more compliex situations as well.

Short users' programs: The user should not be bothered by being
asked to provide unnecessary information (like typing FORTRAN
COMMON-blocks). This point must be balanced against:

Provisions for error detecting: Some redundancy should be left to
the program for error detecting purposes. The author feels that a
modern simulation language should for example require from the user
that all variables he is going to utilize are declared in the begin-
ning. This enables the preprocessor to detect many typing errors.
This statement has been mentioned on many occasions {e.g. in the de-
velopment of PASCAL [16]). It is, therefore, amazing, that none of
the CSSL-type simulation Tanguages to our knowledge has adopted this
idea, and that this fact is even praised by many developers of brand
new simulation software.

Well-conditioned run-time code: This point has been discussed in
section V.1 already.

VI) DISCUSSION OF EXISTING SOFTWARE:

The existing software for combined simulation has recently been re-
viewed 1in an excellent survey by Oven [23,241. He has collected
information on about 30 different simulation systems for combined
system simulation. Due to the fact that combined simulation never
before had been properly defined, some of the surveyed lan-
guages/packages 1ie on a somewhat different line from what has been
presented here. Furthermore, some of the programs described have
never been released. Considering only those programs being imple-
mented at several different installations and being widely wused by
different people, just a very few of them remain. Among these, GASP-
IV [27] which is an ANSI-FORTRAN-IY coded subroutine package, has by
far the Targest distribution. Together with its descendent, GASP-V
this program follows the ideas mentioned in section 1IV. The nume-
rical behaviour of the GASP software is, in our experience, the best
of all existing run-time packages for combined simulation. Unfor-
tunately there is no provision in GASP for a user-oriented input de-
tinition (no preprocessor is involved). Therefore, none of the ideas
presented in section V is realized in GASP,

From the information processing point of view, pioneer work has been
done in the definition of the language GSL [15] following the ori-
ginal ideas of Fahrland [13,141. GSL has the best language structure
of all the Tanguages so far published. Unfortunately GSL has never
been released and must therefore be considered to be a collection of
new ideas rather than a simulation language. However, GSL also has
severe shortcomings both in the underlying run-time structure and in
the Tanguage definition itself (the recent developments in the field
of information processing and especially compiler building, as pre-
sented in section V, have not sufficiently been taken into account).
A new simulation Tanguage COSY [2] (standing for COmbined SYstems)
is under development by the author. It will involve a PASCAL-coded
preprocessor which translates a new input definition Tanguage (fol-
Towing the ideas developed in section V of this paper) into GASP-V

218 F.E. CELLIER

executable code. GASP-V thus will be used as target Tanguage for
COSY. This language, however, will not be released before the end of
1879. Another new language under development which has some vre-
semblance to COSY is GEST [211. The Tanguage definition will soon be
replaced by the newer version GEST'78 [25,26].

An entirely different approach has been taken in the definition of
SMOOTH [32], which uses a network approach combining GERT networks
for discrete simulation [28] with STATE networks for the continuous
subsystem. A new program of this class will be released in 1979 by
Pritsker combining Q-GERT [28] with GASP-IV/E (extended version of
GASP-IV, released in 1978 by Pritsker). This approach certainly re-
sults in extremely short application programs, at least for such ap-
plications for which there are elements provided in the language.
However, a network approach cannot be as general as a structured
language. Benyon [1] states: "Such a diagrammatic approach to
modelling can be very useful in some instances, but experience with
 the continuous TJlanguages has been that the diagrams soon grow too
complicated to be enlightening, once one advances beyond quite
simple modeis".

Moreover, it 1is often stated that nétwork languages are easier to
learn compared to equation oriented structured languages. The author
would deny this statement for two reasons:

a) The number of language elements of such block oriented languages
required to obtain at least a certain degree of flexibility is
much larger than for equation oriented languages. GPSS-V [311,
for example, consists of 41 building blocks and Q-GERT [28] of-
fers 24 of them {Q-GERT requires a smaller number of biocks for
an even higher degree of flexibility, because the single buil-
ding blocks are more decomposible and recombinable). All of
these building blocks must be understood before a truly complex
program can be written,

b) Since- the single building block describes a rather complex en-
tity compared tc a simple event description the semantics re-
quired to describe such an element are much more complex. (A
complex situation can either be expressed by a complex syntax
consisting of many "small" building blocks with primitive seman-
tics, or by a simple syntactical construct <consisting of few
"large" building blocks with complex semantics, but never by
both simple syntax and semantics.) This can be illustrated with
a simple example. Considering the GENERATE-block of GPSS, it
seems first, that the meaning of this block is very weasily ex-
plained,

GENERATE A, B

means that a new transaction is to be generated with a uniform
distribution in the interval [A-B,A+B]. The novice user of GPSS
will take "this definition and let this block be followed by a
SEIZE-block to have the transaction occupying: a facility. 1In
practice, 1if this facility is already occupied when the trans-
action. is born to the system, this transaction will stay in the
GENERATE-block and dinhibit the generation of new transactions.
This shows, that the semantics required to describe this simple

COMBINED CONTINUOUS/DISCRETE SYSTEM SIMULATION LANGUAGES 217

sifuation properly, are much more complex than might be thought.
Very commonly, an error occurs due to the fact that semantics
are involved which have not been reported to the user 1in the
introductory manual.

This last example unveils another weak point of network languages:
The program as specified above will "work"™, which means that there
will be output produced, although this output will be wrong. With a
high probability the user will thus never detect that his program is
erronecus. The reason for the inability of GPSS to detect the error
1ies in the fact, that hardly any redundancy has been left in the
code which could enable the system to detect errors in the source
program. :

Much more promising, it seems to us, is a new network approach pro-
posed by Elmgvist {11] and by Runge [29]. Intended for continuous
systems, it could also be extended to encompass discrete systems as
well. This new approach has its background in the equatien oriented
languages. The single network element consists of a set of equations
programmed by the user. Different modules are connected by special
elements, called cut- and path~ elements in DYMOLA []11}. This new
approach can be thought of as an extension of fhe earlier macros-
constructs of CSSL. It is even more general than the classical CSSL-
type language, since this Tatter forms a subset of the new network
Tanguage. In this approach the user does not need to describe in ad-
vance which connecting variables cof his submodel (variables which
are visible from outside) are input and which are output variables
of the module. Formulae manipulation algorithms are used in DYMOLA
to obtain a computational set of statements, whersas MODEL [29] uses
implicit dintegration techniques toc go round the difficulty. Some
problems may arise from the fact that these languages are no langer
context-free, They are on the contrary extremely context-dependent.
This sometimes may result in ambiguities which have to be resolved,
The possible set of executable statements is not necessarily unique,
The author believes, however, that it will be worthwhile devoting
more research to this approach.

VII) ACKNOWLEDGMENTS:

The author would Tike to express his deep indeptedness towards Prof.
A. Alan B. Pritsker. Many of the ideas expressed in this article
originated from the pioneer work in combined simulation done by
Pritsker and his group, and also resulted from personal discussyons
with them. He would furthermore like to thank Prof. Tuncer Oren for
the many good ideas he suggested in several long discussions of the
subject. He 1is also very grateful to Prof. Bernard P, Zeigler for
the stimulating comments obtained as a reaction to the initial
abstract sent.

218

(11

[2]

31

4]

(51

(6]

[71

[8]

[91

(101

F.E. CELLIER

VIII) REFERENCES:

P.R.Benyon: {1976} ‘"Improving and Standardizing Continuous
Simulation Languages". ‘Proc. of the SIMSIG Simulation
Conference, MeTbourne, Australia, May 17-19, 1976
pp. 130 - 140.

A.Bongulielmi: (1978) "Definition der allgemeinen Simulations-
sprache COSY"., Semesterwork, Institute for Automatic Control,
The Swiss Federal Institute of Technology Zurich. Tec be ob-
tained on microfiches from: The main library, ETH - Zentrum,
CH-8092 Zurich, Switzerland. (Mikr. S637).

M.B.Carver: (1978) “"The FORSIM-VI Simulation Package for the
Automated Solution of Arbitrarily Defined Partial and/or
Ordinary Differential Equation Systems". Form: AECL-5821.
Atomic Energy of Canada, Ltd.; Chalk River Nuclear Laborato-
ries, Mathematics & Computation Branch, Chalk River, Ontario,
Canada K0J 1J0.

F.E.Celldier: {1975) "Continuous-System -Simulation by Use of
Digital Computers: A State-of-the-Art Survey and Prospectives
for ~Development", Proc, of the SIMULATION'75 Symposium,
Zurich., To be obtained from: ACTA Press, P.0.Box 354,
CH-8053 Zurich, Switzerland; pp. 18 - 25,

F.E.Cellier: (1976) "Macro-Handler for. Simulation Packages
Using ML/I". Proc. of the 8th AICA Congress on Simulation of
Systems, Delft, The Netherlands., Published by North-Holland
Publishing Company (Editor: L.Dekker); pp. 515 - 52T.

F.E.Cellier: (1977) “On the Sglution o¢f Parabolic and Hyper-
belic PDE's by the Method-of-Lines Approach". Proc. of the
SIMULATION'77 Symposium, Montreux, Switzerland. To be obtained
from: ACTA Press, P.0.Box 354, CH-8053 Zurich, Switzerland;

pp. 144 - 148,

F.E.CeTlier: (1978) "The GASP-V Users' Manual". To be obtained
from: Institute for Automatic Control, The Swiss Federal
Institute of Technology Zurich, ETH - Zentrum, CH-8092 Zurich,
Switzerland.

F.E.Cellier, Blitz A.E.: (1976) "GASP-V: A Universal Simu-
iation Package". Proc., of the 8th AICA Congress on Simulation
of Systems, Delft, The Netheriands. Published by North-Holland
Publishing Company (Editor: L,Dekker)s; pp. 391 - 402.

F.E.Cellier, Ferroni B.A.: (1974) "Modular, Digital Simulation
of Electro/Hydraulic Drives Using CSMP". Proc. of the 1974,
Summer Computer Simulation Conference, Houston, Texas, Y.S5.A.;
pp. 510 - 514.

0.J.Dahl, Nygaard K.: (1966) "Simuia; A Language for Program-
ming and Description of Discrete Event Systems". 0slo, Nor-
wegian Computing Center.

(111

f12]

[13]

[14]

[15]

[16]

[i71

[18]

[19]

[20]

(211

[22]

[231]

[24]

COMBINED CONTINUOUS/DISCRETE SYSTEM SIMULATION LANGUAGES 219

H.Elmqvist: (1978) "A Structured Model Language for Large Con-
tinuous Systems". Form: CODEN LUTFD2/(TFRT-1015)/1-226/(1978).
Ph.D Thesis, Lund Institute of Technology, Dept. of Automatic
Contral, Lund, Sweden.

M.S.Elzas: (1978) "What 1is MNeeded for Robust Simulation?"
Article in this volume.

D.A.Fahrland: (1968) "Combined Discrete Event / Continuous
System Simulation™. MS Thesis, Systems Research Center Report
SRC-68-16, Case Western Reserve University, Cleveland, Ohio.

D.A.Fahrland: (1970) "Combined Dis¢rete~Event Continuous Sys-
tem Simulation". Simulation vol. 14 no. 2 : February 1970;
pp. 61 - 72.

D.G.Golden, Schoeffler J.D.: (1973) "GSL - A Combined Con-
tinuous and Discrete Simuiation Language", Simulation vol. 20
no. 1 : January 197335 pp. 1 - 8.

K.Jensen, Wirth N.,: (1974) "PASCAL User Manual and Report".
Lecture Notes in Computer Science, Springer Verlag.

P.J.Kiviat: (1967) "Digital Computer Simulation: Modeling Con-
cepts". Form: RM-5378~PR, The Rand Corp., Santa Monica, CA,
U.S.A..

G.A.Korn, Wait J.V.: (1978) "Digital Continuous-System Simu-
lation". Prentice Hall.

W.Kreutzer: (1976) “Comparison and Evaluation of Discrete
Event Simulation Programming Languages for Management Decision
Making". Proc. of the 8th AICA Congress on Simulation of Sys-
tems, Delft, The Netherlands. PubTlished by: North-Holland
Publishing Company (Editor: L.Dekker); pp. 429 - 438.

R.N.Nilsen, Karplus W.J.: {1974) "Continuous-System Simulation
Languages - A State-of-the-Art Survey". Annales de 1'Associa-
tion Internationale pour le Calcul Analogique (AICA), No., 1,
January 1974; pp. 17 - 25.

T.I.O0ren: (1971) "GEST: A Combined Digital Simulation lLanguage
for Large Scale Systems". Proc. of the AICA Symposium on Simu-
lation of Complex Systems, Tokyc, Japan, September 3-7, 1971,
pp. B-1/1 - B-1/4,

T.I.0ren: (1975) "Syntactic Errors of the Original Formal De-
finition of CSSL 1967%. Technical Report TR75-01 (IEEE Com-
puter Society Repository No. R75-78), Computer Science Dept.,
University of Ottawa, Ottawa, Canada.

T.I.0ren: (1977) "Software for Simulation of Combined Con-

tinuous and Discrete Systems: A State-of-the-Art Review".
Simulation, vol. 28 no. 2 : February 1977, pp. 33 - 45,

T.I.0ren: (1977) "“Software Additions". Simulation, veol, 29
no. 4 : October 1977, pp..125 - 126.

220

i25]

[26]

[27]

[28]

[29]

[30]

[311
[32]

[33]

(34]

[35]

[36]

F.E. CELLIER

T.1.0ren: (1978) "Reference Manual of GEST'78 - Level 1 (A
Modeling and Simulation Language for Combined Systems)". Tech-
nical Report 78-02, Computer Science Dept., University of
Ottawa, Ottawa, Canada.

T.I.0ren, den Dulk J.A.: (1978) "Ecological Medels Expressed
in GEST'78", Technical Report Prepared for the Dept. of Theo-
retical Plant Ecology, Dutch Agricultural University
Wageningen, The Netherlands.

A.A.B.Pritsker: (1974) “The GASP-IV Simulation Language". John
Wiley.

A.A.B.Pritsker: (1977) “Modeling and Analysis Using Q-GERT
Networks". John Wiley. -

T.F.Runge: (1977) "A Universal Language for Continuous Network
Simulation™. Form: UIUCDCS-R-77-866. Ph.D Thesis. University
of 111inois at Urbana-Champaign, Dept. of Computer Science,
Urbana, I11., U.S.A..

H.Schlunegger: (1977) "Untersuchung eines netzrueckwirkuhgs-
armen, zwangskommutierten Triebfahrzeug-Stromrichters zur Ein-
speisung eines Gleichspannungszwischenkreises aus dem Ein-
phasennetz". Ph.D Thesis, no. DISS.ETH.5867: The Swiss Federal
Institute of Technology Zurich, Switzerland.

T.Jd.Schriber: (1974) “Simulation Using GPS3". John HWiley.
C.E.Sigal, Pritsker A.A.B.: (1973) "SMOOTH: A Combined Con-
tinuous/Discrete Network Simulation Language". Proc. of the
4th Annual Pittsburgh Conference on Mecdeling and Simutation.
Pittsburgh, Penn., U.S.A., April 23-24, 1973, pp. 324 - 329.

N.Wirth: (1976) "Algorithms + Data Structures = Programs".

"Prentice Hall, Series in Automatie Computation (Chapter 5).

or:
N.Wirth: (1977) "Compilerbau". Teubner Studienbuecher, Infor-
matik.

B.P.Zeigler: (1976) "Theory of Modelling and Simulation". John
Wiley.

B.P.Zeigler: (1977) “"Systems Simulateable by the Digital Com-
puter”. Logic of Computers Group Report, University of Michi-
gan, Ann Arbor, U.S5.A..

(1967) "The SCi Continucus System Simulation Language (CSSL)".
Simulation, vol, 9 no. 6, December 1967; pp. 281 - 303.

