386 THE FUTURE

8.3 Stiff computation: where to go? (Cellier)
8.3.1 Introduction

It is the aim of this discussion to list some of the more severe.shortcomings of
available stiff computation codes as they have been collected through discussions
with the end users of such software. These complaints, however, are formulated
in terms that are understandable to the producers of integration algorithms. Some
suggestions are given on how these deficiencies may be overcome in the future,
and where open research fields can still be found.

8.3.2 Discontinuity handling: where to go?

The initial-value problem (1.1) and (1.2) may contain an f(x, y) that is discon-
tinuous inx. Typical examples of such discontinuities are (i) in mechanical engineer-
ing: friction phenomena, (ii) in electrical engineering: diodes, thyristors, any
combined analog and digital circuitry, (iii) in chemical engineering: charging and
discharging of batch reactors.

We can distinguish between two different types of discontinuities:

(i) Discontinuities of which we know the time when they are expected to happen.
As a typical example of this type of discontinuity, consider when output
voltage switches from negative to positive, or vice versa, a discontinuity takes
place. The time instances when these discontinuities are expected to take place
are precisely known beforehand. These discontinuities are in simulation usually
referred to as “time events.” Time events are scheduled events in the sense
that the time instances when the discontinuity is to take place may be collected
into a “‘calendar of events.”

(ii) Discontinuities of which we do not beforehand know the time when they
are expected to happen. Instead, we know the condition under which the
discontinuity takes place, e.g. a state variable x; crossing a prescribed level
into positive direction. As a typical example of this type of discontinuity,
we mention the output voltage of a rectifier circuit. Here we do not know
when the output voltage is going to have a discontinuity (in its first time
derivative). We just know that each time the input voltage crosses though
zero in either direction, the output voltage has a break. These discontinuities
are in simulation usually referred to as “‘state events.” For state events, no
scheduling is possible. Instead, we need a mechanism to describe the con-
dition under which the event is going to happen. This is usually referred to

~ as “state condition.”

It makes sense to distinguish between these two types of discontinuities for
fwo reasons:



4
(i)

The user of the code requires two different mechanisms to describe the dis-
continuities to the program. ‘

The algorithm requires two different mechanisms to handle them. Time events
may be handled simply by inspection of the calendar of events for the next
scheduled event time. When this moment approaches, the step size must be
reduced to hit the event time precisely, or the algorithm must interpolate
back to the just-passed event time, depending on the algorithm in use. State
gvents, on the other hand, must be handled by either iteration or interpolation
{(depending on the algorithm).

Unfortunately, until very recently none of the existing codes for numerical
integration provided for appropriate discontinuity handling. When I mentioned
this problem to a prominent numerical mathematician during the Urbana ACM/
SIGNUM Conference on Numerical Ordinary Differential Equations in 1979,
he answered that this was a problem which should be left to the end user to be
optimally adapted to his personal needs and should not be of concern to the
numerical mathematician. I do not agree for several reasons:

®

The numerical mathematician usually thinks that given a particular algorithm
everything is said and clear. However, this is not the case for reasons of com-
munication problems. The end user in general is not able to understand an
integration algorithm well enough to be able to code it into a properly execut-
ing program by himself. This holds equally true for discontinuity handling.
Concerning the integration algorithm, the attitude originally was also that
coding of the program be basically the user’s responsibility, while it has mean-
while been realized that precut standardized codes are superior in many re-
spects, even though there are still some people around to call this the “vacuum
cleaner” approach. I suggest that the handling of discontinuities is a more
recent problem, and that in the long run standardized codes shall replace

" home-tailored software here also.

(i)

If you look into the work done by Hull and Enright at Toronto, it should
become clear that one has no chance generally to compare integration algo-
rithms. What one can do, however, is to compare the aptitude of different
integration codes to solve a particular application problem. Hopefully, one
will be lucky enough to be able to extend the experiences gained from entire
sets of problems to a classification of applications. It should then become
clearer which algorithm is best for any particular practical application without
being forced to try them all. Results indicate that the step from the integra-
tion algorithm, once given, to the integration code is very large indeed. In
fact, more computation time is used by the “dirty” overhead surroundings
than by the integration algorithm itself. Again, this applies to the problem of
discontinuity handling as well.

(iii) It is not usually economical to develop larger pieces of software for each applica-

separately. On the contrary, we should concentrate on determining what large
classes of problems have in common, extract this information, and provide
for a program which handles all that in a standardized manner. This is time-
efficient, cost-efficient, and much safer, as the amount of software left to be



388 THE FUTURE

coded by the end user is minimized while obviously much more care and
expertise can flow into the design and production of the standardized part
of the software. It is here, where simulation software comes into the game.
Definitely, discontinuity handling belongs to the part of the code which
should be standardized.

To conclude these considerations, let me propose some very concrete steps
toward (in my view) a satisfactory solution. We need a standardized user interface
for ODE solvers (Hindmarsh 1978). It is evident that I cannot know in advance

“which integration code will be optimally suited for my particular application
under all circumstances. Thus, it should be such that I can code my application
software entirely independently of the ODE solver. Ideally seen, I would like
to be able to replace any ODE solver by any other ODE solver simply by replacing
one subroutine name by another subroutine name without being forced to change
a bit of my application program..In fact, I would want to maintain a library of
integration codes to have a “remedy against all diseases.” An additional advantage
of this approach is that I may easily update my ODE solver library when new
releases become available as there are no side effects to be expected from simply
replacing the old subroutine by its modified version. However, this also means
that I should not be forced to change a single line within the ODE solver for any
particular application. It is now very easily shown that, when I try to graft the
discontinuity handling upon the integration code (which I have done in my simula-
tion software GASP-V—Cellier (1978, 1979)—for precisely the aforementioned
reasons), 1 obtain inefficient code. For this reason, although 1 fully support Hind-
marsh’s idea concerning a standardized interface for ODE solvers, I do not agree
to his standard proposal. I feel strongly about the need for enhancing the standard
proposal by adding to it an appropriate description of conditional termination
criteria (discontinuity functions). In addition, the standard also should be expanded
in another sense. If I want to maintain a library of ODE solvers, I shall most cer-
tainly need a linear system solver (L.SS) in the majority of them. If this (lower
end) interface is not standardized, too, I have to maintain any number of basically
identical I.SS in my ODE library. For this reason, it would make sense to standard-
ize this lower end of the ODE code, also. Different LSS may then reside in a
possibly separate library (e.g. general LSS and sparse LSS) out of which I may
select whatever seems appropriate to go with whatever ODE solver I want to use.
It ought to be mentioned that Hindmarsh has introduced a root solver into one
of his programs, LSODAR, and uses sparse matrix techniques for linear systems
solving in another program (LSODES) (see §4.3.4). However, there currently
exists no version which combines root finding with sparse linear system solving.
I would strongly suggest a version which combines all these features at the expense
of a semewhat reduced efficiency.

A basic problem here is that the producers of the integration algorithms are not
necessarily equally well trained in computer science. However, the above-mentioned
considerations are basically those of a computer scientist, and it is sometimes
hard to convince algorithm developers of the fruitfulness of such considerations.

When I asked Wanner after his presentation of a newly developed A-contractive



algorithm (that is, in terms of Dahlquist, a G-stable algorithm, if I understood
Wanner correctly), during the Rutishauser Symposium in Zurich (Wanner 1980c),
whether he had already produced any executable code for his algorithm, he looked
at me rather puzzled and answered that his work was purely theoretical, and that
the job of coding would definitely have to be someone else’s task. (For reasons
of fairness it should be mentioned that Wanner has personally produced several
integration codes for some other algorithms.)

1 can assure you that the end user is certainly not willing to try his hands at
such an adventure because he is (1) not able to do it, and (2) not able to judge
beforehand whether this new algorithm will get him anywhere or not. It has al-
ready too often happened (also to myself) that a good-looking new algorithm
turned out to be a complete failure after it had been coded into a program. Once
I tried to code a DIRK algorithm: the effort spent on coding this algorithm was
tremendous, it never worked satisfactorily, and it never became clear afterwards
whether the problem was really with the algorithm or just with the code!

Even Henrici (who is known for his sympathy for practical solutions to real-
world problems as opposed to ivory-tower solutions to green-grass problems),
when T asked him a couple of years ago whether he would agree to join the con-
senting committee for my PhD thesis which I was to write on “combined con-
tinuous/discrete system simulation” (Cellier 1979), answered that he did not
know anything about simulation but that he was certainly willing to learn some-
thing about it. I then told him that this was beside the point in that I was sure
that he knew a lot about simulation. The problem was simply that he did not
know that he knew something about it. This indeed is a severe problem in that it
indicates that the average mathematician, even being a specialist in numerical
integration, does not scan the literature for articles on simulation, even though
these articles could be as important to his work as any contribution on numerical
integration. I was enchanted to learn during the Park City meeting that several
of the participating mathematicians had very much adopted the engineering view-
point in contrast to the view of a pure theoretician (see §2.2 and §4.2).

Coming back to my former issue on discontinuity handling: What has happened
since the Urbana meeting? 1 was glad to realize that there were at least a few
mathematicians who took my comments seriously enough to think of some remedies:

(i) For nonstiff problems, the discontinuity-handling problem had already been
solved prior to the Urbana meeting by people like Pritsker (1974) and myself
(Cellier 1979) in a fairly general way. Applying an R-K algorithm, we just
have to make sure that the discontinuity takes place at the end of an integra-
tion step. Time events are handled simply by reducing the step size if the next
event is shortly ahead. State events are handled by iterating back to the un-
known event time by any available method. Pritsker uses bisection, whereas
I resorted to inverse Hermite interpolation. For obvious numerical reasons, it
is important not to code the discontinuity itself in the ODE set but only the
state conditon (e.g. by means of conditional termination criteria). The dis-
continuity itself is then expressed by context switching during the execution
of the event (after execution of the event, another set of ODEs becomes
active). A somewhat more mathematical view of this procedure can be found
from Mannshardt (1978).



390

THE FUTURE

(ii) For stiff problems, one usually wants to apply multistep integration, for which

(i)

(iv)

™)

(vi)

(vii)

(v

‘the step-size adjustment at least creates a certain amount of overhead. The

now common approach is to maintain two independent clocks, the external
simulation clock and the infernal integration clock. The integration proceeds
with optimized step size and order, whereas the synchronization with the
simulation clock is done by interpolating back using the Nordsieck vector.
This methodology also may be applied to discontinuity handling if the state
conditions are formulated as an adjoint set of discontinuity functions with
the meaning that the simulation run terminates at either the final time or
when the first of these functions crossés through zero in either direction,
whatever comes first. According to my knowledge, we owe this formulation
to (Carver 1977).

Meanwhile, two of the available GEAR codes, one by Carver, Stewart, Blair,
and Selander (1978) and the other by Kahaner (1979), have been upgraded
to contain a discontinuity handling mechanism. The Kahaner implementation
differs from the Hindmarsh implementation in that the former DIESUB
subroutine has been modularized into about twenty smaller subroutines
which are now much more understandable and which avoid all those “dirty”
GOTO statements pointing backward in code.

I might want to suggest the introduction of an additional flag to determine
whether all crossings are to be detected or whether only positive or only
negative crossings are important. This is not really essential, but it is useful
in many applications to formulate hysteresis effects, e.g. a heating system
is switched on when the temperature falls below 18 degree centigrade, while
it is switched off only after the temperature has reached 21 degrees centigrade
as too frequent switching may damage the switching mechanism. By use of
the above mentioned flag, a lot of unnecessary context switching can be
avoided which makes the user programs execute more efficiently.
Unfortunately, the aforementioned mechanism does not yet solve all the
problems we would like it to solve. This is because after a discontinuity has
taken place, the integration needs to be restarted. In the case of the GEAR
codes, this means that the algorithm has to start again at an order of one.
If discontinuities occur at frequent rates, the integration algorithm needs to
be restarted again and again. One easily ends up having an extremely in-
efficient implementation of the trapezoidal rule, as higher orders get no
chance to build up. -

It is quite frequent in engineering applications that the accuracy requirements
are not very severe. Then, an efficient low-order algorithm may do a befter
job on the problem.

Point (vi) was realized by Deuflhard who developed a new low-order code for
stiff integration which looks very promising (Deuflhard, Bader, and Nowak
1980). For such an algorithm, the discontinuity handling also becomes
easier. -

If higher accuracy requirements are important, a higher-order algorithm has
its advantages. A typical engineering application for this would be the simula-
tion of a combined analog and digital circuitry containing memory elements



(flip flops). In such applications, it is extremely important to know whether
spikes are around, and what the maximum trasient voltages in some parts
of the analog circuit are. The answer to these questions is very sensitive to
parameter variations and also to event timing. For this reason, the system
usually must be simulated with a relative accuracy of from 10~® to 1073,

(ix) After I mentioned this problem to Gear, he realized that his algorithm could
be substantially improved if the warming-up period could be made more
efficient, that is, if one could avoid having to restart at one one after dis-
continuities. He developed in the meantime R-K starters for GEAR codes
(Gear 19804d). Although I have not yet found the time to implement such
an algorithm personally, I am fully convinced that this amendment will
make the code substantially faster when frequent discontinuities occur.

The question of discontinuity handling is by no means settled. To illustrate,
let me discuss the following application problem which I offered some time ago
as a new bench mark problem for simulation software (Cellier 1979).

Given: a set of domino stones from a domino game (usually 55, but any number
“will do). Place these stones in a distance d from each other. If the first of these
stones is pushed, all stones will fall. The question to be answered is, at which
distance d between two.consecutive stones is the chain velocity maximized.

This problem is of a sufficiently “green-grass” nature to refresh the heart of even
a mathematician. However, the problem is by no means academic as precisely the
same simulation problem arises in many practical applications, e.g. the heating of
steel ingots in a steel soaking pit and slabbing mill, or chemical batch reactions
with charging and discharging of batch reactors, or the traffic flow though an
intersection where each car may be modelled by a set of discontinuous ODEs
whereby new cars may enter the considered area at any time while old cars dis-
appear from the region after they have stayed in the system for some time.

What is common to all these applications? Obviously, whenever a discontinuity
arises, the entire structure of the problem may change, and even the number of
ODEs varies with time. We call these problems *variable structure problems.”
Each domino stone in my benchmark problem has to obey Newton’s law, being
represented by a second-order system or by a set of two first-order ODEs. Taking
the 55 stones of the game altogether, we obtain a 110th-order model. However,
it makes little sense to program the model in this way as only a very small number
of stones are moving simultaneously. Some stones may have fallen while others
remain untouched. Moreover, the physical law governing the motion of any stone
in the system is the same. It therefore makes much more sense to code an entity
to represent any “model” stone and allow new stones of the prescribed type to
be generated at event times while others may be destroyed at event times. It is
evident that there will exist an interaction (possibly even continuous) between
falling stones which has to be taken into account. Any ODE solver as they are
currently marketed is theoretically able to handle this situation as long as the
code provides for appropriate discontinuity handling mechanisms in the previously
discussed sense. However, the portion of the program which remains to be user-
coded will still be substantial. We feel that, again, the user should be relieved of
that part of the coding which is common to all the aforementioned examples.



392 THE FUTURE

Software for this type of application is currently under development at our group.

This software will consist of a FORTRAN coded subroutine package GASP-VI

(Rimvall and Cellier 1982), an extension to the existing package GASP-V (Cellier

and Blitz 1976), together with a PSCAL coded preprocessor (front end) COSY

(Cellier and Bongulielmi 1979; Cellier and Rimvall 1981) to make the user inter-
face a little more convenient and less error prone. -

8.3.3 Automated partitioning

It is quite common to many applications (e.g. in chemical engineering) that some
portions of the model are considerably faster than others (e.g. a chemically reacting
system consisting of fast and slow reactions). It seem intriguing to try to reduce
the overhead involved in the numerical integration of the slow subsystem by
splitting the system into fast and slow portions and by using different step sizes
and possibly different algorithms for the two of them (Palusinski and Wait, 1977).
This works quite well for some applicatons, e.g. for self-tuning regulators with
a fast inner loop and a considerably slower outer adaptation loop. We tried this
out by use of the SIMNON software (Elmquist 1976, 1977).

However, this partitioning scheme is not always easily done. It requires expertise
to master such software. Moreover, it is not guaranteed that such a partitioning
scheme even exists for a particular stiff system. In fact, if the system is nonlinear,
the eigenvalues of the Jacobian may move around freely with time, and it may
well happen that some modes of the system are fast during some period of time
and slow during other periods. Carver came up with a brilliant idea (because ex-
tremely simple) for automated partitioning, which he presented during the Inter-
national Conference on Simulation at Interlaken (Carver and MacEwen 1980). .
His method requires one single additional parameter to be user-tuned, a parameter
which even has some physical meaning assigned to it and which makes the adjust-
ment reasonably easy. Except for this parameter, the partitioning is fully auto-
mated and even adaptive in that it may vary with time.



