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ABSTRACT

This chapter describes different means to improve the robustness of simulation soft-
ware (languages, compilers, and run-time systems) with respect to products which are
currently available on the software "market™,

It is shown how these improvements can help to ameliorate the robustness of models
and of their coded counterparts: the simulation programs. Model. robustness forms a
part of the total validity picture, while simulation program robustness partly
covers the correctness verification assurance.

This chapter addresses itself primarily to the simulation software designer. It is
hoped that these considerations may help future software developers in producing
more reliable simulation software.
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1. INTRODUCTION

Digital simulation reaches back to the late fifties of this céntury. At that time,
and in the early sixties, digital (continuous) simulation systems were meant to re-
place the former analog equipment. Simulation programs were coded by eonneéting
blocks representing the components of analog computers (like integrators, summers,
~multipliers, ete.) as one used to "wire up"-analog patchboards. The coding format of
these software systems was extremely rigid, énd their capabilities were very
limited. About 1965, people started to realize that the digital computer can do much
better than to duplicate analog machinery as both types of hardware have their spe~
cific advantages and drawbacks., Asia result, the well known CSSL's (Strauss 1967)
were developed (like CSMP-IIT (IBM 1972), CSSL-IV (Nilsen 1980), ACSL (Mitchell,
Gauthier 1982), DARE-P (Korn, Wait 1978)). For each of those languages, a user
manual was written showing how beautifully the Van-der-Pol equation and the pilot

ejection study could be formulated by means of the particular software tool(!).

Even in the early seventies, most models under investigation were low order models
with a rather limited degree of complexity. Therefore, it was entirely legitimate to
conclude that a piece of software being able to handle the Van-der-Pol equation in
an elegant manner would be equally acceptable for whatever other application one

might dream of.

Meanwhile, this situation has changed drastically. The art of modelling is applied
to an ever increasing "clientele' of problems from all kind of different application
fields. At the same time, also the number of (differential) equations of the average
simulation study is constantly growing. New terms have been created like:
#ill-defined system modelling” and "large-scale system modelling™ to denote those
new classes of problems which were previously not solvable at all, partly due to
computer hardware limitations (restrictions of core memory and execution speed), and

partly for reasons of lack of knowledge and understanding of the involved processes.

Unfortunately, it cannot be concluded that a piece of software being appropriate for
the formulation and simulation of the Van-der-Pol equation is equally fit for the
treatment of those new types of problems. With the average model growing in cou-
plexity, the average simulation program grows in length, and we must request that
the simulation program is able to detect as many modelling and programming errors --
be they of a syntactical or of a logic type -- as possible, and at an as early stage

of the investigation as possible.
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This aspect of simulation software is called "robustness". Its importance grows at
least quadratically with the length of the average simulation program. IBM and Bell
Laboratories have carried ouf studies recently in which they compared the cost for
debugging programming errors at different stages of an investigation. They found
that, given a cost of one monetary unit for correcting a program error which is de-
tected during programming, the same error would cost 20 monetary units when removed
during the software test phase, and up to 120 monetary units when removed while the

program is already in production (e.g. Aaronsdn 1983).

We feel that the cubrently available CS3SSL's are far from meeting these robustness
requirements, and it is our aim to show how these deficiencies can be overcome in

the future.

Possibilities which exist to improve simulation system robustness are manyfold. The
robustness of simulation languages and their compilers can be improved‘with respect
to modelling, programming, maintenance, and implementability. Possible measures have
mostly to do with the improvement of simulation language definitions and with the
introduction of redundancy -- that is with aspects of information processing. Much
research has been devoted to these aspects in the develcepment of general purpose
programming languages, a knowledge which can be profitably applied to simulation
software as well. On the other hand, one can also improve the robustness of the
underlaying simulation run~-time system mainly through measures involving aspects of
numerical mathematics. Again other improvements concern the management of data pro-
duced in the simulation study. As we shall show, also this (so far mostly neglected)

aspect may increase the model robustness markedly.
The aim of this chapter is to outline and classify in a systematic manner different

possible means of improving simulation software robustness.

2. SIMULATION LANGUAGES

2.1 Modelling

Simulation languages should be constructed in such a way that they. support their
users in the formulation of "valid" models, valid with respect to the tasks they are
designed for. We feel that there exist several means by which simulation languages

may assist users in their modelling activities.
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1) The simulation language can provide for appropriate structures which allow to re-
present modules of the real system under investigation by corresponding modules of

the simulation language.

Precut structures can assist the user in structuring his problem. This shall be il-

lustrated at an example. Several groups of our students were asked to model angd
simulate a solar energy heating system, For this complex modelling task they had
16 weeks available with an average working load of about 15 hours per week (ternm
. projeot). This is a typical combined continuous/discrete problem with time-events
{sunrise, sunset, toggling between night and day service) and state-events (the pump
for the circulation of the liquid is either "on" or ®off" depending on the tempera-
ture at the coliector, additional oil heating can be in an "on" or "off" status de-
pending on the temperature in the building). One student used ordinary FORTRAN pro-
gramming for the task, and called subroutines for numerical integration and report
generation from a library of FORTRAN routinés. After sixteen weeks, this student
ended up with a huge and unstructured program for which he was unable to draw a
proper flow chart. He had entirely lost the overview of his program, and it never
worked. The program was very badly structured from the beginning. Other groups used
the GASP software (Pritsker 1974, Cellier, Blitz 1976) for this modelling task, and
 found it much easier to construct running (although not necessarily valid(!)) simul-
ation programs. GASP-V is a collection of FQRTRAN subroutines, and as such there
should prineipally be no difference between using GASP and using FORTRAN directly.
The difference arises from the fact that GASP provides appropriate structures to
subdivide models into continuous and discrete portions, and by these means guides

the user smoothly through the modelling task.

Hierarchical structures are another important concept in model definition, Such

structures are, of course, not implementable at the level of FORTRAN programming

(and are thus not available in GASP). Most CSSL's offer a MACRO facility for that
purpose, which allows one to specify new operators as a combination of already

existing ones, However, as it has been shown first by Elmqvist (1979), the MACRO
facility is not really modular either, as the required féfm of a submodel depends on

the enviromment into which it is embedded. A statement of the form: nU=REI" may
easily be requested to take the form: "I=U/R" in another context., Therefore, sorting

of equations alone (as it is offered in most available CSSL's) is insufficient for a

true modularity of submodels. More general 1s the MODULE concept as it is for

example porvided in DYMOLA (Elmquist 1981), MODEL (Runge 1979), or C0SY (Cellier,

Bongulielmi 1979, Cellier, Rimvall, Bongulielmi 1981).

2) The user may be asked to provide dimensions for all variables. The compiler can
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then perform an automated dimensional analysis for all equaticns. The user may also
subply ranges for all variables. This enables the run-time system to check whether
trajectories leave their allowed range during simulation. This feature is specially
valuable in case of large-scale systems where the user will not be able to display
all variables on output. He may, for instance, believe in the outcome of a world
model study because those variables he looks at seem to take reasonable values
whereas somewhere else in the model a population decreases below zero. Such addi-

tions have been proposed by Elzas {1979).

3) The future simulation language should contain features which would allow to per-
form some model manigulatibns in an automated manner, 1like generation of a
linearized model, generation of a sensitivity model, generation of a meta-model.

Such features have been proposed and explained by Cellier and Fischlin (1980). A

definition for the term meta-model can be found from XKleijnen (1982).

2.2 Programming

As explained in the introduction, errors should be detected as early and completely
as possible. For this purpose, the simulation language definition must contain suf-
ficient redundancy so that the software is able to deteet‘as many programming (e.g.
typing) errors as possible. The user can, for example, be asked to declare all vari-
ables in a declaration block of his program. This wiil enable the compiler to detect
most of the typing errors (like misspelled variables or keywords). The danger of
"programming by exception™ has been noticed years ago, and most of the modern com-
puter langﬁages take this into account. This knowledge, however, has obviously not
yet reached most of the simulation software designers, as in todays simulation lan~
guages such features are hardly ever offered. This is probably due to the fact that
most simulation software désigners stick too closely to the C8SL-definition which
was published before one paid too much attention to gquestions of software robust-
ness, Clearly, there is no need to have such a feature for the formulation of the
Van-der-Pol equation which takes two or three lines only. ©On the contrary, for such
scholastic examples, declaration of variables even looks awkward because short user
programs are a very strong argument, too. Nevertheless, as the aft of modelling has

matured, also the simulation software must follow.

Into the same category falls the use of LL(1) grammars for language definition.
LL(1) grammars allow to parse programs from left to right by looking just one symbol

ahead. No backtracking is required. Therefore, a symbol which is not foreseen as one
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of the legal alternatives at any place in the application program must be detecteq
at once, and can accordingly be reported to the simulation user. The use of LL(1)
grammars for simulation language definitions has been thoroughly discussed by

Bongulielmi and Cellier (1979).

Another possible help is to check on model consistency and completeness. Some poss-
ible means have been proposed by Richards (1978). Specially vaiuable in this context
seems to be the proposed sequence test which helps to make sure that no variable jig
used before it is defined. It is furthermore useful to preset the lcad window ofAthe
program to some illegal value (like negative infinite on a CDC CIBER installation)

if such a feature is available.

3. SIMULATION COMPILERS

Also simulation compilers can be robust in. several different ways, namely with re-

spect to programming, implementation, and maintenance.

3.1 Programming

This aspect is very closely related to the previous one. The simulation compiler

should perform extensive error testing while parsing the application program.

This must be done because simulation software is ever increasingly being used by
non-specialists in computing, and because the complexity of the application program
is dictated by the complexity of the system under investigation rather than by pro-

gramming-experience and —-sophistication of the simulation user.

It can be done, because the underlying simulation pabkage (run-time system) is a
large program anyhow, consuming quite a lot of core memory and execution time.
GASP-V (Cellier, Blitz 1976) for example, uses 110.0008

CDC CYBER. It, therefore, does no harm to allow the same size for the simulation

core memory locations on.a

compiler as well, whereas this cannot be tolerated in a general task language like
FORTRAN or PASCAL. .Moreover, a "small"™ student's job in simulation, involving
10 to 20 statements, will cost for its execution at least 10 times as much as a com-
parable FORTRAN student's program (e.g. to determine fhe largest element in an

array). For this reason, we can also allow the simulation compiler to execute about
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10 times slower compared to a general task compiler to grant more extensive error
checking during compilatiocn, Finally, the possible structures in a dedicated task
language are much more rigid than in a general application language. For this rea-
son, additional tests in the compilation phase (like the previously proposed

dimensional analysis) are feasible.

3.2 Implementation

This aspect of robustness involves insensitivity to alterations in the operating
system, the underlying computer hardware, and peripheral equipment. It can only be
guaranteed if the simulation compiler is realized as é preprocessor. The target lan-
guage, as well as the language in which the preprocessor is coded, must be
high-level languages for which there exist compilers on many different types of com-
puters. This, again, has its implications with respect to the simulation language
definition, in that only such features can be offered in that language which -are
realizable in the target language as well. If, for example, the target language is
FORTRAN (as this is the case for most simulation languages at present), the newly
defined simulation language may be somewhat restrictive in the data structuring
capabilities it offers, and may also limit the use of recursions (although a more
elaborate preprocessor may obviously map most of the data structures available in
modern structured languages like PASCAL into FORTRAN structures, and/or may simulate
recursions by use of an explicit stack, this at the cost of a somewhat unreadable
target code). Until recently, FORTRAN was the most appropriate language for coding
the simulation. run-time system, whereas good candidates for implementation of the
preprocessor were either PASCAL or SIMULA-6T7. In the future, ADA may be a promising
candidate for both tasks (for the preprocessor due to its dynamic data structures
and due to its exception handling capabilities, for the run-time system due to its
build-in tasking features and due to the feasibility of safe separate compilation of
subprograms). It shall, however, still require some time, because full ADA compilers
are not yet available on many machines, and because ADA-coded vérsions of reliable
numerical libraries (e.g. for linear algebra, numerical integration, statistical

analysis, etc.) still need to be developed.

It is sometimes argued that the preprocessor concept, which we strongly advertize
due to its portability, suffers from a major drawback, as input errors are fre-
quently not detected by the preprocessor itself but only at a later stage, that is
by either the FORTRAN {or ADA) compiler or the run-time system. Error messages then

would not report to the user program, but to a code which the user has hardly any
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knowledge of. This problem is, however, a problem of implementation rather than 5
problem of principle. By use of an LL(1) grammar, it is possible to ensure that ng
syntactic errors will be proliferated to the next compiler stage, that is: errors
detected by the FORTRAN (or ADA) compiler can totally be avoided at the price of a
somewhat slower precompilation. Run-time errors (that is: semantic errors) are ob-
viously not totally avoidable, but their reporting can be improved by use of 2
context file produced by the preprocessor which is passed on to the run-time system.
There is no reason why the well-known backtracing mechanisms should not work through
two stages of compilation as well as through one. Current simulation systems do not
offer such a facility, but this is just a question of the sophistication of the

software design and implementation.

3.3 Maintenance

If a compiler failure has been detected, or if a person wants to improve the lan-
guage definition by adding additional features to it, this should be implementable
as easily as possible in the simulation compiler, and it should result in as few
fdirty? side-effects as possible with respect to the compilation of previously im-

plemented language features.

Also for this purpose, it is good use to define the simulation language by an LL(1)
grammar, Although this imposes some restrictions on the freedom of how the language
is defined, it poses more restrictions as to the form of the language (grammar) than
as to the expressiveness of the language. In general, all required features of
simulation languages can be easily formulated by LL(1) grammars, possibly with the
exception of general purpose macros. In that context, we must éither restrict our-
selves in the macro facilities the language is to offer, or we must leave the pure
LL(1) envirorment, which is not critical either as general purpose macros must any-
way be processed in a separate compilation step. It might even make sense to code

the macro handler as a totally independent pre-preprocessor.

The reason for using LL(1) grammars is explained below: It is unavoidable that a
complex program like a compiler contains some "bugs" which are not detected until
somebody stumbles upon them by chance. This problem is even more severe for simul-
ation software as compared to general purpose programming languages since there
exists a smaller number of users (read: guinea-pigs) for them. When an error is de-
tected, it is most likely that the programmer of the compiler is no longer access-

‘ible. In such a situation, it is extremely important that somebody else is able to
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read and understand the compiler to be able to remove the bug. It is then very
cumbersome if the software engineer is forced to read and uaderstand the compiler as
a whole, In most cases, it is not too diffieult to identify and isolate the bug
within the compiler. A local patch, however, bears the risk of unexpected
side~effects creating new bugs which are often worse than the removed one(l). Such
side-effects result mostly from GOTO-statements pointing backward from below to
beyond the patch position. If the effect of such a GOTO-statement is not taken into
aceount, the patch often creates unwanted side-effects which are difficult to ex-~
plain and to correct. Another frequent reason for badly maintainable compilers lies
in a careless and unsystematic use of structured data references (like unsystematic
use of pointer variables in a PASCAL program). Since LL{1) grammars allow compilers
to be written in an almost top-down structure by use of highly systematic data re-
ferencing mechanisms, the robustness of such compilers with respect to their main-

tainability is markedly better than in the case of other types of grammars.

4. SIMULATION RUN TIME SYSTEMS

Also simulation run-time systems can be robust in two entirely different senses:

4.1 Procedures

The user should never be required to provide any kind of information which he does
not have at his disposal. He should be able to concentrate as much as possible on
those factors which only have to do with the statement of his problem, and should
not be forced to bother about details which have to do with the way his problem is
executed on the machine. He should be able to describe his system as easily as poss-

ible in terms which are closely related to his common language.

Let us give an example of weakness in procedural robustness; In the early days of
digital simulation, the user was asked %o provide a step size for the numerical
integration algorithm to be used. The user had no information, whatsoever, on how
large that could be. He, therefore, was forced to try different step sizes to deter-
mine an optimal choice. Meanwhile, algorithms have been developed which determine
automatically and "on-line" which step size is to be used, The user must provide the
algorithm only with information about his accuracy requirements. This type of in-

formation is related to the physics of the problem rather than to the numerical
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algorithm, and can usually be provided easily.

Currently, the user is still requested to select the most appropriate integration
algorithm out of the available library for the simulation of his task. Again, this
is a request which cannot easily be answered by the average user. In future, we can
expect thét an automated way of determining the most appropriate algorithm for any
particular application problem would form an intrinsic part of any simulation soft-
ware. Some steps into this direction have been carried out, and are described by
Cellier and Moebius (1978). Some further results in this field were presented very
recently by L.R. Petzold (Hindmarsh 1982). In fact, the needs for such an algorithgp
were detected quite eérly. Elzas implemented a first version of such an algorithm as.
early as 1962 in the DISAR system (for the TRY machine) (Bos 1962).

The situation gets worse when partial differential equations (PDE's) are to be
solved, By use of the method-of-lines approach (which is the most general and most
common approach in simulation today), PDE's are decomposed into sets of ordinary
differential equations (ODE's) whicﬁ are then integrated over time by use of any ODE

solution technique. There remain three parameters to be user-tuned:

a) the integration method (for integration over time),
b) the method of discretization (of the spatial dimensions), and
¢) the grid width of the discretization scheme.

Unfortunately, an optimal choice is here even more important than in the ODE case,
as differences in computing time may result which are many orders of magnitude apért
from each other (ef., e.g. Rice 1976). There exists an almost infinite number of com-
binations, and, therefore, a strategy of "blind search" to detect an optimal combin-
ation is hopeless. In fact, the three parameters cannot be tuned independently of
each other, as the stability properties are determined by combinations of them.
First steps towards an automated grid width control have been reported recently by

Schiesser (1982). Certainly, more research is still required.

4.2 Algorithms

The run-time software itself must be able to check whether the provided time

histories are "correct" (within a prescribed tolerance range). The user, normally,
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has a more or less precise (although often not mathematically formulated) knowledge
of the system he is investigating. He has, however, hardly any "inside information"
into the tool he is using for his task. He is, usually, very credulous (the obtained
results must be correct because the computer displays 14 digits(!)), and he has no
means to judge the correctness of_the produced results. For this reason, it is vital
that each algofithm in the system has its own "bell" tc ring as soon as it is unable
to properly proceed. Under no circumstances are incorrect results allowed to be dis-

played to the user.

As an example, numerical instabilities (or possible sources of instabilities) should
be detected and reported to the user. How this can be achieved, is also described by

Cellier and Moebius (1979) ..

Again, the situation is particularly awkward in the PDE case also with respect to
algorithmic robustness. A bad choice of the applied numerical algorithms does not
necessarily lead to an error indication. On the contrary, there will often be pro-
duced results which look very promising (for all kinds of time responses it is
usually possible to find, a posteriori, a theory to explain them!), but which are,
nevertheless, entirely incorrect. The reason for this is that there can be no
guarantee that any particular combination of integration scheme, differentiation
scheme, and space discretization will lead to a finite difference scheme which is
consistent, convergent, and stable. Stability will usually be taken care of by the
step-size control of the numerical integration, but resulting inconsisteﬁcies or di-
vergence will not necessarily be detected. This means that the user normally obtains
mcorrect® results with respect to the formulated ODE problem, but it 1is not

guaranteed that:

a) the resulting difference equation properly approximates the original dif-

ferential equation (consistency), and that

b) the obtained time responses at discrete points smoothly approximate the con-

tinuous time responses which we are looking for (convergence).

sutomated grid width control, as proposed by Schiesser (1982), may be one answer to

this problem, but more research is still required.

What is not taken away yet is the effect of different word-length conventions on
different machines. They will lead to a disparety in results, especially in stiff
system simulation. It is a good idea to evaluate the machine resolution "on line".by

use of a terribly simple algorithm  proposed by Rutishauser (unpublished lecture
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notes):

EPS = 1.

1 IF ((1.0+EPS).EQ.1.0) GO TO0 2
EPS = EPS*0.5 '
GO TO 1

2 EPS = 2.0%EPS

to determine the smallest number which is distinguishable from 1.0. Obviously, the
result of this little algorithm depends heavily on the available number of bits,
Once EPS is computed, all algorithms (and in particular all termination criteria or
iteration loops) should be programmed relative to this number EPS to minimize
machine dependencies, It is even an excellent idea to provide the user with the
facility to enlarge this quantity EPS to simulate a lower precision machine on a
higher precisioqrhardware. This requires. that, following each floating-point oper-
ation, a number of bits (or digits) is chopped by the algorithm upon demand. Such a

feature is, for example, provided in MATLAB (Moler 1980).

5. SIMULATION DATA

Many examples can be cited which show that the data handling mechanisms in currently
available simulation software systems are insufficient (Cellier 1983). To mention
just one of them: It is certainly no unreasonable wish to be able to display two
simulation trajectories produced by two different models of the same system on one
sheet of paper, None of the currently available simulation software systems would
allow to achieve this in a natural and comfortable way. The only meaningful solution
to this problem would be to provide for an interface tc a relational data basé, that
is: simulation data can be stored in the data base during simulation, some other
data (e.g. parameters, driving functions) may be retrieved from there by the simul-
ation program. Several other programs (e.g. graphical postprocessor, statistical
analysis program, etc,) have also interfaces to the same data base, and can, there-
fore, access the same data. It is important in this.respect that models and experi-
ment descriptions are properly separated from each other, as this was demanded by
Zeigler (1976). By means of this concept, the above mentioned situation can be

handled in a very flexible and natural way by:

a) coding the two models as two separate programs which both store their resulting

trajectories in the data base, and

b) by using the graphical postprocessor to retrieve the previously stored data and
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to pfoduce meaningful graphs.

In currently available simulation systems, one may well be able té specify both
models in the same program and switch between them by means of a logical variable.
However, this is by no means an elegant solution, and it would not help to solve
some of the other requirements (like representing simulated and measured data on one
single sheet of paper). Several of the simulation systems which are currehtly under
development shall provide for such a mechanism, e.g. COSMOS (Kettenis 1983), COSY
(Cellier, Bongulielmi 1979,7 Cellier, Rimvall, Bongulielmi 1981), and SYSMOD (Baker,
Smart 1983).

This data base concept can enhance the robustness of simulation software in several

ways:

5.1 Modularit

The required language features are spread over several independent programs {(simul-
ation program, graphical postprocessor, etec.) which communicate through the data
base only. This reduces the number of required keywords in each of these programs
(e.g. the only output commands still required in the simulation language are com-
mands to store the data in the data base, some tracing capabilities (for program
debugging), some error reporting routines which are entirely unvisible to the user,
and possibly a run-~time display for interactive and real-time simulation. Many of
the currently used language constructs (such as "PAGE MERGE" in CSMP-IIT) simply
disappear altogether. In this way, the required compilers (or interpreters) can be

kept smaller and thus better maintainable.
5.2 Documentation

The user manuals can be split into several independent volumes describing the use of
the separate programs. Not every user is requested to read all of them. E.g. the
manager shall most probably learn to use the graphical postprocessor and some other
data retrieval and arnalysis tools, but certainly not the simulation language (at

least not in detail, just enough to familiarize himself with the model structure).
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5.3 Flexibility

One and the same graphical postprocessor can be used to analyse whatever data gre
stored in the data base, independently from bhow these data got there. In this way,
the separate software system modules become more versatile, and are thus more fre.
quently utilized by a larger diversity of users. Therefore, the chance of stumbling
upon a "bug" which still remained in the software module despite careful softwapre

design and implementation decreases quicker with time.

5.4 Applicability

As the previous example shows, the flexibility of the software increases by use of
the data base approach, helping to enhance the robustness of the simulation software

with respect to the diversity of problems which can be tackled.

6. SIMULATION SYSTEMS

The term simulation system denotes the union of simulation language, simulation com-
piler, simulation run-time system, simulation data, and (last but not least) the
doeumentétion volume., Experience has shown that program code is updated much faster
and easier than documentation material. For this reason, it makes sense to discuss

the robustness of a simulation system with respect to its:

6.1 Updatabilit

To make the documentation as easily updatable as possible, it is very comnvenient if
also the documentation is developed by use of the computer. The text itself should

(as this presentation) be composed by use of a powerful text editing system.

The syntactic rules of the langunage should be documented by means of syntex dia-
grams, This has been done already for several simulation languages (e.g. SCALE-F
(Heppner 1977), COSY (Cellier, Bongulielmi 1979, Cellier, Rimvall, Bongulielmi
1981), CSMP-ITII  (Degen, Grunta 1980), COSMOS (Kettenis 1983), and  SYSMGCD
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(Baker, Smart 1983). Bongulielmi and Cellier (1979) have described a general purpose
table'driven parser program which can process any context-free grammar specified in
an Extended Backus-Naur form (EBNF) notation, and which can check for LL(1)
parsability. Anqther program (Bucher 1977) can then access the same input file, and
can produce syntax diagrams of the language definition on any (x,y) plotting device.
By use of the parser program, we can check that the suggested modifications of the
language are correct (that is consistent with the rest of the language definition),
and that the modified language definition is still LL(1)} parsible (and thus de-
terministic and unambiguous). This can be done, before the compiler is touched. With
the help of the syntax diagram drawing program, we can automatically draw the new
syntax diagrams of the modified language definition which can replace the previous
diagrams in the documentation volume. Bj these means, we can guarantee that the do-
cumentation material is as easily updated as possible. The - implementers of SYSMOD
(Baker, Smart 1983) went even one step further. The EBNF productions form part of
the user manual. A special text editor is able to extract these productions (with
reference to the respective paragraph as a comment) from the manual, and
automatically generates the input to the parser program. In this way, each modific-
ation of the language grammar starts by a modification of the user manual, which is

an extremely useful feature.
7. LROBUSTNESS OF MODELS

The final aim of all the robustness considerations we have discussed is to ensure
that a particular application program (that is: coded version of a conceptual model
of a system under investigation) performs its task. We must here distinguish between

several types of reasons why this may not be so.

1) Both the model and the simulation program are correct, but the generated time
histories are in error. This should never happen in principle. The simulation
run-time system must take care to avoid this. Possible means to avoid such situ-

ations have been discussed in Section 4.2.

2) The model is correct, but the simulation program has syntactical errors. Un-
fortunately, it happens often with currently available simulation compilers that
they translate correct programs correctly whereas they produce any unpredictable
code for incorrect programs without warning the user that something may be wrong

with his program(!). By restricting ourselves to LL(1) grammars, we can make sure

that this shall never happen. This has been discussed in Section 2.2.
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3} The model 1s correct, but the simulation program has semantic errorsg,
Unfortunately, there is no way to determine all such errors at once. Scme possible
means to reduce the risk for this situation to happen have been discussed. They haye
mostlj to do with the introduction of redundancy which allows to perform different
types of consistency checks. However, some errors may only be detectable during pro-
gram execution, For such cases, the previously desecribed context files (backtraeing
technique) may help. Some thoughts to simulation program verification have been dis-

cussed by Sargent (1982), some more can be found in (Elzas 1979, Richards 1978).

4} The model itself is incorrect in that restrictions in the kind of experiments
which can be performed on it are violated by the actual experiment performed. (a4
model as such is never valid or invalid. It is the pair (model, expefiment) which
has validity as its attribute. Any model is able to meet the "null" experiment.) It
is extremely difficult to ensure model validity in a general way. Several possible
means to improve the probability of a model to meet its requirements have been dis-
cussed. A more thorough discussion of model validation ﬁas given recently by Sargent
(1982, 1983). The principles are also covered by Elzas (1983).

8. CONCLUSIONS

We have shown that the currently available simulation software does no longer meet
the ever increasing needs of the average simulation users. Especially for
large-scale system modelling and ill-defined system modelling, the classical
CSSL-type languages can no longer suffice. We tried to list in a systematic manner
different suggestions for improvement of future simulation systems which would meet

the growing needs of modellers better.

REFERENCES

Aaronson, S. (1983), "Software and Society: An Interview with Eric Somner", Bell La-
boratories Record, February, pp. 10-16.

Baker, N.J.C. and P.J, Smart (1983), The SYSMOD language and Run Time Facilities De=-
finition, Technical Note 6.82, Royal Aircraft Estalishment, Farnborough,

Hampshire, United Kingdom, 196 p.

Bongulielmi, A.P. and F.E. Cellier (1979), "On the Usefulness of Deterministic Gram-
mars for Simulation Languages", in T.I. Oren, (ed.), Sorrento Workshop on
International Standardization of Simulation Languages (SWISSL), Sorrento,
Italy, to appear in Simuletter.



535

Bos, G. and M.S. Elzas, (1962), Digitale Simulatie van een analoge rekemmaschine,
Afdeling der Technische Natuurkunde, Technische ~ Hogeschool Delft, The
Netherlands, 50 p.

Bucher, K.J. (1977), Automatisches Zeichnen von Syntaxdiagrammen, welche in speziel-
ler Backus Naur Form gegeben sind, Users Manual, Institute for Informatics,
The Swiss Federal Institute of Technology, ETH - Zentrum, CH-8092 Zurich,
Switzerland, 17 p.

Cellier, F.E. (1983), "Simulation Software: Today and Tomorrcw", in J. Burger and

Y. Jarny, (eds.), IMACS Symposium on Simulation in Engineering Sciences,
Nantes, France, pp. 426-442,

Cellier, F.E. and A,E. Blitz (1976),; ™GASP-V: A Universal Simulation Package", in
' L. Dekker, (ed.), Simulation . of Systens, North-Holland, Amsterdam,
pp. 391-402.

Cellier, F.E. and A.P, Bongulielmi (1979), "The COSY Simulation Language", in
L. Dekker, G. Savastano and G.C. Vansteenkiste, (eds.), Simulation of Systems,
North-Holland, Amsterdam, pp. 271-281.

Cellier, F.E. and A. Fischlin (1980), "Computer-Assisted Modelling of Ill-Defined
Systems", in R. Trappl, G.dJ. Klir and F.R. Pichler, (eds.), Progress in
Cybernetics and Systems Research, Vol. VIII, General Systems Methodology,
Mathematical Systems Theory, = Fuzzy Sets, Hemisphere Publishing Corp.,
Washington, pp. 417-429.

Cellier, F.E. and P,J. Moebius (1979), "Towards Robust General Purpose Simulation
Software", in R.D. Skeel, (ed,), Numerical Ordinary Differential Equations,
Dept. of Computer Science, University of Illinois at Urbana-Champaign,
pp. 18.1-18.5.

Cellier, F.E., M. Rimvall and A.P. Bongulielmi (1981), "Discrete Processes in COSY",
in F. Maceri, (ed.), European Workshop on Simulation Methodology, Cosenza,

Italy, also in R.E. Crosbie and F.E. Cellier, (eds.)}, TC3 IMACS: Simul-
ation Software, 11, Appendix 8, 31 p.

Elmgqvist, H., (1979), "Manipulation of Continuous Models Based on Equations to
Assignment Statements", in L. Dekker, G. Savastano and G.C. Vansteenkiste,
(eds.), Simulation of Systems, North-Holland, Amsterdam, pp. 15-21.

Elzas, M.S. (1979), ™"What is Needed for Robust Simulation®, in B.P. Zeigler,
M.S., Elzas, G.J. Klir and T.I. Oren, (eds.), Methodology in Systems Modelling
and Simulation, North-Holland, Amsterdam, pp. 57-91.

Elzas, M.S. (1983), Chapter 2 of this book.

Heppner, D, (1977), Beschreibung der Simulationssprache SCALE F, Handbuch F7, Compu-
ting Center, Technical University of Braunschweig, FRG, 150 p.

Hindmarsh, A.C. (1982), "Stiff Systems Problems and Solutions at Lawrehce Livermore
National Laboratory™, in R.C. Aiken, (ed.), International Conference on Stiff
Computation, to be published. :

IBM (1972), Continuous System Modelling Program IIT (CSME I1I), Program Reference
Manual, Program Number: 5734-XS9, Form: SH19-7001-2, IBM Canada, Ltd., Program
Produce Cenire, 1150 Eglington Ave, East, Don Mills U402, Ontario, 186 p.



536

Kettenis, D.L. (1983), "The COSMOS Modelling and Simulation Language", in
W. Ameling, (ed.), Proceedings of the First European Simulation Congresg
ESC'83, Springer Verlag, Informatik Fachberichte.

Kleijnen, J.P.C. (1980), ™"Experimentation with Models: Statistical Design ang
Analysis Techniques", in F,E. Cellier, (ed.), Progress in Modelling and Simul-
ation, Academic Press, London, pp. 173-185.

Korn, G.A. and J.V. Wait (1978), Digital Continuous System Simulation, Prentice
Hall, 212 p.

Mitchell, E.E.L. and J.S. Gauthier (1982), ACSL: Advanced Continuous Simulation Lan~
guage, User/Guide Reference Manual, Mitchell and Gauthier, Assoec., 1337 014

Marlborc Road, P.0.Box 685, Concord, Mass., 272 p.

Moler, C. (1980), MATLAB, User Guide, Dept. of Computer Science, University of New
Mexico, Albuquerque, 60 p.

Nilsen, R.N. (1980), The CSSL IV Simulation Language, User Manual, Simulation Ser-
vices, 20926 Germain Street, Chatsworth, Calif.

Pritsker, A.A.B. (1974), The GASP IV Simulation Language, John Wiley, New York,
451 p. '

Rice J.R. (1976), M"algorithmic Progress in Solving Partial Differential Eguations™
SIGNUM Journal, 11, 4, pp. 6-10.

Richards, C.J. (1978), "What's Wrong with my Model", 2nd UKSC Conference, United
Kingdom, pp. 223-228.

Runge, T.F. {1977}, A Universal Language for Continuous Network Simulation, Form:
UIUCDCS~-R=-77~866, Ph.D. Thesis, Dept. of Compubter Science, University of
Jllinocis at Urbana~Champaign, Urbana, Illinois, 153 p.

Sargent, R.G. (1982), ™"erification and Validation of Simulation Models™, in
F.E, Cellier, (ed.), Progress in Modelling and Simulation, Academic Press,
London, pp. 159-169.

Sargent, R.G. (1983), Chapter 19 of this book.

Schiesser, W.E. (1982), Some Characteristics of ODE Problems Generated by the
Numerical Method of Lines, in R.C. Aiken, (ed.), International Conference on
Stiff Computation, to be published.

Strauss, J.C. (1967), "The SCi Continuous System Simulation Language (CSSL)",
Simulation, 9, 6, pp. 281-303.

Zeigler, B.P. (1976), "Structuring Principles for Multifaceted System Modelling", in
B.P. Zeigler, M.S. Elzas, G.J. Klir and T.I. Oren, (eds.), Methodology in
Systems Modelling and Simulation, North~Holland Publishing Company, 1979,
pp. 93 - 135.



