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I) ABSTRACT

This tutorial paper surveys the problems arising in the
coding and utilization of general purpose packages for
the solution of PDE (partial differential equation) prob-
lems. It is shown that such packages can never be as
general as a package for ODE (ordinary differential equa-
tion) prcblems. Thers exist, however, enough solvable
problems to justify the coding of such general purpose
packages using robust methods as the method of lines.
Some hints are given on how to select the following para-
meters:

a) the coptimal step size for the integration over time
b) the optimal order of the integration algorithm
¢) the optimal class of integratiom algorithms

d) the optimal grid width for the discretization in space

e) the optimal order of the approximation formulae for the
computation of the spatial derivatives.

In this formulation the problem encompasses the ODE sys—
tems integration (parameters (a) to (¢)) for which reason
this simpler problem will be discussed first in a separate
chapter.

IT) INTRODUCTION

More and more often simulation techniques are applied by
scientists baving a far better knowledge of the process
they are simulating than of the numevrical methods behind
the tool they use. Especially for this kind of users there
exist CSSL-type languages [1] for many years now. These
allow the simulation of processes being modeled by a set
of first order ODE's freeing the simulation user from
deeper knowledge of the simulation techniques behind. They
normally have in their "box of tricks" about ome dozen of
different algorithms for numerical integration and the
user is advised by the user's manual to pick out that
method best fitting the equations modeling his specific
process. In time-uncritical situations (GEAR [2] calls
them "trivial" problems) he will, therefore, use the
default method of the package, normally being a Runge-—
Kutta algorithm of 4th order with step size control. He
will not bother much about computing time. In time-criti-
cal cases he may check through once the few algorithms
available and decide according to the results obtained. He
will in most cases prefer to use a variable step size algo-
rithm, since it is much more meaningful to him to input an
error tolerance than a step size. It would nevertheless be
precious for him to have a guidance, which of the offered
algorithms is most likely to fit his problem best. Although
this question cannot be answered in a conclusive manner,
several authors tried already to classify the different
integration methods and the problems to be solved, and to
state which problem is best attacked by which class of
algorithms; furthermore to give information on the optimal
order of the algerithm versus the error tolerance and on
the optimal step size to be selected in case of fixed step
size algorithms. The most comprehensive work on this topic
is [2]. It is far beyond the aim of this short paper to
summarize the work described im [2]. In a first chapter
the author wishes, however, tc add some of his own expe-—

rience in this field. The author wishes to state clearly
that his contribution. by no means devaluates the work
carried out by GEAR [2], which he highly appreciates, but
gives just some additiomal thoughts to a topic for which
there does not exist any conclusive theory.

Only recently attempts have been made to tackle in the same
manner problems described by PDE's. In [3,4,5,6,7] there
are described general purpose packages for the solution of
PDE problems. Although the idea is quite apparent, the
situation is different from several points of view,

a) The numerical behaviour of PDE's is much more delicate
than in the ODE case. It is, therefore, much more im—
portant to choose an optimal algorithm. (There do not
exist any "trivial’ PDE problems.)

b) The algorithms are so differently structurad from each
other that it seems impossible to offer in ome package
a conclusive selection of algorithms. For this reason
the universal applicability of any such "general pur-
pose" package must be doubted.

¢) Since the problems to be solved are always time-criti-
cal, application of a robust method is often not prac—
tical due to high computational costs, the appropriate
selection of the algorithm being most important.

d) If a suitable algorithm has been found, there is still
a high degree of freedom in its application (several
parameters have to be determined by the user). There-
fore, a deep knowledge of the numerical behaviour of
the method is an absolute must, this again making the
usefulness of such an all-round package more than
doubtful, (The aim was primarily to have a toel for the
unskilled user, so that he would not have to care about
the numerical methods at all.)

For these reasoms the author has serious doubts whether
such packages will ever be as successful as comparative
packages for ODE problems. On the other hand —— when trying
to characterize the problems to be solved —— one finds that
the same (few) types of equations appear again and again
in quite different fields of applications. For this reason
it is nevertheless worthwhile to discuss, whether it is
possible to define packages suitable at least for one or
the other "standard" problem. There exist for example
several good programs for stress analysis problems

(e.g. [8,91). These base upon finite elements being the
best method so far known for the solution of elliptic PDE
problems with complex geometry. For the solution of para-
bolic and hyperbolic PDE*s in one, two and three dimensions
with not too exotic boundary conditions there have been
coded programs using either specific finite difference
schemes (e.g. [61) or the method-of-lines approach

(e.g. [3,4]). The advantage of the former is that for
simple examples the convergence range of the algorithm can
analytically be computed, the advantages of the latter are:

a) The method of limes is gemerally more robust (the same
algorithm can be applied to a larger group of PDE’s,
e.g. to parabolic and hyperbolic problems).

b) It encompasses ODE problems, thus being more flexible
(easy formulation of coupled PDE problems and combined
PDE/ODE problems).



c¢) It allows selection between a large variety of diffe-
rent algorithms by simply leaving the choice between
several algorithms for the integration over time and
for the differentiation in space.

The author believes that these advantages make the utili-
zation of the method of lines superior for so called
general purpose packages, although one certainly can find
specific examples where utilization of a specific finite
difference scheme results in lower computing time.

The user, however, faces the problem to set several para-
meters and needs a guidance on how to do this. These para-
meters have already been mentiomed in the abstract of this
paper. Parameters (a) to (c) are the same as in the ODE
case, whereas parameters (d) and (e) are additional para-
meters for PDE problems only. In the ODE case it is still
possible to check all available algorithms through; in the
PDE case there are too many parameters to be selected
which makes the suggestion to check through all possibili-
ties no longer feasible. The aim of this paper is to give
some guidelines to this problem.

The author believes that there exist enough problems which
can be solved by these robust methods to justify the effort
for coding a "general purpose” package, knowing that no
such package will ever be capable of coping with all
imaginable situations. Many problems are so time-critical
that they can only be solved by algorithms developed
specially for that specific purpose, e.g. by semi-analyti-
cal methods such as singular perturbations or conformal
mapping techniques. These methods, however, depend so
heavily upon the problem equations and upon the problem
geometry that they cannot be implemented within a gemeral
purpose package.

III) ON THE SELECTION OF STEP SIZE, ORDER AND METHOD FOR
THE INTEGRATION OF ODE'S

1) Step size selection:

To prediet the required step size, is a difficult problem.
The solution to it may, however, be automized. For higher
order algorithms the additional costs for error estimation
and step size control are neglectable. A Runge—Kutta algo-
rithm of 5th order, for example, needs at least 6 functiom
evaluations per integration step. By using the Fehlberg-
coefficients [10], error estimation is possible without
need for even one single additional. function evaluation

to be carried out by comparing the 5th order algorithm to
an embedded 4th order algorithm. For this reason the
author suggests to implement all algorithms of at least
third order as variable step size algorithms for use in a
general purpose simulation package. For lower order algo~
rithms the additiomal costs for the error estimation may
not pay out.

2) Selection of the order:

Higher order algorithms are generally favorable if higher
accuracy is required. Comparing for instance two different
Runge—Kutta-Fehlberg algorithms one of 5th and the other of
8th order, the former will normally be faster for accuracy
requirements of 10”5 or less, whereas the latter will exe-
cute faster otherwise. This number i3, of course, somewhat
dependent of the problem to be solved and also of the
length of mantissa of the computer in use.

There exist algorithms with variable orxder as well as
variable step size. Multistep methods of this kind have
been reported in [2]. Recently there have also been publis—
hed variable order Runge—Kutta—Fehlberg algorithms by
BETTIS [11] using the Fehlberg technique of embedding dif-
ferent Runge-Kutta algorithms into each other using the
same points for function evaluations. These algorithms in
the future are expected to dominate more and more in gene-
ral purpose simulation packages, since they free the user
from deciding on quantities of which he has no knowledge.

3) The integration method:

GEAR [2] shows for some examples that one-step methods are
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in favor over multistep methods for low to medium accu-
racy requirements. According to the authors experience
this comparison can, however, not be genmeralized. Runge-
Kutta algorithms can give better vesults in many applica-
tions even for higher accuracy requirements, if the order
of the algorithm is vaised and if some sophistication is
put into the step size control mechanism being the strong
point about one-step methods. We normally use Runge-Kutta
algorithms of 5th and 8th order using the Fehlberg coef-
ficients [10] for sophisticated error estimation and then
compute the step size according to the following formula:

tel  VYorder

dt = dt L o
new old (20'5 1)
where: dthéw = step size suggestion for mnext step
at = step size of current ste
old P P
tol = required accuracy
€ = lccal maximum norm integration error

computed by Fehlberg formulae

order = order of integration algorithm

This (unpublished) formula has been found by several re-—
searchers from the Dept. of Aerospace Engineering of the
University of Texas at Austin in a heuristic way. It gives
a high degree of step size adaptation. The advantage of
this method is that the step size is directly computed

and not only halved or doubled as in. earlier described
algorithms. By using this technique Runge~Kutta comes far
better off than described in [2]. Many problems require
frequent modification of the step size. For these problems
the multistep methods show much poorer results than for
those examples given in [2]. For each step size modifica-
tion these methods meed to be restarted which is a rather
time consuming procedure. For this reason ome will try to
integrate with a step size which is much smaller than that
necessary for the required accuracy so that one is not
forced to update the step size when the behaviour of the
system changes within certain bounds. For such problems
the Runge-Xutta algorithms will even be superior for high
accuracy requirements.

On the other hand we found that in many applications the
Runge~Kutta algorithms become instable prior to becoming
unaccurate. In such cases multistep methods of low order
execute faster than any Runge-Kutta algorithms for low
accuracy requirements. For these reasons the author be-
lieves that it is not possible te state in a general
manner that for certain accuracy requirements one-step
algorithms are preferred over multistep methods and

vice versa. What can certainly be stated, however, is
that higher order algorithms should be taken for higher
accuracy requirements, whereas low order algorithms exe—
cute faster for low accuracy requirements. It is further-
more possible to generalize, that multistep methods will
be favorable for smooth problems which do not require
frequent updating of the step size and also for stiff

sys tenrs where the Runge-Kutta algorithms tend to be costly
due to stability coustraints, whereas one-step methods
will turn out to be cheaper in all cases where frequent
updating of the step size is required and which are not
too stiff. The determination of the best suited algorithm
for stiff and non-smooth sys tems 1s an unsolved problem
which, however, turns out to be an important case, as will
be seen later.

1V) TREATMENT OF DISCONTINUITIES

In engineering applications most system definitions inclu-
de discontinuities. These may be functions of time

(e.g. pulse generator) or functions of state variables
(e.g. hysteresis function). PRITSKER [ 12] calls the former
time events and the latter state events. Such discontinui-
ties should be treated in a mathematically proper way and
not —— as in most of the continuous simulation packages —~-
by the integration step size control algorithm. This has
been shown in [3,11,12,13,14]. This means that integration
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should be restricted to continuous subregions and that in
the case of state events an iteration procedure is invol-
ved for proper location of the event. Good general purpose
packages should thus provide facilities for proper coding
of events. For such cases one-step methods are preferable,
since:

a) during the iteration procedure the step size has to be
modified for each successive step

b) after each event being accomplished the algorithm has
entirely to be restarted.

CARVER [13] shows that the iteration procedure requires
fewer number of steps when using Nordsieck methods (since
higher derivatives are available there). The author, how-
ever, believes that —- except for stiff systems -— this
trade off will not compensate the higher costs for step
size updating of these algorithms. For such problems

a one-step algorithm would be needed with gocd numerical
behaviour for integrating stiff systems. New results on
this topic have been published by FRIEDLI [15] who
developed generalized Runge—Kutta algorithms. His methods
are extremely well suited for stiff problems and at the
same time are one-step algorithms. They, however, raquire
on-line computation of the state transition matrix which
makes the costs pexr step so high, that they hardly can
be justified except for very stiff situatioms. Other
publications present low order Runge-Kutta methods with
extended stability range. The author, however, believes
that the best algorithms for this class of problems so
far known are the IMPEX algorithms described in [16,17].
He is, however, sure that substantial improvements still
are possible.

V) FORMULATION OF THE METHOD OF LINES APPROACH

Let a PDE of the following form be given:

dulx,t) dulx,t) 3%ulx,t)
= ;_{E(X,t)"_'_"""3——_";—“_’Xst}
3t 9x 9x (2)
tel0,=) n
xe[0,L] LeR
du(x,t)
“and: B_(t)- + B, (t)-ulx,t) = B (1)
1 - 2 3 3
tel0,=)
x={0,L}
and: u(x,t=0) = EO(X) (&)

Eq.(2) describes the system, eq.(3) its boundary condi-
tions and eq.(4) its initial conditioms. This PDE can now
be discretized in space:

x + ¢ ={1,2,...,m} (indices) (5)
resulting in m ODE's of first order:

U () = F {U(e),U, (e),U_ (v),E,¢t} 6)

tel[0,®)
g={1,2,...,m}

x;
UerRTT

It is, of course, possible to extend the above given
transformation to more complex PDE problems (higher order
derivatives in time, mixed derivatives, higher order deri-
vatives in. space, several space dimensions, multi-region
problems etc.). In this new formulation the problem can

be split up into three simpler problems:

a) computation of the space derivatives U _(t) and U x(t)
by difference schemes out of U(t) for given values of
time t

b) computation of the state derivatives Ut(t) from eq. (6)

¢) computation of U(t+dt) by carrying out one step of
integration over time.

In this formulation it is evident that there is no dif-
ference in simulating only one PDE or systems of several
coupled PDE's combined with ODE's. it is furthermore clear
that different algorithms may be obtained by simply chan-
ging either the integration algorithm or the difference
scheme or both and that a variety of different algorithms
can be offered in a general purpose package in the same
manner as it is done in ODE packages.’

VI) SELECTION OF INTEGRATION ALGORITHM, GRID WIDTH AND
DIFFERENCE SCHEME FOR THE INTEGRATION OF PARABOLIC
AND HYPERBOLIC PDE’S

1) Integration algorithm:

Principally this problem has already been discussed in
section III. There can, however, something be added.

Let us consider a PDE of form eq.(6). For the k—th u(t)
called uk(t) we can write:

uk(t) = 0.5'{uk_1(t) + uk+1(t)} + 0(Ax) 7

where Ax means the grid width of the discretization in
the space dimension. For Ax being sufficiently small the
above equation describes an almost linear dependency of
neighbouring functions, which implies that the eigenvalues
of the system will be wide spread. A system of ODE's
resulting from the discretization of a PDE will, there-
fore, almost by definition form a stiff system.

For this reason the author highly recommends the Hind~
marsh implementation of the Gear algorithm [18] for

smooth PDE problems. For non-smooth systems or systems
with disecontinuities we face the problem described earlier
for which no satisfactory solution has been found yet.

2) Grid width of the discretization in space:

For high accuracy requirements and for non-smooth problems
Ax should be made sufficiently small to obtain reasonable
results.

Let us consider a parabolic PDE of the form:

u 32u
— = — . g (8)

(diffusion problem). When using the Euler method for
integration and a three-point-central difference scheme
for the computation of the second spatial derivative ome
can show analytically, that for Ax being halved, -the
stability domain of dt will be divided by a factor of 4.
In this case the amount of work (CPU—~time) will be multi-
plied by 8, since there are in the system now the double
number of integrators proceding with one fourth of the
former step size. Although it is not possible to give an
explicitely computed formula as above for more complex
algorithms, experiments have shown that the situation is
similar. For this reason it is advisable to select a smal-
ler number of divisions where possible and instead use a
higher order of difference scheme. This has been stated
also by CARVER [4]. He found that for most applicationms
it is useful to set the grid width to such a value that
one obtains between 11 and 33 discretization points per
space dimension. This agrees well with the results found
by us.

From the above one can further conclude that for higher
accuracy requirements, for which a rather narrow grid is.
needed, it becomes more and more important to select the
integration algorithm carefully, since the problem gets
more and more stiff.

Furthermore, since there is no grid width control, the
user has no guarantee for obtaining meaningful results.
He is —— as in the case of fixed step size integration
algorithms —— bothered with the request to decide upon
a quantity for which he has essentially no feeling. It
would, of course, be possible to define a grid width
control algorithm in the same way as it is domne in



integration by comparing difference schemes of different
order to each other -- one would then be bothered by a
variable number of ODE's and for each grid width modifi-
cation one would require an interpolation procedure to
obtain estimates for the new u,(t) values required. To the
author's knowledge this has neVer been realized so far,
probably because:

a) the algorithm would be complicated and time consuming

b) one would have to control a quantity for which there
exists much less freedom than in the integration step
size control (since from above the grid width may not
become too small).

For these reasons it would be advisable to develop (if at’
all) a comkned grid width. and-order control where pri-
marily the order is modified and if required the grid
width as well. As in the case of integration this would
free the user from deciding upon quantities on which he
has essentially no knowledge. Such an algorithm would
require a similar decision logic as the variable order,
variable step size Adams method for integrating ODE’'s
described in [2], which has partly been developed for the
same reasons (the step size should not be modified too
often). The author is sure, that there can be done signi-
ficant improvements in this field. Such an algorithm would
be specially valuable for general purpose packages, since
the unskilled user with the available packages always bears
the risk to trust in results which have nothing in common
with reality.

3) Order of the difference scheme:

Many applications have shown that an optimal selection is
to choose a difference scheme which involves about the

same number of neighbouring points as the order of the
integration algorithm. This should furthermore be an odd
number to obtain a central method (for higher accuracy).
Accordingly: we normally use a five—point~central method

in cennection with a Runge-Kutta algorithm of 5th order

and in connection with the Gear-Hindmarsh algorithm, where-—
as we use a seven—point—-central method in connection with
a Runge—Rutta algorithm of 8th order and with Gear's imple~
mentation of the variable order Adams algorithm. A three—
point formulae is used for all lower order integration al—
gorithms.

VII) TREATMENT OF DISCONTINUITIES

In the PDE case there exist more different kinds of dis-
continuities, The equations themselves can show discon-—
tinuities as in the ODE case. These can be solved in pre-
cisely the same manner as described in section IV. On the
other hand there may be discontinuities introduced by the™
boundary or initial conditions (we call them geometry-dis-
continuities), These camnot be treated in the same manner
as before, They normally tend to “walk" through space,
which means, that a discontinuity having entered the system
will continuously be present over a specific period of time.
It thus cannot be treated as an event. Geometry-disconti~
nuities in the initial conditions can be thought 6f as
discontinuities of the boundary conditions having entered
the system sometimes earlier. They can, therefore, be trea-
ted both the same way.

In the discretized formulation of eq.(6) the situation is

again different from the original PDE formulation, in that
it is not evident, what a geometry-discontinuity precisely
means. The normal definition of a discontinuity (non-exis-
tence of the first derivative) must fail, since the func—

tion in this formulation is no longer continuocus in space,
but consists of a series of discrete points.

It is well known that any difference scheme to obtain the
slope of a function must fail when applied over a discon-—
tinuity. For higher derivatives the situation gets worse
and worse. The difference scheme, however, will give same
results whether applied to a continuous function ar to a
discrete function being defined only at those points, where
function evaluations are required. It is, therefore, obvious
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that the difference scheme will produce nonsense if applied
over a range of points of the discrete function, between
which the original PDE solution shows a discontinuity.

A proper solution would be to involve an iteration algo-
rithm to detect where (at each instant of time t) the
discontinuities are, then to split up the definition range
in the space dimensions into several subregions without
discontinuities and to compute the spatial derivatives for
these regions separately. This procedure is, however,
rather complicated, since we then have a variable number
of discretization points for each subregion. Special prob-—
lems will then arrise for discontinuities being located
close to the border of the entire definition range. For
lower accuracy requirements it will, therefore, be better
to solve the problem in a different way. When using e
two—point formulae for computation of the spatial deriva-
tives we obviously avoid all troubles, since the disconti-
nuity can never lie within the range of points in use. The
second order spatial derivatives have then to be computed
by computing two times the first derivative.

92u 3u 3u
— = () (9
9x2 9x 9x

This is, of course, only possible for low accuracy require-—
ments,since the approximation of the spatial derivatives
will only be of first order.

For the integration over time the situation has mot chan-
ged, except that no iteration of events can help us out

of the troubles, since the discontinuity is continuously
present. We thus will have to make sure that discontinui-
ties appear only between successfully computed integration
steps and then use a one-step method for integration. This
can be achieved by computing new values for the spatial
derivatives only between integration steps but not for
intermediate computations.

For many PDE problems the state derivatives depend only
upon spatial derivatives (e.g. eq.(8)).If spatial deriva-
tives are computed only between integration steps, the
state derivatives would then be constant over one integra-—
tion step and we can as well use Euler for integration as
any other more sophisticated method. One can see that, if
ever possible, such problems should be treated by using
the simplest algorithms available. If this method fails
being too time consuming (higher accuracy requirements)

a substantial effort is required to find a better solution
to the problem. It is then doubtful whether one should
use the method of lines at all,

Looking at the different classes of PDE problems, parabo-
lic PDE's in most cases behave numerically well. They-
generally have a high damping- factor which tries to wipe
out discontinuities as they arise, It is essential to com—
pute the spatial derivatives carefully (not include any
discontinuities), whereas the integration is not so cri-
tical. Hyperbolic PDE's involving discontinuities are much
more difficult to solve. The author, however, has not yet
enough experience to give any guidance on how to solive
such problems.

VIII) CONCLUSIONS

An attempt has been made to survey the problems arising
with the coding and utilization of general purpose simu-
lation packages for the solution of parabolic and hyper-
bolic PDE problems. The author knows very well that this
topic cannot be treated in a conclusive manner. The sub-
ject is likely to raise emotions, since for each single
statement it is relatively easy to find a counterexample
proving the opposite., For these reasons the author wants
to state that this survey is more a synopsis of some ideas
and certain approaches which have been found effective,
rather than a remedy curing all diseases.
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