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This paper shows that the highly sophisticated
simulation software as it is available of today is
not too well suited for the analysis of socalled
ill-defined systens. In a first section of this
paper we shall identify the difficulties inherent
in ill-defined system modeling. The second part
then deals with a discussion of possible adapta-
tions and enhancements of simulation software for
improving its modeling capabilities. The resulting
enhanced simulation languages which may be nore
appropriately called "model-oriented” languages
are expected to be much betier suited for the de-~
rivation of models for ill-defined systems than
the currently available simulation software.

For the 1illustration of our statements we
shall cite examples from biological modeling
(larch bud moth), from social modeling
(Forrester's WORLD1 model), as well as from
psychological modeling (conformity of individuals
with the judgement of groups).

1. INTRODUCTION

Continuous simulation software has originally
been developed to fit the needs of the aircraft
industry. In this domain (as this is the case with

almost all electro/mechanical systems), the equa-~
tions for the description of models are well
known, and even their parameters can often be

identified with relative ease. What was needed,
was an easy means to integrate differential equa-
tions, produce graphical representations of state

variables versus time and versus one each other,
design simulation experiments, means which are
supposed to be easier in comparison with the

facilities offered in any general purpose computer
software (like FORTRAN~-IV, ALGOL-60, or PASCAL).
In recent years, the simulation software offered
on the "software market" became highly sophisti-
cated and extremely well suited for this purpose.
This is no longer the case, as soon as we are
confronted with simulating socalled ill-defined
systems, that is, systems of which we hardly know
the physical laws governing the basic relations
between different state variables, or even find it
difficult to select adequate state variables, The
model finding procedure becomes here the essential
part of the research, whereas coding a once de-
veloped model into any available simulation pro-
gram is now the -~ rather trivial -- final step of
the investigation. For this task, we require soft-
ware able to help us in the model finding proce-
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dure itself.

In a first step, we shall try
clearly, where the difficulties
system modeling can be located,
systems more difficult to tackle.

to describe more
of ill-defined
what makes these

2. BIOLOGICAL MODELING

How are models developed in general? First, we
should distinguish between two principally dif-
ferent types of modeling efforts:

a) Derivation of compound models, and

b) Derivation of basic models.

In the former case, we assume that we can decom=-

pose the system under investigation into sub-
systems for which appropriate models have already
been found. The modeling effort is, thus, re-

stricted to combining previously determined models
to larger units. Most of the modeling efforts for
electrical and/or mechanical systems fall nowadays
under this former category. This can be shown at a
very simple example of an electrical network, Pre-
vious experiments have shown that a resistor can
be modeled by the simple law U=R¥I under a large
variety of experimental conditions. If we now want
to model the behaviour of an electrical network
consisting of many resistors, this can easily be
accomplished by simply applying the previously
found basic model describing the behaviour of one
single resistor again and again. We can assume
such a model to be valid, even without being
forced to build the compound system itself. Such
models can, thus, be used for design purposes,
e.g. to determine beforehand which realization of
a proposed equipment out of a variety of alterna-
tives shall suit our purposes best (layout).
Models in biology, on the other hand, fall
primarily under the latter of the two categories.
A decomposition into previously known subsystems
is not possible. For such systems, we require the
system under investigation to be already existing
and accessible for experimentation., Model deriva-

tion is done by first applying a set of different
experimental conditions to the real system, and
measuring the input-output behaviour of that

system, before postulating a model able to repro-.
duce this input-ouput behaviour sufficiently well
under the same set of experimental conditions.

Why 4is it such that many more basic models
exist for electrical and mechanical systems than
this is the case for biolcgical systems? Two major
reasons may be mentioned:

a) The eigen-frequencies

inherent 1in electrical



systems are usually in the order of KkHz
even MHz. Mechanical systems
eigen-frequencies of 10 Hz to 100 Hz. On the
other hand, biological systems have in most
cases eigen-frequencies of pyHz or even nHz.
This makes it extremely difficult to execute
experiments which contain a sufficient amount
of the dynamic Dbehaviour of the system to
allow appropriate nodels to be identified.
Any system under investigation is, in reality,
a multi-input system. This is even true for
the simple resistor mentioned above. The value
of R shall, for instance, certainly be de~
pending on the temperature of the surrounding
air. However, those other influences, beside
of the electromagnetic phenomena, are by
several orders of magnitude smaller, and may,
therefore, be neglected. This does not hold
for biological systems. They are always sub-
Ject to many different influences in the same
order of magnitude. The growing speed of a
flower in spring depends not only on tempera-
ture, but as well on photoperiod, air and soil
hunidity, nutrients in the soil, solar radia-
tion, wind velocity, rain, microbial activity
of the soil, and so on. All those influencing
factors usually have effects of the same order
of magnitude. A model which does not account
for all of those influencing factors (e.g. by
referencing them as inputs), cannot be pro-
perly validated because repeated (real-life)
experiments must then certainly produce data
streams which cannot be reproduced by the
model. On the other hand, if we happen to be
able to reproduce experiments by applying very
accurate laboratory conditions, we may derive
models validatable under those laboratory con-
ditions, but which are not at all applicable
to the really interesting field situation.
These two properties make the modeling of
biological systems a very tough task as we shall
illustrate at the example of the larch bud moth.
The larch bud moth is an insect attacking, in
the European Alps, regularly all larch trees at an
altitude between 1800 and 2000 m above sea 1level,
Fig.1 shows how the average population density of
the larch bud moth was changing over the past
30 years in the Upper Engadine Valley in Switzer-
land, After having taken measurements over this
long time span, we may now hope to be able to
postulate a model which can predict the population
density with sufficiently high precision. A second
more intricate aim of the model could be to deter-
mine in which way the forest engineer could inter-
vene to prevent future outbreaks of the larch bud
moth without disturbing the ecological equilibrium
of the valley too much.

or
show mostly

b)

Fig.1 illustrates drastically the
difficulty (a) expressed above. Data collection
has not been done in an afternoon's experiment,

rather it required to sample over three entire de-
cades which is a most laborious and expensive
undertaking involving tree climbing and examina-
tion of hundreds of kilograms of larch branches
each year! Looking at Fig.1, it seems obvious that
a 1limit cycle exists in this system. We could,
thus, postulate a simple Lotka-Volterra type model
consisting of one consumer and one prey to start
with.
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Fig.1: Population density of the larch bud
moths in the Upper Engadine Valley

(data from [2])

This can be modeled as:

%1 = a*il - b*il*iz 3o x3(tg) = x5
X, = -c¥x, + d¥*x ¥x, ; xz(to) = X,
where x, describes the pupulation of the prey

(larch),land where x, describes the population of
the herbivorous consumer (larch bud moth). The
parameters a and c¢ describe the regeneration rate
of the trees and of the insects, whereas b and d
describe the interzction between the two species.

We can now use an identification procedure to de~-
termine the four parameters a, b, ¢, and d, as
well as the two initial conditions for the state

variables. The insects are expressed in number of
larvae per kilogram branches, whereas the prey is
expressed in kilograms of needle biomass.

This is a very simple model, and we can expect
the identification not to create any particular
problems. Unfortunately, such an assumption would
be incorrect, as we are going to show.

First, we must ask ourselves how many para=-
meters are identifiable from available measure-
ments. For this purpose, we apply a linear
variable transformation:

%, = (e/d)¥y; 5 x, = (a/b)¥y, .
This leads to the following set of state equa-
tions:
%1 = a*(1.0 ~ y, )%y,
¥, = =c¥(1.0 ~ y; )%, .

In this new formulation, two parameters are

eliminated. Obviously, the parameters b and d do

not influence the shape of the state trajectories.
They are Jjust multiplying factors of the output
equations for computation of the physical
variables x out of the internal state variables y.
As a result of this, we cannot hope to identify
the parameter d through measurements of the con-
sumer alone, and, vice versa, we shall not be able
to identify b from measurements of the prey, that
is, the system is not fully observable without
measurements of both state variables. This has



been shown in [13].

Next, we have to determine an appropriate per-
formance index. Due to the tremendous variations
in x, (as shown on Fig.1), a simple ISE criterion
(integral squared error) may not be appealing. In-
stead, we prefer to use a logarithmic scale,
leading to:
te

PI = {(log(x;) - log(%,))2dt = min!

t

under the asgumption that we are only interested
to fit the consumer, Values with a cap denote mea-
sured quantities., This choice for the performance
index creates, however, additional difficulties
since we now have to guarantee that x, never takes
negative values., For this reason, we apply a se-
cond variable transformation:

z; = log(x,) ; 2z, = log(x,)
leading to the new set of differential equations:

51 = a - b*exp(z,)
z, = d*exp(z,) - ¢ .

Lucky enough, we do not have to compute loga-
rithms in this new formulation any longer. By this
transformation, the first sector of the x-plane
corresponds to the entire z-plane. Since there
exist no 1limitations on acceptable values of the
parameters a, b, ¢, and d in the z-plane, no tra-
jectory starting within the first sector of the
x~-plane ever leaves this sector, Therefore, we can
either =o0lve the problem in the x-variables by
adding two inequality constraints for the initial
conditions:

X10 > 0.0 ; X320 > 0.0

or, alternatively, we can solve the entire opti-
mization study directly in the g-variables without
additional constraints.

This approach works neatly as can be seen from
Fig.2 in which the measured and the simulated
(average) population density are plotted together
after a curve fitting has been carried out.
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Fig.2: Curve fitting with Lotka-Volterra model.
Insect is assumed to be the consumer.

The identification led to the values:

a = 0.3005 ; b = 0.01159 ; ¢ = 2.8679
together with the initial conditions:
X, = 0.2378 .

This simple model seems to represent the in~
fluence of the most dominating factor in the
system to a very good extent, and we may be in-
clined to conclude that the interzction between
insects and trees is the major responsible factor
for the 1limit cycle in the population density of
the insects. In fact, this may be true, however,
the simulation results shown in Fig.2 do not prove
anything. The reasons against hasty acceptance of
nodels which fit reality well instead of using
them as a good working hypothesis only shall be
shown at a somewhat simpler example,

Somebody is supposed to model the tramway
traffic between two stations "A" and "B". Two dif-
ferent tramways (™1" and "2") are used between
these two stations. Since the modeler has to
travel between "A" and "B" anyhow, he designs the
following experiment: Reaching station "A" any
time of the day, he waits for the next tramway to
come. While traveling by that street car, he
writes down in his note book:

a) The time he spent while waiting, and

b) the tramway type he travels with.

He recognizes after some days that he has to wait
between zero and nine minutes (uniformally distri-
buted), and that he uses tramway "1" in nine out
of ten cases. From that he concludes that tramways
arrive at station "A" with a uniform distribution
between zero and nine, and that type "1" cir-
culates nine times more often than type "2%. This
is certainly a valid model under the given experi-

mental conditions. However, we cannot be sure that

the internal structure of that model is correct,
More likely seems to be, as it is indeed the case,
that both types of tramways follow a time table.
Fach type passes through station "A" every ten
minutes, but type "2" follows &lways one minute
behind type "1" which would lead toc the same
input-output behaviour under the given experimen-
tal conditions, The first model is nevertheless
not to be called incorrect if our aim was to de-
seribe the way somebody is traveling
from "A" to "B", 1Indeed, it is very temptating to
jump to conclusions from misinterpreted modeling
efforts.

Coming back to our population dynamics
example: If we try to identify as well the prey
with the available neasurements, we find that no
acceptable fit results, We could, therefore, as-
sume that our postulated model was incorrect, and
look for another possible reason for the os-
cillatory behaviour of the insect population.

It is known that the larch bud moth suffers
from parasites (up to 80% infection). We could,
therefore, assume that, using the same model as
before, the insects represent the prey rather than
the consumer, whereas now the parasites act as
"consumer". Fig.3 shows the result of an identi-
fication in which the prey has been fitted to the
available measurements of insect population, using
the performange index:

£
PI = [(log(x,) - log(%,;))2dt = min!
Lo
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Fig.3: Curve fitting with Lotka-Volterra model.
Insect is assumed to be the prey.

This time, we
for the parameters:

obtained the foilowing values

a= 1.0934 ; ¢ = 3.4272 ; d = 0.1782

together with the initial condition:

X, = 0.05766 .

10

The achievable fit is now somewhat less ap-
pealing than before. However, it may be still ac-
ceptable. Unfortunately, an identification of the
other state variable with available measurements
of the consumer was not successful as this was the
case before.

Since the first model looks somewhat better,
we could come back to our previous assumption, but
modifyy the model in order to improve the curve fit
attainable for the prey. What may be the reasons
for the bad fit obtained? We may notice that Fig.1
is somewhat misleading, since it conceals the fact
that all measurements were faken during a rather
short period of the year only, namely while the
insect is actively grazing larch foliage,
i.e. during June and July. In winter, the popula-
tion density of larch bud moths is much higher be-
cause every female has multiplied its number a
hundredfold by producing offspring. Subsequently,
during the following seasons, the population of
the larch bud moths will decline wuntil the next
reproduction phase in autumn. Only the larval life

stage which lasts about two months does 1live on
the trees. The eggs, the pupae, and the moths are
unable to cause any harm to the larch trees.

Hence, in vreality, there does not take place a
continuous interaction over time between the larch
tree and the insect, as 1t 1is assumed by the
Lotka~Volterra model.

Moreover, we could include other known in-
fluencing factors into the model as well.

Fig.4 shows the variations found by taking
measurements at different locations within the
Upper Engadine Valley. Though there is still a
significant trend identifiable, variations between
population densities of 70 larvae per kg branches
and of several hundreds of them make a lot of a
difference! One could assume that the trend is a
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Fig.4: Variations in the population density of
the larch bud moth as a function of the
location within the Upper Engadine Val-
ley (data taken from [2])

result of the (modeled) major influencing factor,
whereas the variation results from other,
non-identified, influencing factors of at least

comparable importance. To reduce those variations,
we could, for instance, divide the valley into
several sectors, and model the effect of moth's
migration between those different sectors. For
this task, we require independent measurements of
the dinvolved species as a function of space and
time. Such refined models have been postulated and
identified as well, The results of those efforts
have been published in [6,71].

This was to show how delicate the modeling of
biological systems can be, even if appropriate
measurements are available which show a large
variability in the data as in our case. We must,
therefore, be extremely cautious in the interpre-
tation of modeling efforts. In fact, Jjumping to
conclusions has, in the past, often misled de-
cision makers to try to control ecological systens
by introducing control variables into the real
systems which seemed to have the desired effect in
a simulation study, that is, changing the experi-
mental conditions and assuming that the model
still holds, Such experiments have mostly ended
disasterously! (E.g. usage of  pesticides in
US agricultural production has increased twelve-
fold during the last 30 years while crop losses
have doubled [15]! New problems arose like re-
sistence of pests towards many pesticides, which
e.g. has led to a dramatic come back of the so
feared malaria.) We should have learnt by now that
the T"ecological equilibriun" is a very delicate
matter which should not be willingly modified as
long as we have not gained a2 much deeper under-
standing of the physical laws which rule the
interrelationship between different species of the
ecosystem. Currently, our efforts must, in most
cases, be restricted to measure the variations in
the "natural equilibrium® to prevent alterations
to the Yequilibrium"™ resulting from human activi-
ties of which we are not a priori aware, or to
the effects of unavoidable alterations
(e.g. alterations resulting from urbanization).



3. SOCIAL MODELING

We have now discussed the difficulties, as
they can be found in modeling biological systems.
All these difficulties are also inherent in the
modeling of social and economic systems. However,
in this new field of application, again two ad-
ditional complications can be identified:

a) If human beings play part of the system under
investigation, there exists an unavoidable
interaction between the system itself and the
model representing that system. If a dentist
asks his patient to demonstrate how he brushes
his teeth at home, he is confronted with the
difficulty that the patient is certainly
brushing his teeth differently from the way he
would do at home, be it for no other reason
than that he is brushing his teeth consciouly
whereas at home he would do it in a pure rou-
tine. We call this effect "keep-smiling
effect",

There can be found indications that some state
variables in social system models take subjec-
tive rather than objective values (although
some scientists debate this statement). What
is, for instance, the "value" cf gold? For
this reason, new methodologies (like
cross-impact modeling) have sometimes been ap-
plied to the modeling of social systems,
methodologies which should take this sub-
jectiveness of some model components better
into account than the previously used tech~
niques (like system's dynamics).

All these four complicating difficulties make the
usefullness of modeling efforts for social systems
debatable. We must be especially careful in how to
interpret results of such efforts.

In this light, we shall now discuss one of the
best known, most discussed, and most controversial
socio-economic models: Forrester's world model [8]
which is often referred to as "WORLD1 model™.
("WORLD2" by Meadows [14] has even become more
popular, but we prefer to discuss "WORLD1" since
the model is much simpler, and since all equations
involved in the model have been fully presented in
[8] which is not the case in [14].)

This system shows all the difficulties
tioned above:

a) The eigen-frequencies are very small, and data
are accordingly difficult to obtain.

There exist certainly many competing influen-
cing factors of equal importance, which are
hardly separable since laboratory experiments
cannot be executed,

The keep-smiling effect is not neglectable
(the ongoing discussions of the effects of en-
vironmental pollution, as well as the effects
of utilizing atomic energy have certainly been
influenced to some extent by the modeling ef-
forts of Forrester and of the Club of Rome).
Subjectiveness of parameters especially in the
capital investment sector of the model leads
to large sensitivities of the model behaviour
with respect to those parameters, as has been
shown in [18].

The model finding procedure is, therefore, very
difficult, and the approach invented by Forrester
must be considered genious. He first tried to
identify the most important state variables in the
world (levels) which he decided to be population,

b)

men-

b)

c)

d)
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pollution, natural irrestorable resources, capital
investment, and percentage of capital investment
in the agricultural sector, .

Some equations involving those state variables
can be written down immediately. For instance, it
is obvious that the first time derivative of the
population must be equal to the difference between
birth rate and death rate at any instant of time:

P' = BR - DR .
Other relations are less evident, and we must
be glad if we can at least identify the in-
fluencing factors, though the physical law how

these influences act on the relation is unknown.
Forrester developed a special technique (systenm's
dynamics) which allows to write down equations in
a rather easy way. This shall be illustrated at
the relation governing birth rate. The birth rate
is assumed to depend on the material standard of
living (MSL), the crowding ratio (CR), the food
supply (FR), and the pollution (POL). Forrester
assumed that each of these influencing factors
have effects independently of each other, which
can be described by variations from '"normal"
values (that is, from the values measured
in 1970). The relation can, thus, be written as:
BR = BRN®*f,(MSL)*f,(CR)*f,(FR)*{,(POL) .

BRN represents the "normal" birth rate, and each
of the functions must take a value of 1.0 for its
input being equal to "normal", The precise graph
of each function can be found by comparing the
different values of the output (birth rate) and of
the influencing term at different places in the
world, or during different years of this century.
f,, for 'example, which is depicted in Fig.5, has
been found by comparing living standard and birth
rate in industrial countries with those in the
third world.

Fig.5: Birth rate as a function of
the material standard of living

Finally, there exist some parameters which
cannot be determined in this way since no
statistical data were available. Those have been
identified by curve fitting techniques as demon-
strated in the previous example.

As we said before, the approach tzken was
genious since it allows to derive a model for a
system which is otherwise extremely difficult to
handle. However, there are so many assumptions
hidden behind these equations that we must be ter-



ribly careful in how to interpret the results ob-
tained by experimenting with this model, Forrester
was so confident of his model that he succumbed to
the temptation of drawing illegitimate conclusions
not in one but in many instances in his book [8].
Some of the possible criticisms and short-
comings involve the model itself. Those are:

a) The model is of fifth order, whereas the world
is certainly not a fifth order systemn. It is
quite normal that the model of a system is of
lower order than the system itself, but order
reduction is only feasible as long as a suf-
ficiently high degree of homomorphism is pre-
served.

The structure of the model has simply been
preset, though other relations than linear re-
gression would have been as easily defendable.

b)

The different influencing factors are, in
reality, not independent of each other.
¢) The reasoning behind the determination of in=-

fluencing factors is debatable. The model sug-
gests, for instance, that lowering the
material standard of living in Europe would
imply an immediate increase in the birth rate.
There is, however, no evidence of that fact.
It seems reasonable to assume that the high
birth rate in India, for example, is (at least
partly) motivated by the insufficient social
security which, together with the existing
family structures, makes it attractive to
raise many children to guarantee that there
shall be somebody who cares in the autumn of
life., This is, of course, indirectly related

to the material standard of living, but it is
certainly incorrect to assune a simple
functional relation between those two terms.

It would be similarly plausible to correlate
the decreasing birth rate in Switzerland with
the continuously shrinking number of storks in
our country to include in the model another
influencing factor of the variable birth rate!
Other (more stringent) criticisms concern the de-
signed experiments:
d) For such weak relations
variables, as we face them in socio-economic
models, we must be glad if we can use simula~
tion to interpolate within the range of mea~
sured variations of all variables. Given two
different (real-life) experiments, it may be
acceptable to believe in a simulated curve re-~
presenting the behaviour of the system if the
obtained trajectories 1lie somewhere between
the two real experiments. It is, however,
something entirely different to extrapolate
beyond the range of our experiments. For con~
struction of the WORLD1 model, measured values
of pollution have been used which show some
dynamic behaviour over the las{ decades. How-
ever, the simulated experiments show a beha~
viour where the pollution (in the future)
takes values being 100 to 1000 times larger
than any value available from measurements., It
requires a good amount of self-assurance to
‘assume that the model shall produce valid tra-
Jjectories for such values of the pollution as
welll
The limiting factor in WORLD1 is the depletion
of natural irrestorable resources. When this
state has reached a level of about 0.4E12, the
population starts decreasing. This result in

between different

e)
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mind, Forrester suggested to reduce the amount
of usage of those resources to 25% starting
from 1970. Although Forrester does not give
any recipe on how to achieve this without in-
fluencing the other control variables of the
system (like production), this assumption
seems reasonable since its effects are almost

equivalent to detecting new resources (like
new 0il fields). Under these modified condi-
tions, the 1limiting factor is no longer re-
source depletion. Before this could happen
again, the pollution has increased to such &
high level, that (around 2030) a
"pollution shock" takes place which reduces

the population from about 5.6 billion people
in 2030 to 800 million people in 2060. To
avoid this disaster, Forrester suggested to
reduce also the pollution rate to 25% starting
from 1970. Under those new assumptions, he ob-
tained wonderful state trajectories in which
the population increases smoothly and,
finally, levels off at about 8 billion people
shortly prior to the year 2100 when the simu-
lation ends. However, to our understanding of
system theory, a steady state is reached when
all (and not just one) state derivatives
(rates) have become zero! Simulating further
from 2100 to 2500, the natural resources are
again depleted (due to the many consumers),
and the population decreases smoothly to ap-
proximately the same value of 2 billion people
as in the original case. Due to the reduced
pollution, again resource depletion takes pre-
ference over the pellution shock, and the
model behaviour is very similar to the
original case, except that everything happens
some decades later.
After all these depressing comments, we must ask
ourselves, what conclusions can be drawn from such
modeling efforts, or whether there are eventually
none, A complete sensitivity analysis of WORLD1
has been carried out and published [18]. The
authors found that, if some of the parameters are
mwodified by just 2%, entirely different state tra-
jectories result which do, for instance, no longer
predict a pollution shock. So, their conclusion
was that either the model is correct (and, thus,
also the sensitivities as they show), in which
case the model may not be used to predict the be-~
haviour of the world, or the model is incorrect,
in which case we know precisely as much as before!
However, we feel that some conclusions may
nevertheless be drawn:

a) No model whatsoever shall predict unlimited
growth, From this we can conclude that there
exists a limit to growth, though we cannot
predict where precisely this shall be. A con-
tinued increase of neither population nor wel-
fare can be assumed to take place for long.
Although we might not have required a com-
puterized model to prove this truism, it 1is
nevertheless nice to have one! More generally
spoken, if we detect modes of behaviour in a
model which are insensitive to parameter and
structural variations, these modes can be be-
lieved to be correct. Hence, sensitivity ana=-
lysis can, indeed, tell us a lot about model
validity.

WORLD1 suggests that unlimited pollution is
much worse than resource depletion in its ef-

b)



fects to the dynamics of the world.
we cannot be sure that this conclusion really
holds (e.g. due to critieism (d)), we should
not bear the risk to execute a real-life ex-
periment to determine whether this conclusion
was correct or incorrect! Immediate action
should be taken to prevent (or at least reduce
the risk of) a pollution shock to happen. From
smaller real-life experiments we know that
ecosystems tend to fall suddenly into very
stable, undesired states (e.g. lakes getting
eutrophicated or agricultural crop production
depending entirely on an ever increasing
pesticide usage). This should better not hap-
pen to the world ecology as a whole. Free com-
petition (capitalism) will not solve this
problem since each competitor has to maximize
his own (and not the globzl) profit to survive

Although

in the competition, Monopolism (as nowadays
communism), on the other hand, does not pro-
mise an attractive alternative either since

there the regulating control loops are broken.
A possible contribution to find a way out may
be by introducing penalty functions, a tech-
nique well known from constraint optimization,
Full freedom of decision is still preserved,
but unfavourite decisions are punished. (If a
company produces plastic bottles which are not
collected for reuse, it has to pay an "en-

vironmental tax". If this tax happens to be
sufficiently high, the production and re-
cycling of glass bottles becomes more pro-

fitable again. If oil tankers which are caught
while cleaning their tanks in the open sea
have to pay a sufficiently high fine, the risk
of being caught does no longer justify the
attainable money savings.) By these means, the
control loops of a free competition are not
broken while granting the government a pos-
sibility to intervene. If there is only a cer-
tain realistic chance, and we believe there
is, that such a relatively cheap and easily
inplementable measure may diminish the risks
of a pollution shock to happen, it is worth-
while considering.

4. PSYCHOLOGICAL MODELING

Psychological models, dealing with the de-
scription of the behaviour of human beings, are a
subclass of the previously discussed social
models. In those systems, the first difficulty
(small eigen~-frequencies) cannot be observed,
whereas the other three complicating factors
(number of competing inputs, keep-smiling effect,

subjectiveness) become the dominating factors of

the system!
Many articles have been

published in recent

years on this exciting subject. Again, we shall
concentrate on one particular study which shall
serve for illustration. This analysis [9] dis-

cusses the effect of conformity of individuzls to
(prepared) groups when those individuals are con-
fronted with the conflict to choose between an
answer to a given problem in which they are con-
form with the unanimous meaning of a group though
they must believe this answer to be incorrect
versus an answer in which they believe but with
which they are in opposition to the whole group.
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A major difficulty 1lies in the fact that
meaningful measurement units for social behaviour
cannot easily be determined. Only under laboratory
conditions, behaviour can be expressed in a
nunerical manner by exposing many individuals to
the same problem and counting the percentage of
people acting in the same way as compared to those
acting differently, or, which is equivalent, con-
puting the probability of an individual to act in
a prescribed manner. Again, the way of behaviour
depends on many different influencing factors,
like current mood, alertness, sympathy (or anti-
pathy) with members of the group, personality,
education, and many more. To solve this problem,
the laboratory conditions must be kept very
rigorously with the obvious implication that re-
sults of such modeling efforts are not easily ex-
pandable to other situations outside the precise
experimental conditions. This is evident since we
can never be sure that there do not exist other
equally important influencing factors which have
not been identified in the experiment since they
were kept constant (which is most likely to be the
case!).

Hirsig {9] made use of the previously
published experiments by Asch [1] and Cohen [5] in
which the length of a straight line had to be de-
termined by comparing it to a set of three dif-
ferent reference lines. The problem was posed such
that, wunder '"neutral" conditions, 95% of indi-
viduals should be able to solve the posed problems
without difficulties. In this experiment, groups
of prepared persons were asked to answer the
problen incorrectly prior to letting the test per-
son express his opinion in public. The test person
was, thus, in conflict whether he should oppose to
the unanimous meaning of the group as a whole or
go conform with the group. Hirsig felt that this
experiment was disturbed by too many un-
controllable factors (like sympathy of the test
person with one particular member of the group,
and the necessity to replace the members of the
group between test persons). He, therefore, modi-
fied the experiment in that he replaced the group
members by a CAI (computer-aided instruction)
program to exclude other than the desired (con-
trollable) influencing factors. In this way, all
test persons faced equal conditions. The important
effect of "publice" exposure was achieved by let-
ting the test persons believe that the opinion of
the "group" (as it was displayed to him at his
terminal) represented the meaning of other par-
ticipants sitting at different terminals at the
same time which would in reverse get his opinion
displayed at their terminals. In this way, each of
the 40 test persons had to solve a series of
20 similar experiments (of which he believed that
they served to test his visual capabilities).

Hirsig now assumed that the dynamics of the
process can be expressed by a discrete-time model:

x(k+1) = £(x(k),u(k),uw(k))
where k denotes the index of the experiment in the
series, x is a set of observable state variables
(e.g. x1(k) could denote the probability of z test
person to be in agreement with the group during
the k-th experiment), u is a set of controllable
influencing factors, and w is another set of ine
fluencing factors which are observable, but not



controllable,

Contrary to Forrester's approach, Hirsig did
not try to determine the structure of his model.
He just assumed that the functional relations f
are expressable by Taylor series expansions as
polynomials of infinite order in x, u, and w. In
his model, he then approximated f by neglecting
higher order terms than n, where n was determined
during the identification by the quality of the
obtained curve fit. This approach seems extremely
useful for such systems since the only decision
which must be taken beforelhand concerns the number
of state variables to be included, and their
meaning. For all state variables, measurements are
required which makes this choice extremely simple
since we are anyway in most cases short of mea-
surements. As in the case of the world model, the
modeling efforts taken look very promising. Again,
there are just the experiments and the conclusions
drawn by Hirsig which are debatable (though Hirsig
was much more careful in this respect as compared
to Forrester).

We shall try to identify
legitimate conclusions.
modeling effort was
exists a

some of those 1il-
One of the aims of the
to determine whether there
time dependency in the behaviour of the

test persons. Previous experiments had 1led to
contradictory conclusions in this respect. To de-
cide this question, Hirsig used once the model:
x(k+1) = £(x(k),u(k))
and once the model:
x(k+1) = £(x(k),ulk),k)
to fit the same streams of experimental data. £
was approximated in both cases by second order
polynomials. k describes the time dependency.
(k is here used as an observable but not con-

trollable input). For identification, Hirsig tried
to minimize an ISE criterion. In the former case,
he obtained a performance index of TU43 units,
whereas the index was reduced to 589 units in the
latter case., Therefore, Hirsig concluded that the
time dependency had been shown. In reality, since
the model describes the system only approximately,
we even must expect to obtain a better curve fit
when introducing additional parameters into the
model. A smaller value of the performance index
cannot be tzken as a proof that a time dependency
exists, Jjust that the model approximates the
system somewhat better! To draw further conclu-
sions, we would have to show that the improvement
of the fit is significant. During the whole study,
Hirsig operates on mean values only. He seems not
to have realized that also mean values have their
variances which must be remarkably high since only
40 test persons have been doing the experiment.
This means that the better curve fit which was
achieved by applying the second model cannot be
taken as a proof for time dependency. To obtain
better results, statistical tests should be car-
ried out to determine the significance of the per-
formance index reduction obtained. Beside of such
statistical tests, again sensitivity analysis may
be used to discuss the validity of the model.
Hirsig tried to identify five different inputs
(size of group, percentage of group answering in-
correctly, percentage of group with a higher
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"social" status, percentage of group with a lower
"social"™ status, percentage of group with a higher

"professional status (like geometers, or art
teachers)). Those inputs were varied
stochastically in the sequence of experiments to

observe the system's reaction. (This is a well
known technique in identification). However, it
seems to us that a series of 20 experiments may
not suffice to identify the effects of those five
inputs. Moreover, if the extreme situation (like
entire group answering unanimously during the
whole series) has not been measured, we cannot ex-
pect the model to be valid for such an experiment.

Let us assume for the moment that modified ex-
periments including many more test persons have
answered all the questions we may dream off. How

can these results prove useful? All test persons
have (on purpose) been selected from the same
class of people (students during their first or
second term). How can the results then be expanded
to other classes of people (like workers, house
wifes, or university professors) which presumably
nay react in a different way? How can these re-
sults be applied to cother situations than selec-
ting one stick out of three, situations which are
more likely to happen in real life?

These (unanswered) questions may show that we
are still far from useful applications of modeling
efforts in psychological systems.

5. GENERAL REMARKS TO MODELING

Karplus [11] has once presented a "rain bow"
(Fig.6) in which the relation between different
types of models for different fields of applica~
tions were summarized.,
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Fig.6: Model types versus system types

He mentioned in his talk that the aim of mode~
ling efforts in the different topiecs cannot be
same, Models at the right end of the bow (white
box systems) can be used for system design, models
somewhat more to the left may be used for system
prediction, again to the left models can be used
for a qualitative analysis to gain a better under-
standing, whereas models to the very left end of
the bow (black box systems) may be used to raise
public opinion! With this remark, Karplus had
certainly efforts like WORLD1 in mind.

We can add an additional dimension to the rain
bow: As one can see, there is really a lot of com-
nmonality in the models for different system types.
Given a general purpose simulation program being
able to handle all types of models (partial dif-
ferential equations, ordinary differential equa-
tions, difference equations, discrete events), as



there exist [3,4], such a program may be used for
models in all fields of application. However, at
least the output module of that program should
"realize" the well/ill-definition of the problem,
and produce 14 digits when applied to white box
systems, two or three digits when applied to gray
box systems, and zero digits when applied to black
box systems (that is, a standard message could be
displayed stating that the available data were so
unreliable and irreproducible that no output what-
soever makes any sense)! Confronted with
ill-defined models, we must learn that out of
14 digits displayed to the user by the computer
(out of which none is zero), as many as 14 may be
insignificant.

This final conclusion sounds very pessimistic
indeed. However, in the case of the biological
(gray box) model we were able to produce quite
useful results, although the data acquisition ef-
fort was tremendous). Even in the case of WORLD1,
which is certainly a black box model, we could
draw some useful (if not vital!) conclusions,

We have shown that with increased weakness of
the models, there goes hand in hand an increased
difficulty in model validation, and an increased
danger of drawing illegitimate conclusions, Soft-
ware which could help in the validation and inter-
pretation process itself would, therefore, be an
enormous improvement over the current state, The
second part of this paper shall now discuss to
which extent the currently available simulation
software can be enhanced to meet these require-
ments, that is, to make simulation software more
suitable for ill-defined system modeling.

6. INTERACTIVENESS
The model finding procedure is, in the case of
ill-defined systems, not a straight forward mat-

ter. Usually, one has to postulate several models
and reject them again, until one finds a model
which shows satisfactory results. Even if a model
has been determined which looks promising, usually
several steps of refinement are still required to
make it finally appropriate. In the last step,
parameters have to be adjusted in order to fit
some measured curves. Only at this stage of the
modeling process, the modeler can start to experi-

ment with his model. To do all this in an ef-
ficient way, the simulation software should run
interactively to allow easy manipulations of

models and data from a terminal.

Most of the currently available CSSL's run in
a batch mode only. This 4is partly due to
historical reasons (interactive programming becane
widely used only with the newer generation of
minicomputers and intelligent terminals). However,
also another constraint to the interactiveness of
simulation software may be mentioned. Even the
available simulation systems are, in general,
quite 1large. As we shall see, the additional re-
quirements to make this sof'tware appropriate for
ill-defined system modeling will demand even
larger software systems to be coded. Highly inter-
active programs have to run on minicomputers since
most of the multi-user and multi-tasking main
frames (computing centers) do not allow the single
user to access the system in a highly interactive
mode. Unfortunately, there is a certain limit to
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the size of programs which can be efficiently im-
plemented on computers with a very restricted word
length (most minis are 16 bit machines). Only the
very recent new generation of 32 bit process com-
puters (e.g. VAX-780) shall allow an efficient im-
plementation of the type of software we advertize
in this paper. Such computers are available now
for slightly more than a year, and it can be ex-
pected that appropriate software tools shall be-
come available soon,

One of the best interactive simulation systems
available of today is DARE-ELEVEN [12]. Fig.7
shows the different levels of user-program inter-
action.
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l RT-11 : DARE RELINK
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' l EDIT |MONITOR}| & RUN
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Fig.7: Structure of the interactive
DARE-ELEVEN simulation system

On the MONITOR level, the user can access a
set of (zbout 20) commands mostly for file hand-
ling purposes (storage and retrieval of problem
files). Each problem consists of a series of dif-
ferent files for the description of models, ex-
periments, output descriptions, data, FORTRAN sub-
routines, assembly macros, and tabular functions.
The EDITOR level allows to manipulate data within
files (equations are also considered to be "data"
in this context). Once a problem has been fully
prepared, it can be compiled. The RUN-TIME MONITOR
shall then detect whether any data (constants) are
missing, and prompts the user to supply those data
which it, subsequently, collects into a data file.
Now, the user can execute simulation experiments
which have been described in an eXperiment de-
scription (LOGIC) block. Each experiment may ine
volve many simulation runs to be executed (e.g. an
entire optimization study). Between experiments,
the user may modify model parameters, or replace
the integration rule to be used. During simulation
runs, the user may watch simnulation trajectories
plotted "on-line" on a graphical terminal. During
execution of experiments, data can also be stored
for 1later retrieval by the OUTPUT MONITOR. This
final level of user-program communication allows
to specify many different output commands or to
execute previously coded output description blocks
to look at simulation results in more detail than



this is possible by use of the run-time display.
DARE-ELEVEN 1is available for PDP 11 systems
with VI-11 graphic terminals (GT 40 system) run=-
ning under either DOS/BATCH or RT/11. Due to the
restrictions of 16 bit machines mwmentioned above,
DARE-ELEVEN 1is not very well suited for large
scale problens, Furtherrore, no attempt has been
nade to make DARE-ELEVEN at least partly portable.

Finally, the test status of this software is still
not satisfactory which makes it an educational
rather than a production tool.

7. FILE HANDLING

As. we have previously shown, files need to be
manipulated. It must be possible to store models
for later reuse, retrieve previously stored
models, and execute some operations on those
models. For this purpose, we require a data-base
nanagement system. In the future, it may be pos-
sible to execute some analytical operations on
models other than compilation, like nodel
linearisation, model reduction, model deccmposi-
tion, and others more. Such features would be very
valuable especially for large scale systems (which
ill-defined systems often are). Currently, re-
search in this field has just started. When this
shall become available, data~base management will
be even more important than today.

Beside of model files, there exist also data
files, that is, files in which data are collected
during the execution of simulation experiments. It
is important to realize that not all simulation
trajectories need to be printed or plotted while
the simulation is running, as this is implenmented
in most of the available CSSL's. In fact, the
run-time display is rather meant to give the user
an oportunity to watch that everything goes as ex-
pected. It is much more effective to store data
during the simulation runs intc data files, and
use an independent program (which may easily be as

large or even larger than the run-time system) to
retrieve data from those data files latercn to
produce the required graphical data representa-

tions. The best file structure available has been
implemented in DARE-P [12]. There exist four dif-
ferent types of data files. During simulation
runs, data can be stored either on the TIME-file
or on the SAVE-file. Data stored on the TIME-file
are overwritten during each new simulation run,
whereas a new logical record is opened for each
run on the SAVE-file. The output variables are
stored on the CROSS~file each time the user expli-
citely asks for. This type of file is mostly used
to store simulation parameters between different
simulation runs, e.g. to obtain a graphical repre-
sentation of the performance index of an optimiza-
tion study as a function of optimization para-
meters. The fourth file (STASH-file), finally, is
not used during the execution of simulation ex-
periments, but may be addressed in the output
module to "stash" data streams away for later re-
use, e.g. in another problem. This data philosophy
is also used in GASP-V [3] and in COSY [4].

One of the reasons to use the STASH-file is to
compare measured and simulated data. In & first
"run", measured data are read from a file (in any
format available), and a dumnmy simulation study is
carried out in which those data are interpolated
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and stored on the TIME-file at each conmmunication
instant. In the output module, the TIME-file is
then stashed. In a second (true) sigpulation run,
the model is used to produce data streams of simu-
lated variables which are again stored on the
TIME~-file. In the output module, we can now plot
the simulated variable stored on the TIME-file to-
gether with the measured variable retrieved from
the STASH-file versus the simulation clock by spe-

cifying:
PLOT X, X(S8-1) .

It would be very valuable (although this is not
implemented in DARE-P) if we could use measured
and previously stashed input variables as inputs
to the simulation model as well. For this task, we
would require to access data on the STASH-file at
run-time, either by specifying:

U = STASH (UMEAS, 1)

in the equation section of the model,
pressing something like:

or by ex-

USE UMEAS(S-1) AS U

in the experiment description block of the
problen. The CSSL-type function table is only a
very primitive replacement for such a feature,

8. OPTIMIZATION AND IDENTIFICATION

One of the most common operations in the model
finding procedure, is curve fitting. This was done
in all three of the presented examples. It is,

therefore, astonishing that so far only very few
simulation systems have a nonlinear programming
package associated with them. Most CSSL's allow

the user to code his own optimization strategy
(e.g. CSMP allows this by letting the user "CALL
RERUN" from within the TERMINAL-section of the
model), but coding an intelligent optimization
strategy for multi-dimensional optimization sub-
Jject to sets of equality and inequzlity con-
straints is a task maybe as difficult as coding a
numericzl integration algorithm for stiff systewms.
It is, therefore, bare nonsence to let the user do
this. Hence, it is very important that future
simulation systems offer such a facility as a
standard feature. The structuring capabilities im-

plemented 1in most CSSL's (INITIAL, DYNAMIC,
TERMINAL section) 1is, unfortunately, not at all
appropriate for this enhancement. To implement

this feature efficiently, we require an experiment
description block (like the LOGIC-block of
DARE-ELEVEN or DARE-P, like the EXPERIMENT
block of COSY).

In COSY [4] we can, for instance, express a
curve fitting experiment by writing:

or



EXPERIMENT
IDENTIFY
LOTKAMODEL: PAR1:=0.0, PAR2:=1.0; TOL=1.0E-}4
END;
FITTING X TO XMEAS(STASHF[1]);
FITTING Y TO YMEAS(STASHF[1]);
FITTING Z TO ZMEAS(STASHF[11);
USING UMEAS(STASHF[1]) AS U;
USING VHEAS(STASHF[1]) AS V;
SIMULATE FROM 0.0 TO 30.0 COMINT=C.5
END (¥ IDENTIFY ¥)
END (* EXPERIMENT ¥);

in which case the two parameters PAR1 and PAR2 are
modified in order to minimize an ISE criterion:
30,0
PI = {((x=%)2 + (y=-$)2 + (2~8)2)dt = min}
0.
by utiliz;ng the conjugate direction method of
Fletcher for the unconstraint nulti-dimensional
optimization study together with the golden sec-
tion algorithm for the uni-dimensional search. The
starting values for the two parameters are zero
and one, resp.. The model is fed by the two mea-
sured input signals UMEAS and VMEAS, referred to
as U and V in the model.
If the standard algorithm fails to converge,
if a more general optimization study has to be
the user can write:

or
carried out,

EXPERIMENT
MINIMIZE (¥ OR MAXIMIZE #)

PERFINDEX: A:=1.0, B:=0.0, C:=0.0; TOL=1.0E-5
END;

EQUCONST A¥A + B¥B + C*C = 1.0 END;

INEQUCONST A>=0.0; B>=0.0; C>=0.0 EHND;

OPTMETHOD CONSTR = EXTPENAL; MULTIDIM
= DAVIDON; UNIDIM = CUBIC END;

SIMULATE FROM 0.0 TO FINISH COMINT = 0.1 END;
PERFINDEX := PICOMP
END (¥ OPTIMIZATION ¥)
END (* EXPERIMENT ¥);
which would minimize the performance index

(PICOMP) computed somewhere in the model descrip-
tion sSection by modifying the three parameters
subject to one equality constraint and three in-
equality constraints. The uni-dimensional search
is now done by wusing cubic interpolation, the
multi-dimensional optimigation dis done by using
the algorithm of Davidon-Fletcher-Powell, whereas
constraints are handled by exterior penalty func-
tions. The nonlinear programming package asm-
sociated with COSY has been described in [16,17].
It is evident that the user 1is not relieved
from thinking by the introduction of such features
into a simulation language. For instance, all
variable transformations which were required to
identify the biological system discussed pre-
viously must be done by the user as before.

9, SENSITIVITY ANALYSIS

After =z model has been determined, we must
discuss its validity. As the presented examples
have shown, the sensitivity of the model behaviour
with respect to changes in the parameter values
can tell us something about model validity. Let us
look once more at the Lotka-Volterra model:
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a1 = a¥xy = bFxy®x, 5 x3(ty) = ¥
X, = d¥x;%x, - cfx, ; x,(t,) = x,, -
We can compute the sensitivity of the two state

variables with respect to any parameter
by differentiating the
spect to this parameter,

(e.g. a)
state eguations with re-
for instance:

dx, dx, dx, dx,
=== = X, + a¥e-e o DEow-¥yx o pEX Feoo
da da da da

dX1

--=(ty) = 0.0

da

which can be written as:

Vig = X3 + a¥vy, ~ b¥v, ®x, - b¥xy¥v,y, ;
vialt,) = 0.0

where:

Vig = dxy/da ; vy, = dx,/da .

Computing the sensitivity model,
to increase the number of differential equations
from n to n¥(k+1) where n is the order of the
system (number of differential equations), and k
denotes the number of parameters. (In the case of
linear systems, the number of additional differen-
tial equations can be reduced.)

Although the sensitivities could also be
puted numerically at run-time by conputing the
n-th order model k+1 times for each integration
step while modifying each parameter by a small
amount., The sensitivities can then be computed as:

thus, neans

Ccon~-

dx, x;(a+ha) - x,(a)
da Aa
However, it seems a promising approach to com-
pute the sensitivity model once for ever ang-

lytically at compile time, and to simulate the en-
larged n®(k+1)~th order model. This is not so un-
feasible as it may look at a first glance. The
C0SY preprocessor, for instance, generates ana-
lytically the Jacobian matrix of any given model
during compilation. This matrix is required by
many integration algorithms, and the achievable
savings in computing time are remarkable, This
program bases on an algorithm by Joss for algo~
rithmic differentiation. The procedure is best ex-
plained at an example. Let us compute the deriva~
tive of:

f(x) = x%*sin(x?)

with respect to x. This is first

separated into its primitives:

expression

ty = x2 t, = sin(tl) s f(x) = ¥, .

Now, each primitive is handled independently
by expanding each of the primitive equations to:

; dty, = cos(ty)*dt, ;
+ x%®dt, .



The original progran
ALGOL e¢oded,
tive of any ALGOL procedure with
variable or array of variables,
other (expanded) ALGOL procedure. A modified ver-
sion has been coded meanwhile, in which a PASCAL
coded program computes the derivative of any
FORTRAN subrcutine/function or even of sequences
of them with respect to any variable or array of
variables, resulting in another (expanded) FORTRAN
subroutine. A specialized version of this progranm
forms part of the COS¥ preprocessor, and conputes
the Jacobian matrix (dx/dxz) of any nodel. Again,
another specialized version of this program could
easily compute the sensitivity model. Another
version could be used for model linearization
along any trajectory, and a final version could
compute the sensitivity model of this linearized
model (by taking advantage of the linearity of the
model). All these operations on models should be
executable by MONITOR commands. .

The same sensitivity model could, by the way,
also be used during optimization, since many opti-
mization algorithms require the gradients of the
performance index which can be expressed in terms
of the state variables of the sensitivity model.

Very often, we are most interested to know the
largest sensitivities in the system. For this pur-
pose, we can add an array of state conditions of
the form:

developed by Joss was
and was sble to compute the derivg-
respect to any
resulting in an-

CONDIT MAXSENS[1..K]: VDOT[1..K] CROSSES 0.0
TOL=1.E-4 END;

to the model description. This would then deter-
mine those instants of time when the sensitivity
derivatives cross through zero (corresponding to

maxima and minima of the sensitivities them-
selves).
10. SENSITIVITIES IN THE LARGE

A sensitivity -analysis, as we have discussed
it so far, is justified by the assumption, that we
can write:

x(a+Aa) = x(a) + vla(a)*Aa .
This assumption is not necessarily true in the
case of nonlinear models and for a large

variablity of parameter values.

Let us assume that the parameter a has a
nominal value of 100.0, but may vary between §0.0
and 120.0. The notation:

PARAMETER A = (100.0 MIN=80.0 MAX=120.0);

would lead to the computation of three different
simulation runs, once with the nominal value of
a=100.0 to obtain a nominal trajectory, and twice
with the two extreme values a=80.0 and a=120.0 to
obtain a band in which each state variable is ex-
pected to be (although this need not be correct
either since we cannot assure that the worst case
is at the boundaries). If ranges are specified for
several of the parameters, one simulation run is
executed for each combination of maximum varia-
tions, resulting in 2¥+1 simulation runs where Kk
denotes the number of considered parameters. For
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ezch output variable we then store its nominal
trajectory and the maximum positive and negative
variations from this trajectory (envelope). These
are then plotted together with the nominal trajec-
tory.

This procedure is quite expensive since the
computational effort grows exponentially in the
number of considered parameters. For this reason,
it is recommended to compute the previously dis-
cussed sensitivity model first to determine those
parameters which show the largest sensitivities,
and to compute the here proposed bands only for a
limited number of not more than five or six para-
meters.

11. RANGE TESTS

We have explained that models are never valid
as such, but only under given experimental condi-
tions. In the discussion of the WORLD1 model, we
have shown how dangerous it can be to extrepolate
beyond available measurements. For this reason, it
seems important that the user may specify ranges
for state and algebraic variables, e.g. by coding:

TYPE
STATESUBRANGE =
VAR
STATESUBRANGE POL;

STATE 0.0 .. 1.0E10;

Pollution will then be checked versus the spe-
cified ranges during the execution of each simula-
tion run., This is accomplished by generating ad-
ditional state conditions with asscciated precoded
state events at compile tinme. Each time, one of
the variables leaves its allowed range, the user

is informed of this fact by an informative mes-
sage.
More complicated renge tests can, of course,

be user handled by coding appropriate state condi-
tions (using the CONDIT-statement), in which case
corresponding state event must also be user coded.

Previous papers have also suggested the intro-
duction of range tests, e.g. for automated scaling
of simulation programs which are to execute on
hybrid hardware, or to prevent variables from
taking impossible values (like negative popula-
tion). However, the additional Jjustification,
mentioned here, seems to be very important for im-
provemnent of the robustness of models.

12. LIEITS TO CURVE FITTING

In the discussion of the psychologicsl rodel,

we have seen that an improved curve fit does not
necessarily imply an improved model, Given a tra-
jectory band as discussed in section X, it is ob-

vious that any trejectory within that range is
equally acceptable, and we cannot prefer one over
the other. As a solution to the problem of Hirsig,

we. would recommend to compute the standard devia-
tions for &ll nmeasured curves, and draw similar
ranges around the measured curves within which
each curve fit must be considered equal. Ve can

then wodif'y the performance index in that we do no
longer compute the error as the difference between
the simulated and the measured trajectory, but as
the distance of the simulated trajectory from the



closer of the two boundaries of the measured
curve. If the simulated trajectory lies within the
band, the error is to be tazken equal to zero. This
modified performance index can be minimized in
precisely the same way as before, resulting in a
value which may be larger or even equal to zero.
Let us assume that the value of the performance
index with inclusion of the time dependency will
still be smaller than without time dependency.
What would this imply? It would even now be too
early to argue that time dependency has been shoun
since the model is still an approximation of the
real system only, in that polynomial terms higher
than second order have been neglected. It could
well be that, including those higher order terns
as well, no difference would result between the
two considered models any longer. However, such a
modified performance index shall certainly allow
for better judgements of the obtained results.

13. STCCHASTIC MODELS

Most of the available CSSL's offer facilities
to draw samples from pseudo random humber genera-
tors, and to generate uniformally and Gaussian
distributed random number streams. This allows to
formally describe stochastic models. Especially in
the case of the psychological system, a stochastic
model might have given more promising results that
the deterministic model being used by Hirsig. Al~
though this feature introduces additional
numerical difficulties (like failure of the step
size control of the numerical integration algo-
rithms), such models may be extremely useful. How-
ever, it 1is not done with a pure simulation of
such stochastic models. Additional software fea-
tures should be provided to collect statistical
information, apply significance tests to
statistical data, and other more. Such features
are currently available in many of the discrete
event software programs, whereas they are almost
constantly missing in CSSL's.

14, CONCLUSIONS

Altkough we are still far from really con-
vinecing application of ill-defined system mode-
ling, enhancements of the available sinulation
software may pave the way for a better epplica~
bility of modeling techniques to the analysis of
ill-defined systems in the future,
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