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I. INTRODUCTION

The advantages and disadvantages of different
program languages for the digital simulation of
continuous dynamic systems have often been discussed
during the last years. In particular the question was
asked whether simulation problems should be solved
by using a user—oriented program language as FORTRAN,
ALGOL, PL/I etc. or by use of a problem~oriented
program language as CSMP, MIMIC, SLANG etc.. In this
discussion there is still one point of great importance
which - as for our opinion — was not yet enough taken
into consideration —— the modularity of subprograms.

It is to prove that the CSMP-language provides the

user with a very powerful instrument to obtain complete
modularity of subprograms. In the following we will
always quote the electro/hydraulic drives as an illustra-
tion for the modular, digital simulation using CSMP.

II. FORMULATION OF THE PROBLEM

Let us consider a system consisting of a motor
and a gear (fig.l).

MOTOR GEAR

Fig.l System consisting of a motor and a gear.

To calculate the motor speed (w ) knowledge of the
load torque (T_) is certainly necessary in advance. On
the other hand this torque itself may depend on the
motor speed due to speed-dependent friction. In this
case there exists an algebraic loop between the two
modules as there are motor and gear. In the same way
algebraic loops are often involved between different
modules and even in a single module itself. It is pos-—
sible to break most of such loops by introducing memory
functions. Memory functions are functions whose output-
vector depends only on past values of the imput-vector
and of the output~vector but not on the input-vector at
the actual time. In such cases the loop can be solved
by simply arranging the statements in an accurate mamner.
Normally the memory function is introduced by use of an
explicit integration routine - as done also in CSMP,

In the example which was given above the load torque
directly influences the acceleration of the motor which
is separated from the motor speed by integration.

The motor speed depends - due to explicit integration -
only on the acceleration at past values of time and can
therefore be calculated without primary knowledge of the
torque load at the actual time.

A "real" algebraic loop is called a loop of the
form

y = £(x)

x = g(v) m

which is not separated by an integration or another
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memory function., Such loops can be solved by different
methods:

analytical method: It is often possible to re-
organize the equations in a way so that the algebraic
loop does not appear any more. The disadvantage of this
method is that one loses the physical variable form of
the system description which is desirable in simulation
programs.

numerical iteration method: In CSMP there exists
the functional block IMPL., By use of this feature in
the form '

Y = IMPL (IC, P, FOFY)
X = G(Y) (2)
FOFY = F(X)

one full iteration will be carried out for each simulation
step. This method is therefore very expensive and should
be used only in case of absolut need.

analytical buffer method: The typical solution of
the analytical mathematician will be:

XX = INTGRL (0., X)
XXX = DERIV (0., XX)
Y = F(XXX)

X = G(Y)
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This method is not very cheap either. It seems to be
very elegant indeed. Numerically the user introduces
nevertheless a phase error because by calculation of
¥X he loses some information concerning the phase
(due to explicit integration routine used in CSMP)
which he camnot recover through his DERIV-block. If
this phase error is acceptable there exists a cheaper
method:

numerical buffer method:
can be written in the form

The set of equatiomns (1)

XX = DELAY (3, 3.*DELT, X)

¥ = F(XX) (4a)
X = 6(1)

or
¥ = F(X)
YY = DELAY (3, 3.%DELT, Y) (4b)
X = G(YY)

The DELAY-block is of course also a memory function. If
both descriptions (4a,4b) are used one after the other
and if the results of these simulation runs do not
differ to much from each other, this does not prove in
the mathematical sense of the word but at least indi~
cates the reliability of the results, because the phase
errors will occur contrarily.

Such a "real algebraic loop will occur e.g. by simu-
lating a lead screw with regard to the allongation and the
torsion of the spindle, because rotational and trans—
versional acceleration do influence each other directly.
The numerical buffer method has been applied success—
fully.

A system as given in the example (fig.l) can of
course also be simulated by use of a FORTRAN-program
(or a program written in any other user—oriented



computer language). The development of a CSMP-program
is faster - especially for the begimner, the execution
on the contrary is much more expemsive. For this reason
most of the people we know do not make extensive use of
CSMP exept for the solution of smaller problems.
Complicated problems normally are solved by the develop-—
ment of a FORTRAN-program — which actually is not too
difficult either.

Considering once more the example given above, the
arrangement of the statements in a FORTRAN-program
must be:

-- calculation of the motor speed (motor)
-~ calculation of the load torque (gear)
-- calculation of the acceleration (motor)

The statements for the motor-module and for the gear—
module can therefore not be separated. The requirement
of modularity can not be garanteed. On the contrary
the CSMP-language provides the user with the SORT-optiom.
Between the statements SORT and NOSORT the statements
may be entered in any order and will be put into the
accurate sequence by the system-program itself. This
option enables the user to define the needed modules
as CSMP-macros which can be called afterwards as many
times as wanted. The arrangement of the statements
will be correct, because the call of the macros will
be replaced by the whole macro definition before the
sorting algorithm is activated. This is very important
in the case where the user does not know in advance
which might be the final structure of the system he
is laying out. In the given example he may not know
whether he will use a spur gear or a worm gear, whether
~he is going to use a DC-motor or a hydraulic motor.
In the following it will be shown how a modular
program for the simulation of any given electro/hydrau-
lic drive can be built up.

III. DESCRIPTION

Principally two parts of a drive can be distin~
guished —— the driving part (motor) on one hand and the
driven part (gear) on the other hand. If a system with
smaller proportions is considered, DC-motors and some—
times stepping motors can be used on the driving side,
spur gears or even friction gears on the driven side. In
case of a configuration with larger proportions the
use of DC-motors is not indicated because of the rela-
tively high value of their inertia, specially if the
drive has to react very fast. For such applications
hydraulic drives are used on the driving side, preloaded
spur gear boxes or - in case of higher gear reduction -
preloaded worm gear boxes are used on the driven side.
The preload will be given only in case of positioning
action in order to avoid back lash.

To apply CSMP on the problem of modular simulation
of electro/hydraulic drives, a symbolic library should
be built up which contains a big amount of CSMP-macros
and FORTRAN-subroutines modeling the different types
of servovalves including their torquemotors, pneumatic
drives, quill head, the different kinds of gears with
stiff and with elastic axle such as spur gear (normal
and helical), worm gear, sliding gear, lead screw,
recirculating ball screw etc.. Beside these macros
some secundary macros are needed to describe effects
such as friction in a proper way.

Our work during the last two years has shown that
it is possible to describe all needed modules in a way
which garantees full compatibility. It is of course
impossible to reproduce all equations, each model im
this short review, but as an example the proceeding
will be explained by developing the modules. for the
description of the frictiom.
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Let us consider the dry friction first.
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Fig.2 Dry friction in function of the velocity

The block diagram of a system using dry frictiom would
be:

Fig.3 Block diagram of a system with dry friction

It is easy to see that this system is instable if the
inequality
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m
is valid. A change of the sign of the velocity (v) will
change the sign of the acceleration (a) immediately. This
block diagram therefore describes an oscillator with
theoretically infinite frequency. By use of CSMP
together with a variable step integration method
the system-program will try to reduce the integration
step until the program stops with the error message
"YARTABLE STEP DELT LESS THAN DELMIN". By use of
a fixed step integration method an overflow will be
produced. In reality equation (5) can only be valid
for v#0. At v=0 there exists an inmequality (6) which
reduces F to F :

Fr m

[Pl 2 170 (6
vz0

This inequality should be taken into consideration
by developing a simulation program. Beside of this
a calculated real variable cannot be checked on zero.
Therefore a small hysteresis loop should be introduced.

.According to these explanations the friction should

have a graph as shown in ‘fig.4.
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Fig.4 Graph of the friction in function of the velocity

In the hatched area any value can be obtained. The
following four routines can be used to simulate the
friction in a proper way. The procedural parts of the
macros REIB and KRGL are written as FORTRAN-functions

to save macro space. REIB calculates the friction without
regard to the inequality (6). KRGL corrects the result
of REIB by taking (6) into consideration. REIB and KRGL
may be used in any other macro to simulate specific
friction effects.



MACRO DAEMPF = REIB (THETA, MYHAFT, MYTR, MYVISK, EPS)
11 = INSW (HSTRSS {-1., O., EPS, THETA),-MYHAFT,-MYTR)
H12 = INSW (THETA, -MYHAFT, 0.)

K2l = INSW (HSTRSS (1., =EPS, 0., THETA), MYTR, MYHAFT)
H22 = INSW (THETA, O., MYHAFT)

DAEMPF = VISK (THETA, EPS, MYVISK, H11, W12, W21, H22)
ENDMAC

Fig.5a Listing of macro REIB

FUNCTION VISK (THETA,EPS,MYVISK,H11,H12,H21,H22)
REAL MYVISK

Rl = H12 - H11

R2 = H22 - H21

R3 = MYVISK*THETA

IF ((R3.GT.-EPS).AND. (R3.LT.EPS))
VISK = Rl + R2 + R3

RETURN

END

R3 = 0.

Fig.5b Listing of funectiom VISK

MACRO
H31

MAUS = KRGL (MEIN, MLAST, MREIB, THETA, EPS)
INSW (HSTRSS (-1., 0., EPS, THETA), -1., 0.)

noa

H32 = INSW (THETA, -1., 0.) ,
Ha1 = INSW (HSTRSS (1., -EPS, 0., THETA), 0., 1.)
H42 = INSW (THETA, 0., -1.)

MAUS = VERG (MEIN, MLAST, MREIB, H31, H32, H41, H42)
ENDMAC

Fig.5¢ Listing of macro KRGL

FUNCTION VERG (MEIN,MLAST,MREIB,H31,H32,H41,H42)
REAL MEIN, MLAST, MREIB, MAUS, M1, M2
M1 = H32 - H31

M2 = H41 + H42
ENT = M1 + M2
IF (ENT - 0.5) 1, 1,2
1 MAUS = MEIN - MLAST - MREIB
G0 TO 5
2 HILF = ABS (MEIN-MLAST) - ABS (MREIB)
IF (HILF) 3, 3, 4
3 MAUS = O.
G0TO 5
4 MAUS = SIGN (HILF, MEIN-MLAST)
5 VERG = MAUS
RETURN
END

Fig.5d Listing of function VERG

IV, ANALYSIS

The language CSMP in its ordinary implementation is
very well equipped for the analysis of systems which once
have been described. It was stated before that it would
also be possible to analyse a problem by use of FORTRAN
or another user-oriented language. But just the comple-
xity of a problem justifies the use of the more expen-—
sive problemoriented language CSMP, if almost the same
program can be used different times for the analysis
of different systems, as it is possible according to
our explanations. Modifying a CSMP-program which takes
full advantage of the possibilities of modular program—
ming is much easier and therefore much more reasonable
than to modify a FORTRAN-program, because this modifica—~
tion is almost identical with a recommencement of the
program development.

Our research has shown that even very complex
models of high system order cam be analysed with rea-—
sonable financial efforts as long as there do mnot arise
too many discontinuities in the variables during the
simulation. Such discontinuities may occur due to dry
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friction or due to switching actions (e.g. modelling of
thyristors). The simultaneously occurence of continuous
and discontinuous proceedings in a digital simulation
program always creates difficulties independent from which
lahguage has been used for the simulation. In this case
only hybrid computation can help out of the dilemma,
because on a hybrid computer parallel and sequential
program sections may go on simultaneously. All .integration
activities can be carried out by the analog part of the
hybrid computer.

As an example let us consider a machine-tool
consisting of controller, DC-motor (or hydraulic motor
with servovalve and torquemotor), preloaded worm gear
box, recirculating ball screw, quill head, nonlinear
recording of the instantaneous value, feedback filter,
comparison of the set point and the filtered instanta-
neous value. This system has the order 13 and uses
7 times the friction modules (fig.5a-d) which corres-
ponds to 56 INSW-functions. The simulated system
therefore contains a big amount of switching actions
and is of high grade of nonlinearity. It has been simula-
ted on IBM 370. Four runs have been accomplished with dif-
ferent values of elasticity of the spindle (different
diameter, different quill screwing). Compilation and
execution phase needed together 7 min 50 sec CPU-time.
Fig.9 (at the end of the paper) shows the result of
one simulation rum.

One interesting point is the dead time of the
velocity (XDOT) at the beginning. The elasticity is
the mechanical analogon to the electric transmission
line., It represents therefore a system with distributed
parameters which has to be described by partial deri-
vatives. As known from the line theory it is possible
to model a transmission line through am infirnite
number of concentrated elements as shown in fig.6.

O—m

Fig.6 Model of an electrical transmission line

It is often accurate enough to replace this infinite
number of components by a very small number using a
T-section or a m—section instead. The results from the
line theory can of course also be applied to the
mechanical problem.

In our simulation we have used ome n-metwork for
every elasticity of the system. The result (fig.9) shows
on one hand the accuracy of the model description and
on the other hand it proves the aptitude of the
applied simulation package for the system analysis.

V. _SINTHESIS

Up to 1972 it was almost impossible to practise
any synthesis work by using CSMP. The new versiom '
CSMP III principally provides the user with the possi-
bility of practising system synthesis. This is possible
owing to the new subroutines RERUN, CONTIN and FINISH
which enable the user to control the progress of the
simulation dynamically. Nevertheless no optimization
routine has been integrated into the system until now.
The user is therefore forced to write his own optimi-
zation routines or ~ what even is more efficient -
to adapt existing FORTRAN optimization routines !



(e.g. IBM-Scientific Subroutine Package SSP, the subrou—
tines: FMFP and FMCG) to the possibilities given in CSMP,
This application will be explained by the following.

All optimization routines we know are organized
in the way, where a subroutine containing the optimiza-—
tion algorithm for the evaluation of a new parameter—vec—
tor (PAR) is called with an initial guess for the
parameter values (ILCPAR). This subroutine itself calls
a function (or a subroutine) in which the performance
index (PI) has to be calculated in function of the
actual parameter-vector (PAR) and which has to be
added by the user.

T ICPAR

timization
°F 2 PI = £(PAR)
algorithm

l PAR = opt!

Fig.7 'Organization of optimization routines

SUBROUTINE OPT (FUNCT,...,ICPAR,PAR,...)
DIMENSION ...

PI = FUNCT (ICPAR)

lst call of

function FUNCT

sesssaes

i ca11 or

Ffunction FUNCT PI = FUNCT (PAR)

cerreana

kth call of

function FUNCT PI = FUNCT (PAR)

RETURN
END

This "function" need not to be an algebraic
assignment, it may as well contain a whole simulation
run for a continuous dynamic system. In this case
application of CSMP may be desirable. The problem
occuring is that the user-written "function" should
now be the CSMP-program itself. The organization
must therefore be turned over. This reorganization can
be obtained very easily as shown in fig.8. The
optimization routine OPT may need k calls of the fume~
tion FUNCT. The introduced integer variable JUMP
must be set to 1 in a parameter list. A call of OPT
in the TERMINAL-segment of the model will initialize
the optimization algorithm. .
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SUBROUTINE OPT (JUMP,...,ICPAR,PAR,...)
DIMENSION ...
GO TO (1,2,3,...,k+1),JUMP

1 CONTINUE

JUMP = 2
CALL RERUN
RETURN

2 CONRTINUE

cee s

JUMP = i+1

CALL RERUN

RETURN
i+l CONTINUE

JUMP = k+1

CALL RERUN

RETURN
k+1 CONTINUE

RETURN
END

Fig.8 Modification of optimization routines
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SIMULATION OF MACHINE-TOOLS
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Fig.9 Simulation run of machine-tool
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