160

ALGORITHM SUITED FOR THE SOLUTION OF INITIAL VALUE PROBLEMS

IN ENGINEERING APPLICATIONS.

Frangois E. Cellier

Daniel F. Rufer

Institute for Automatic Control, The Swiss
Federal Institute of Technology Zurich,
Physikstr. 3, CH-8006 Zurich, Switzerland

1) ABSTRACT

It is the scope of this paper to describe the special
demands of integration routines for handling initial
value problems in engineering applications. Besides the
pure integration algorithm all the other activities of
the routine which can be called the "interface'" between
the problem and the integration algorithm have been
taken into consideration. The requirements needed for
correct processing of discontinuities (time events,
state events) and for the proper treatment of memory—
and history—functions are discussed in seperate sections.
As an-example an electro-mechanical system is discussed.
It is shown that an algorithm capable to process this
small system requires most of the attributes described
in this article.

II) INTRODUCTION

A routine for integration of technical processes is
described. Models of such processes often involve dis-
continuities which require special algorithms for
proper handling since numerical integration procedures
are only defined for differential equations with
coefficients which are continuous and have continuous
derivatives. One step methods, however, may handle
discontinuities if they lie at the end of a step
whereas multistep methods have to be restarted at each
instant of time a discontinuity takes place [1].
Discontinuities may occur at prescribéd values of time.
In this case they are called time events. On the other
hand they may be released by a state variable crossing
a given level or another state variable. In the latter
case they are called state events. Time events are
easy to process by setting the final time of integra-—
tion to this event time. State events require an ite—
ration algorithm which evaluates the unknown event time.

The problem can be presented in the following form:
Dynamical systems can be described by a set of state
equations (§dR : vector of state variables, udR :

vector of control variables)
% = £(x,1,t) 3 x(e) = x, (2.1)

The ifntegration starts at time t, and ends at time t
which may be prescribed or may bé the first time wheTe

one of the termination conditions —- often referred to
as state conditions —— is satisfied:
. !
sttty =0 5 deflpf @)

E.g} these termination conditions may be of the
following special types:

t-t, =0 '(2-3)

xk_1k=0 (2.4)

A termination condition of type (2.3) describes

a time event and, therefore, requires no iterationm.
(2.4) describes state events and may be iterated by

an algorithm using the derivative f%k,‘of xlf (e.g. New-
ton—-Raphson algorithm), since X,_ is available anyhow,
whereas the general type (2.2) should be iterated by

an algorithm which only requires information on x

(e.g. Secant algorithm). -

Models of techmical processes often involve functions
with a memory. Functions may be classified into three
groups:

y(t) = £(x(r)) (2.5)
y(t) = £(x(t=At),x(t-2At),...,x(t-kAt)) (2.6)
y(e) = £(x(e),x(c-At),...,x(c-kAt)) 2.7)

Functions of the type (2.5) are functions which at time t
assign to an output variable y a value which only de—
pends on the input x at the same time t. No memory is
necessary for accomplishing such functions. Functions
of the type (2.6) are called memory-functions. The
output y depends only on values of x at past instants
of time. Examples of this class of functions are the
time—delay and the explicit integration algorithms,
Functions of the third class (2.7) are called
history-functions. The output y depends on values of x
at past instants of time as well as on the present -
time t. Examples are the hysteresis function and the
implicit integration algorithms [1]. Most of the
memory~ and history-functions also require special
treatment.

III) DESCRIPTION OF THE ROUTINES

FORTRAN-IV written subroutines have been developed for
the simulation of technical systems. These subroutines
properly process all kind of discontinuities (discrete
events) and also process memory- and history—functions.
This section describes the attributes of the subroutines
and how the routines are to be used. The following
routines have been coded:

a) Runge-Kutta 5th and 8th order algorithm with step
size calculation according to the method of
Fehlberg [2,3]. This subroutine is an enlarged
version of an earlier written subroutine by
J. Waldvogel, to which a sophisticated "interface"
for the treatment of engineering problems has been
added.

b) Euler method with fixed step size.

¢) Gear algorithm (DIFSUB) for integration of stiff
systems [2] with variable step size and variable
order combined with Adams Predictor-Corrector method
of variable step size and variable order.

The system has to be modeled as a set of n state equa-
tions in a user supplied subroutine (DER) which for
calculation of the derivatives is called several times
during each time step. The termination conditions may
be coded:

a) in a subroutine (TCOND) which is executed once every

time step:
sy = sj(z,t) 5 i=1,...5p
o] 3 Secant algorithm is used for
iteration of s.=0
Ij = ¢ ke[1,n]; Newton-Raphson” algorithm is used

for iteration of s.=0 where
.=x -1
SJ Xk k

I is an associated integer vector to specify the
iteration procedure to be used (Secant— or Newton-—
Raphson algorithm). The Newton-Raphson algorithm
is only applicable if

sj(§,t) =x - 1k (3.1)

b) in the integration algorithm itself, if only ome
termination condition has been specified which is
of type (3.1). In this case k and 1 can be entered
into the integration routine as parameters. The
execution will be somewhat faster since the sub-—
routine where normally the termination criteria are
specified has not to be called.

c) in the integration algorithm itself for termination
conditions of type (2.3) by setting a final time
parameter.

For sampling and storing the integrated values x(t)
a further user supplied subroutine (USER) is called
at:

a) time ti
b) time tf (prescribed or iterated)

c) each sampling event time. A sampling event is a spe-—
cial time event which occurs periodically at times
kT (k=1,2,...). T normally is referred to as
communication interval. Since no discontinuity is
associated with this event, integration goes om.

Before calling the integration subroutine (INT) for the
first time the user has to call once an initialization
routine (INTIC) for initializing the parameters of the
integration algorithm.

The program therefore has the following structure:

- e s o = o

r.._._ —_———
L} 4]

EVENT MAIN
] —>

¢ HANDLING , 1 PROGRAM
{ IS B R |

INITIALIZATION
(INTIC)

.-
{ TERMINATION t
| CONDITIONS g
i (Tconp) !

J

- ———— -

: remE— -
STATE
INT]?%;??ION | EQUATIONS !
1 (DER)

L. -

- -

SAMPLING

(USER) "

| WG|

Fig. 3 Program structure

In the main program the initialization routine is called
first. Then the integration routine is called perfor—
ming integration of the system described in the state
equation routine from time t, until the prescribed

final time t_ is reached or until one of the termination
conditions has been realized. Then the control is given
back to the main program which calls an event handling
routine to perform the discrete event associated with
the realized state condition. Then the integration
routine is executed again until the final time is
reached.

IV) HANDLING OF STATE EVENTS

Two algorithms have been implemented: The Newton-Raph-—
son algorithm and the "safe" Secant algorithm [4].
The "safe" Secant algorithm always keeps one end point

161

of the considered interval beyond and one below the
zero line and, therefore, guarantees convergence.

t t+At

Fig. 4.1 ‘Secant algorithm

The increment At never changes sign. If more than one
termination condition s. changes sign during one time
step, At is reduced accarding to the following rule
in order to determine the significant terminatiomn
condition, that is the termination condition which is
realized first:

Fig. 4.2 Step size reduction

The points of the active termination conditions (im this
case s, and s,) at times t and (t+At) are comnected by
straight lines. The arithmetic mean value of all the
crossings with the time axis forms the new end point

of the next time step. The procedure is repeated if
still more than one state condition is active in the
reduced time interval. The algorithm described here is

a generalization of the Secant algorithm as can be seen
from Fig. 4.2.

The Newton-Raphson algorithm does not guarantee
convergence. If it diverges when started at time (t+At)
the implemented algorithm will try to obtain convergence
by starting at time t. If this also fails the program
automatically switches to the Secant rule for postite~
ration. This is shown in Fig. 4.3.

®

tedt

Fig. 4.3 Postiteration

The Newton-Raphson algorithm shows divergence if applied
at time {(t+At) (as shown in Fig. 4.3: point 1), since

the solution is known to lie in the time interval
[t,t+At]. It also shows divergence applied at time t
(Fig. 4.3: point 2). Since no convergence can be obtained
by utilizing Newton-Raphson the program switches to the
Secant algorithm (Fig. 4.3: point 3) which guarantees

for convergence.

The coding of termination conditions has already been
explained in the last section. It has been shown that
in general the Secant rule has to be utilized, since
the Newton—raphson algorithm is only applicable for
termination conditions of the specific type (2.4).

Such termination conditions, however, are rather common
since other classes of termination conditions may often
be transformed into this type as shown below.

Given a system
ko= £, (x,u,t)
x.(t.) =
1< 1) *o.
i
and a set of termination conditioms

s 1=1,...,n gf(xl,...,xn)'

s. = s.(x,t
i J(__,) PN
I‘ =O ’J 5"'!P
3
where
s,)
dt Sj s
‘exists.

This problem can be transformed to:

}'{i = fi(g,_g,t) s i=1,...,n
Xoey = EE(Sj(E,t)) 5 3=1,...0,p

= . d= = 1
xi(ti) = xO s i=1,...,n x (Xl""’xn+p)

i .
Xn+j(ti) = SJ(E(tl)’tl) 3 J=l,...5p

with the termination conditions

s. = x‘ﬂ")"
oo n+§ 53 =1,...,p
i

The order of the system is increased by p which slows
down the speed of integration but accelerates the speed
of iteration, since now the Newton-Raphson algorithm
can be used. This may pay out in cases where a system
of high order involves many switching activities.

V) HANDLING OF MEMORY— AND HISTQORY-FUNCTIONS

The difficulties arising if memory and/or history func—
tions form part of the system to be simulated are
demonstrated by a short example.

Let us consider a mechanical system with a gear with

backlash.. characteristics. The position of the driving

part is ¥, (state variable) whereas the position of the

driven part is ¥, . At time t = t, both positions ¥_ and
1

¥, are assumed tO be equal to zef¥o:

2
\71(ti) =0
v,(e) =0

with the meaning that ¥, is in the middle of the back—~
lash zone. At time ti t%e motor starts to rotate

(9, (£)>0«(t>t.)). This will not effect ¥, wntil ¥ =0 *
wh%re the motdr becomes loaded. Fig. 5.% illustrired
the interaction between ¥, and ¥,. At this instant
(ﬁl=ﬁl*) the first state event tzkes place since

a) the model changes (the load becomes involved)

b) the state variable 01 has no continuous derivatives.

162

Fig. 5.1 TIteration of a system with backlash

The termination condition can be formulated as:
= JR

sp=%h Y

I1 =1
In the example shown in Fig. 5.1 the termination
condition s_ changes sign during the second time step.
The Newton—kaphson algorithm is activated and changes
the direction of the integration. It can easily be
seen that the algorithm converges (¥, obtains the value
¥.%). However, the other variable ¥ “obtains the wrong
vdlue (the correct value would be zero). In this
specific example it would help to split up the problem

‘into three models, one for motor disengaged and two

for motor engaged with rotation positive and negative
respectively. In this case the use of history functions
could be omitted. In general one has to use the

Secant algorithm for iteration as soon as there are
memory— and/or history-functions involved. By use of
the Secant rule ¥, would have obtained the right value
in the above example, since the direction of the inte-
gration is never changed.

Besides updating of the memories should only be done at
successfully accomplished time steps and not during
intermediate computations, since

a) steps may be refused due to intolerable integration
errors (in case of variable step size methods)

b) some of the higher order algorithms do mot increase
the time monotonously for the intermediate compu—
tations. This is illustrated in Fig. 5.2 for the
case of the Runge-Kutta method of 8th order.

+ t‘dk_t

1 1] 3 d
A 37 e 5 6 S F X
A% Fig. 5.2 Runge-Kutta 8th order: Example of an

integration algorithm with non mono-
tonic increase of time

For this purpose a variable (KEEP) has been made avai-
lable in the integration routine. It has the following
meaning:

-~1: The time has been set back for re-
peating the last step with smaller
step size At B

KEEP =4 0O: intermediate computation of the
state equatioms

1: a step has been successfully com-
pleted

Memory— and history-functions must only be updated for
computations with KEEP = 1.

VI) NUMERICAL EXAMPLE [5]

We consider a cart which can be moved on a 4 meter long,

horizontal rail. By means of a DC motor and a steel
transmission tape the vehicle can be accelerated in
both directions (Fig. 6.1).

DL MOTOR CART TRANSMISSION TAPE

FiG. 61 ELECTRO MECHANICAL SYSTEM

This electro-mechanical system can be described by
the following equations:

mex(t) = F(t) - Fo((£),F(t)) (6.1)
F(t) = c*i(t)
where
m = Equivalent mass of the cart
¥ = Position
F = Force due to DC motor
F_= Force due to frictiom
i = Motor current
¢ = Torque constant

The friction force F_. is a discontinuous function of
the velocity % and of the motor force F. It can be

characterized by three parameters Fl’ F2 and F3:
F1+F2-5<(t) if (k(t)>0) or
(%(t)=0 and F(t)>F3)
o _JF) if (k(t)=0 and
Fek(e),F(e))= Jree)|<r, (6.2)
~F1+F2-i(t) if (x(t)<0) or

In Fig. 6.2 the graph of the friction force Ff as a
function of the velocity % is presented.

The system under consideration has the input variable
i(t) and the state variables x(t),%(t). It is of second
order and discontinuous (Fig. 6.3).

For given initial conditions x(0), %(0) and a given
input function i(t) (continuous or discontinuous) we
shall simulate this system over the time interval
0<t<t_. We want to know the values of x(t) and k(t)
at préscribed sampling points k-TS (k=0,1,2,...).

(x(t)=0 and F(t)<—F3)

163

Fe

R
Fi F1+ Fz'i

e

. ' -h
-F3 + Fp-x
/ —Fa

Fic.6.2 FRICTION FORCE

X0y X{o)

a2\ Fo iQ{D}@‘
—(<) —y—>

Fe(xwt), Fetd)

11

E{ES

FIG. 6.3 STRUCTURE OF THE SYSTEM

Special care must be taken for proper comsideration of
the discontinuities in the differential equation (6.1).
To solve such a simulation problem by using any nume-—
rical integration algorithm one has to describe the
process by a sequence of continuous models. For our
cart we obtain from (6.2) the following three models
which consecutively can be integrated:

Model 1: Cart moving forward:

meX(E) = cri(t) - F, - Foek(t) 5t st<t

1 b

This model has to be selected if x(t)>0 or

if %(t)=0 and F(t)>F.. It has to be urilized
until & time t=t._ wher& one of the following
events first occurs:

Event A: i(tb) =0
Event B: tb = tf
Event C: tb = tj 5 3=1,2,... Time where i(t) is

discontinuous

Model 2: Cart moving backward:

mx(t) = c-i(t) + Fy

This model is selected if %(t)<0 or if
i(ta)=0 and F(t)<-F,. It musf be utilized
until a time t= where one of the events A,
B or C first occurs.

- .3 . <
F2 z(t) tast_tb

Model 3: Cart not moving:

x(t) =03 £ Ststy
This model has to be selected if x(t)=0 and
|F(t)|<F,. It must be utilized untif a time
t=t, wheré one of the following events first
occurs:

Event D: lF(tb)‘>F3

E : =
vent B tb tf

The events A and D are state events, the events B and C

are time events. In case of a state event taking place
an iterative algorithm has to be activated in order to
determine the exact time t. where the integratiom of
the model must be stopped ?e g. Newton—Raphson or
Secant method). For this reason it is most important
that each of the three continuous models is also
defined for t>t,_, that means outside of the range it
can physically Ee interpreted.

The structure of the FORTRAN-IV program used to simu-—
late the motion of the cart is shown in Fig. 6.4.

oo —————

; PROGRAM CART E
: DATA INPUT :
b e e e d
Y
SUBROUTINE SIMUL

DEFINE STATE AND TIME
EVENT AND CALL INTEGRA~

TION FOR EACH INTERVAL
b 3

pum oy
lSUBROUTINE START | i SUBROUTINE INTIC
1S€T T, COND. AND seLecr"‘“" INITIATE INTEGRATION
fhexr Mopet AHD STATE EENI} BLGORITHAM

A

SUBROUTINE INT

NUMERICAL. INTEGRATION
AND EVENT HANDLING
A A

lSUBROUTlNE DER ' SUBROUTINE USER
:4——‘ ' >
]
1

}bescm&e DIFFERENTIAL Q4.

‘Fotz €ACH MoDEL BLES X(KT) , X(KT)

STORE STATE VARIA~.

FIG. 6.4 STRUCTURE OF SIMULATION PROGRAM

In the main program numerical values of the input
function i(t) and some simulation parameters are

read in. The subroutine SIMUL controls and calls the
integration of the different models over consecutive
time intervals: First the numerical integration sub-
routine INT (which performs the integration connected
with an event handling logic) is initiated by calling
the subroutine INTIC. Then the subroutine START is
called, where the initial conditions x(0) and %(0) are
set and where the number of the model to be used during
the first time interval and the appropriate state
events (A or D) are evaluated. The subroutine SIMUL
then determines the next time event (B or C) and calls
the integration routine INT which for several times
calls the user supplied subroutines DER (containing
the differential equations for the three models) and
USER (storing of data). If one of the defined time

or state events occurs the integration is stopped and
control is given back to the subroutine SIMUL. Then
again the subroutine START is called to detect the
appropriate model number and the event types for the

164

next time interval.

With the following numerical values:

x(0) =0 [m]

%x(0) =0 [m/s]

m = 0.64 [kgl

F, = 0.75 [kg-w/s?]

F, = 0.28 [kg/s]

F, =0.83 [kg-m/s?]

c = 0.08 [kg-m/(s2-4)]

and with the input function i(t) shown in Fig. 6.5
a simulation run was performed. The resulting state
variables x(t) and %(t) are also presented in Fig. 6.5.

1".‘(&) CURRENT [A]

-l.. | N——
-2
- 1
6 —
0 2 4 6 8 [s]
x(¢t) POSITION . IM]
A
o /f
0 \ >t
-100
N
- N
S —— e
o 2 4 6 8 [s]

x(t) VELOCITY [M/S]

400

/. N o
—

AN

4 6 8 Is]

FIG. 6.5 RESULTS OF CART SIMULATION

Using a Runge-Kutta algorithm of 8th order with a re-
lative tolerance of 107 the simulation required

0.5 seconds on a CDC 6500 computer. In Fig. 6.6 a list
of all state and time events occuring during the simu—
lation is given.

VII) ACKNOWLEDGEMENT

We wish to express our gratitude towards
Prof.Dr.M.Mansour, the head of our institute at the
Swiss Federal Institute of Technology Zurich, who gave
us the opportunity to carry out the research work de-
scribed in this article. Likewise we wish to express
our thanks to AGIE-Ltd. for their support of this work.

165

TIME SAMPLING TIME STATE MODEL
(SECONDS) EVENTS EVENIS EVENTS © NUMBER
0 s
5
1 - 3 2
5
2 s]
s ¢ 2
H
34 3 .2
4 H c A 3
. s ;i 3
H “ :
® : c !
$ c
6 - 3 1
s ¥ o
; ("
7 3 1
r c
8 . 1
B A
g 4

FIG. 6.6 EVENTS DURING SIMULATION

VIII) REFERENCES

[1] F.E.Cellier: Continuous-System Simulation by Use
of Digital Computers: A State—-of-the—Art Survey
and Prospectives for Development. Proc. SIMULATION'75

[2] C.W.Gear: Numerical Initial Value Problems in
Ordinary Differential Equations. Prentice Hall
Series in Automatic Computation 1971,

[3] E.Fehlberg: Report: NASA TR R-287

[4] A.Bjbrk, G.Dahlquist: Numerische Methoden.
Oldenburg Verlag Minchen 1972

[5] G.Lekkas, H.G.Erzinger: Aufstellen eines Pendels.
Semester work. Institute for Automatic Control,
Swiss Federal Institute of Technology Zurich 1975

