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An ANSI~FORTRAN-IV written subroutine package capable of handling continuous—time problems
(described by mixed ODE's and PDE's) as well as discrete and combined problems is presented.
GASP-V is fully upwards compatible with GASP-IV [1,2], but enlarged by:

a) some subroutines out of the program FORSIM-V [3] for easy coding of distributed systems
(initial value PDE's of parabolic and/or hyperbolic type) using the method of lines.

b) an effective run-time library for modeling of continuous—time problems (comparable to the
one offered e.g. by CSMP-III), but coded in a much more effective way since all discontinous
functions are broken up in series of piecewise continuous functions, by utilizing time-
and/or state—events to switch over from one branch to the other and by means of that resulting
in remarkable reduction of execution time (all "creeping" avoided).

¢) a comprehensive selection of different integration algorithms placed at the user's disposal.

1. INTRODUCTION

Simulation packages are normally divided into
three classes according to the problems which
can be handled by them. These are:

a) simulation of continuous—time systems de—"
scribed by ordinary differential equations
(ODE’'s)

b) simulation of continuous-time systems de-
scribed by partial differential equations
(PDE's)

c) simulation of discrete—time systems described
by difference equations mixed with discrete
time-events.

Program packages for the treatment of problems
out of class (¢), e.g. simulation of inventory
systems or of queuing situations, exist for
approximately 20 years. The most commonly used
packages for this purpose are these days: GPSS,
SIMULA, SIMSCRIPT and SIMPL/I. )

Problems of type (a) are solved by use of digi-
tal computers since about 10 to 15 years.by uti-
lizing standardized multipurpose packages. Typi-
cal examples of such packages are: CSMP-III,
CSSL-III, ACSL, DARE-P and MIMIC. These packages
are e.g. surveyed in [4,5].

First packages for the numerical solution of
problems out of class (b) have been announced
about 7 years ago. An optimal package for this
purpose, however, has not been developed, since
this problem is numerically much more complica-~
ted to solve and since there exists in this
class of problems a much stronger link between
the problem to be solved and the optimal algo-
rithm to be used than in problems of classes (a)
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or (c¢). For this reason it is also doubtful
whether it will be possible at all to develop

a package which really could be called a "gene-
ral purpose' package for the solution of problems
out of class (b). An optimal state, however, is
not yet achieved. Development goes on with the
increased possibilities of new computer techno-
logies (shorter cycle time, bigger memory).
Packages for certain subclasses of (b) are e.g.:
LEANS-III and DSS. Surveys are given in [5,6].

It is to be stated that the division of simula-
tion packages into these three classes (a), (b)
and (c) results rather from the different simu-
lation techniques used than from the physical
world being divided into three classes of dyna-—
mic processes. This can easily be shown in the
field of traffic control. There one distinguishes
between:

a) macroscopic models which are entirely conti-
nuous and in which the single vehicle is not
considered but only the traffic flow with
accompanying densities

b) microscopic models which are entirely discrete
with vehicles entering the considered system,
traveling through it in discrete steps e.g.
from one corner to the next with queuing si-
tuations in front of traffic lights etc.

c) submicroscopic models (not often used in this
context) which are continuous with specific
discontinuities deseribing the dynamic beha-
viour of every single vehicle.

The physical process, however, is identical in
all three cases. The different simulation techni-
ques have been selected in accordance with the
model of the process (and not with the cprocess
itself). The model of the process has been deve-—
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loped in a way suited for optimal
given simulation objectives.

fitting of

There exist simulation objectives which suggest
utilization of mixed models. By simulating an
elevator system it may be useful to model the
arrival time of passengers and their destinations
by a discrete model, the motion of the elevators
on the other hand continuously. To allow such
models to be realized, there have been made first
attempts recently to code packages able of hand-
ling mixed models which partly belong to one
class and partly belong to another, showing all
attributes of both classes and in addition some
new attributes describing the interactions bet-
ween them.

There has been announced 1974 a package for the
treatment of mixed models out of the classes (a)
and (b) called FORSIM-V [3]. Another package
GASP-IV [1,2] allows handling of models out of
classes (a) and (c).

In this paper a new version of GASP is described,
which enables the user to code models out of all
three classes. To achieve this goal some of the
subroutines from FORSIM-V have been combined
with GASP. Besides the GASP-IV package does not
place a set of functions (& run—time library) as
a hysteresis function, a step function etec. at
the user's disposal. The reason for this is quite
clear. By taking advantage out of the much better
possibilities of GASP-IV for the treatment of
discrete events a discontinuous function should
always be broken up into a set of piecewise con-
tinuous functions connected by time-events (as

in the case of the step function) and/or by
state-events (as in the case of the hysteresis
function). A time-event is a discrete happening
taking place in a predetermined instant of the
simulation time and is an attribute of class (¢).
A state—event is a discrete happening taking
place in an instant of time which, itself, de~
pends upon the state of the system. It may e.g.
take place when a specific state variable crosses
a prescribed threshold. State—events, therefore,
are new attributes originating from interactions
between elements of class (c) and (a). To ac~
complish time-events a file handling system
(data-base organization problem) is needed. To
handle state-events one needs a mechanism for
detecting whether such an event takes place du-—
ring the current integration step, as well as an
iteration procedure to locate it properly.

A hysteresis function should for example be
cracked into:

a) a function subprogram for computation of the
three continuous branches of the disconti-
nuous function, called from subroutine STATE
(for computation of the state derivatives)

b) a function subprogram for detecting whether
a state—event (switching from one branch to

another) is required during the current inte-
gration step, called from subroutine SCOND
(for detection of state-events) and

¢) a function subprogram for carrying out the
actual switching over from one branch to
another, called from subroutine EVNTS (for
accomplishment of events).

Since all of these subroutines (STATE, SCOND and
EVNTS) are user-supplied the user would have to
call three different function subprograms to code
one single hysteresis function. In GASP-V there
has been found a way to code such functions
exactly as described above with the exception
that the function subprograms (b) and (c) are
hided in GASP-V, so that the user can model such
functions again the same way as he is used from
packages like CSMP-~IILI.

By using pure continuous simulation packages

even large systems may be simulated in a very
attractive way as long as there are no disconti-
nuous functions involved. As soon as there are,
serious numerical troubles arise. By using inte-
gration algorithms with fixed step size the accu-
racy of the results will be very bad, in many
cases there will result even an overflow of one
state variable or another. By using variable step
integration algorithms the program normally
starts "creeping'. This results from the step
size being reduced to very small values each time
a discrete event takes place which is a very in-
efficient way of locating state-events and an
even criminal way of looking up time~events! By
use of GASP-V all of these numerical problems

may be avoided. GASP-V is, therefore, recommen-—
ded for simulation of all systems with disconti-
nuous functions forming part of the model even if
there are no further discrete elements involved
and even if most people do call such models "con-
tinuous" which for our opinion is wrong . These
models are mixed models of the classes (a) and

{c).

In GASP-IV the integration algorithm (Runge-Kutta
algorithm of fourth order with variable step
size) has been coded directly within the central
subroutine GASP. This concept is not very fle-—
xible since no alternative integration algoritmm
can easily be accessed. For GASP-V the subrouti-
ne GASP has, therefore, been entirely rewritten
in a way such that the user may select the inte-
gration algorithm to be utilized. This is spe-
cially important in connection with the simula-
tion of PDE's as will be shown further down.

2. PARTIAL DIFFERENTIAL EQUATIONS [7]

For the treatment of PDE's the FORSIM-V program
has been selected, mainly because FORSIM-V does
not use the concept of master eguations which
makes it more flexible for use in problems mo-—
deled by sets of coupled PDE's and mixed problems
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out of the classes (a) and (b).

Since GASP-V bases upon the FORSIM-V package for
handling of PDE's, we will describe first the
essential attributes of this package. FORSIM-V
is designed mainly for the solution of para-
bolic and/or hyperbolic initial value problems
in one space dimension within a limited interval
D(x) = [0,L] using only one derivative in the
time domain t and up to second derivatives in
the space dimension x.

du(x,t) du(x,t) Bzg(x,t)
- = _f_ {E(X,t), » :X’t}
3t 3x 3%x

te[0,=) (1)
xe[0,L]
du(x,t)
and: Bl(t)-

#

*+ By (t)rulx,t) = B,(t)
Ix

du(x,t)

i

or: B3(t) (2)

It

te[0,x)
x={0},{L}

where: dim{u} = n

The first equation describes the system and the
second its boundary conditions.

Higher derivatives in the space dimension may be
present as well but require additional state—
ments for coding (subroutines PUPX and PUPXX).
PDE's containing higher derivatives in the time
domain may be reduced to sets of PDE's with only
one derivative in the time domain. Multidimen-
sional problems (more than one space variable)
may also be coded. In such cases the upsetting
of the boundary conditions may give sometimes
troubles if the definition domain D(x) is other
than rectangular. Examples for coding of such
problems are given in [3].

FORSIM~V solves the simulation problem by using
the method of lines, in which the space dimen-
sion is discretized whereas the time-axis
remains "continuous". Each equation in eq. (1)
is reduced to a set of NNDIV coupled first
order ODE's:

ulx,t) »~ U(o)
x> £ ={1,2,...,NNDIV} (indices)

dim{u} = n 3
dim{U} = nxNNDIV

leading to:
U () = F {U(e),U (£),U_ (£),8,t} (4}

The above defined problem is now reduced to two

new problems:

a) computation of the space derivatives Ux and
U out of given values for U
XX

b) computation of U out of given values for Ut'

For the numerical solution of both problems there
exist well known algorithms.

FORSIM-V consists of:

a) a FORTRAN-IV written main program with sub-—
routines for a couple of integration algo-
rithms to which the user has to supply a
subroutine (UPDATE) for the computation of
the state derivatives according to eq.(4)

b) a FORTRAN-IV written subprogram library con-
taining subroutines for:

@) computation of the space derivatives
B) output subroutines

y) function subprograms for comfortable
modeling of often used functional blocks
(hysteresis, step etc.) referred to as
run—-time library

The package is written to be used on CDC 6000-
series installations, and since it does not fol-
low ANSI standards, a remarkable effort would be
necessary to adjust it to other installatioms.

From the above described architecture it can be
seen that FORSIM-V is entirely procedural (no
preprocessing). It is used to integrate sets of
initial value ODE's over time. The subroutines
(o) are not accessed by FORSIM itself but are
used, if required, in the user—supplied sub-
routine UPDATE only.

This concept allows to use the subroutines (a)
almost as they are also in a GASP program. Since
GASP-V follows entirely ANSI standards they have,
however, been reccded before they were added to
the GASP library. Slight adjustments have been
necessary for:

a) adjustment of the COMMON-blocks

b) adjustment for input of FORSIM variables
according to GASP-philosophy which is diffe-
rent from FORSIM input

c) initialization of system variables.

Finally the following program structure is rea-—
lized: The subroutine GASP (of GASP-V) computes
the state variables out of their derivatives by
numerical integration. The user-supplied sub-
routine STATE computes the state derivatives
according to eq.(4) and calles the FORSIM-subrou-
tines PARSET and PARFIN (and indirectly further
FORSIM-subroutines: BOUND, PUPX, PUPXX) for com-
putation of the space derivatives. This is illu-
strated in fig.l.
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S integration
GASP > u=F_{U_} over time
1t
STATE computation of

U =F_{U,U ,U0 } state derivatives
t "2 X’ XX

computation of
PARFIN space deriva-
tives

PARSET
U ,U =F _{U}
X’ xx 3

fig.1 Program structure for the simulation
of distributed systems by use of
GASP-V

Advantages of the program structure shown above
are:

a) full upwards compatibility with GASP-IV is
guaranteed

b) beside of the few statements for data input
and initialization of FORSIM variables the
requirement for core memory remains constant
if a GASP-IV program is computed by use of
GASP-V

c) the execution time for a GASP-IV program
running under GASP-V is almost unchanged.

To illustrate the abilities of GASP-V let us
consider as an example the central heating of a
building. The building is modeled by a stick of
length one. The left side of it represents the
center of the building where the heating takes

place, the right side of it represents the walls.

The temperature distribution in the building is
modeled using the diffusion equation eq.(5):

Ju 3%u

(5)

The heating of the central room is modeled by a
first order ODE of the following form:

u = 30.0-z
where:z = 4.0+ (SW - z) (6)

0-(
. + n n
and: SW = {é.g ;s heating "on

; heating "off"

At night time (between 7 p.m. and 7 a.m.) the
heating is always "off". During day time the
heating is set "on", when the temperature of the
walls falls below 19.5C and is set "off" as soon

as _the temperature of the walls raises above
22.5C. The temperature is said to start at 6 a.m.
with 0.0C across the whole building. The model
of the building is shown in fig.2.

fig.2 Model of a central heating of a
building

This model suffers from being far away from the
physical reality, but has been chosen intentio-
nally since it is the simplest model still con-
taining all possible simulation elements (PDE's,
ODE's, time-events and state—events).

The main program assigns (as usually in GASP-IV)
the logical unit number 5 to the input device
and the logical unit number 6 to the output de-
vice and finally makes a call to subroutine GASP.

PROGRAM MAIN(INPUT,OUTPUT,TAPE5=INPUT,TAPE6
1=0UTPUT, TAPET)

COMMON /GCOM1/ ATRIB(25),JEVNT,MFA,MFE(100)
1,MLE(100),MSTOP ,NCRDR,NNAPO,NNAPT ,NNATR,, NNF
2IL,NNQ(100) ,NNTRY ,NPRNT, PPARM(50,4) , TNOW,TT
3BEG,TTCLR, TTFIN,TTRIB(25),TTSET

NCRDR = 5
NPRNT = 6
CALL GASP
STOP
END

Subroutine INTLC is used to initialize the non-—
GASP variables and to record the first time-event
scheduled for one hour simulation time (£ 7 a.m.)
in the event file with event code 1 (£ ATRIB(2))
corresponding to switching from night to day
activity.

SUBROUTINE INTLC

DIMENSION U(11)

COMMON /GCOM1/ ATRIB(25),JEVNT,MFA,MFE(100)
1,MLE(100),MSTOP,NCRDR,NNAPO, NNAPT, NNATR, NNF
2IL,NNQ(100),NNTRY ,NPRNT ,PPARM(50,4) ,TNOW,TT
3BEG,TTCLR,TTFIN,TTRIB(25) ,TTSET



GASP V: A universal simulation package 395

COMMON /GCOM2/ DD(100),DDL(100),DTFUL ,DTNOW
1, ISEES,LFLAG(50), NFLAG,NNEQD, NNEQS ,NNEQT, S
2(100),5SL(100), TTNEX

COMMON /GCOM7/ NNDIF ,NNDIV, XXL,XXU, AAUX, AAU
1XX, NNEQX, DDX, XX(300)

COMMON /GCOM8/ BL(3,10),BU(3,10),NL(10),NU(
110)

COMMON /UCOM1/ MSET,MMAX,STATEV,TIMEV,SW

EQUIVALENCE (SS(1),U(1)),(S5(12},Z)

LOGICAL AAUX

C
Cr*%**SCHEDULING OF FIRST TIME-EVENT AT TIME
C*****T=1,0 WITH EVENT CODE 1

C

c

ATRIB(1)
ATRIB(2)

CALL FILEM

1
1.
(1

—_ O

CH****+*PSETTING OF BOUNDARY CONDITIONS AND
Cr****INITIAL CONDITIONS FOR THE PDE
c

1000
C

BL(1,1) = 0.0
BL(2,1) = 1.0
BL(3,1) = 0.0
NL(T) = 0
NU(TY = -2
MSET = 1
MMAX = 11
DO 1000 I=1,NNDIV
U(I) = 0.0
CONTINUE
ARUX = .FALSE.

C*****SETTING OF INITIAL CONDITIONS FOR THE ODE
Cr****AND SETTING OF FLAGS (= SWITCHES)

C

= 0.0
TIMEV = 0.0
STATEV = 1.0
RETURN

END

In subroutine STATE the state derivatives are
computed for both the ODE and the PDE.

C

C****

C

c

C****

SUBROUTINE STATE

DIMENSION U(11),UT(11),UX(11),UXX(11)
COMMON /GCOM2/ DD(100),DDL(100),DTFUL , DTNOW
1,ISEES,LFLAG(50),NFLAG, NNEQD, NNEQS ,NNEQT ,SS
2(100),SSL(100), TTNEX

COMMON /GCOM7/ NNDIF,NNDIV, XXL,XXU,AAUX,AAU
1XX,NNEQX, DDX, XX(300)

COMMON /GCOM8/ BL(3,10),BU(3,10),NL(10),NU(
110)

COMMON /UCOM1/ MSET,MMAX,STATEV, TIMEV,SW
EQUIVALENCE (SS(1),U(1)),(SS(12),Z), (DD(1),
1W0T(1)),(DD(12),ZT)

*COMPUTATION OF THE SWITCH SW
= TIMEV*STATEV

*COMPUTATION OF THE STATE DERIVATIVE FOR

CH***RTHE ODE
c
IT = 4.0%(SW - Z)

C
CH****COMPUTATION OF THE BOUNDARY CONDITION AT
CHx***THE LEFT END OF THE PDE
c
BL(3,1) = 30.0%*Z

C

C**#**COMPUTATION OF THE STATE DERIVATIVES FOR

C*****THE PDE

C
CALL PARSET (MSET,MMAX,U,UT,UX,UXX)
DO 1000 I=1,NNDIV
UT(I) = 0.5*UXX(I)

1000 CONTINUE

CALL PARFIN (MSET,MMAX,U,UT,UX,UXX)
RETURN
END

Subroutine SCOND is used for detection of the
two state conditions:

a) the temperature of the walls falls below 19:5¢

b) the temperature of the walls raises above
2275¢

SUBROUTINE SCOND

COMMON /GCOM2/ DD(100),DDL(100),DTFUL,DTNOW
1,ISEES,LFLAG(50) ,NFLAG, NNEQD,NNEQS ,NNEQT,SS
2(100),SSL(100),TTNEX

LFLAG(1) = KROSS (11,0,0.0,19.5,-1,0.5)
LFLAG(2) = KROSS (11,0.0.0,22. +1, .5)
RETURN

END

In subroutine EVNTS the required discrete events
are carried out. The event code (IX) has the
following meaning:

IX=1: Switching from night to day activity
IX=2: Switching from day to night activity

IX=3: State—event code (both state-events
have the same event code and are dis-
tinguished by use of the LFLAG value)

SUBROUTINE EVNTS (IX)

COMMON /GCOM1/ ATRIB(25),JEVNT,MFA,MFE(100)
1,MLE(100),MSTOP ,NCRDR ,NNAPO ,NNAPT ,NNATR, NNF
2IL,NNQ(100) ,NNTRY ,NPRNT , PPARM(50,4) , TNOW, TT
3BEG,TTCLR,TTFIN,TTRIB(25),TTSET

COMMON /GCOM2/ DD(100),DDL(100),DTFUL, DTNOW
1, ISEES,LFLAG(50) ,NFLAG,NNEQD,NNEQS ,NNEQT, SS
2(100),SSL(100) ,TTNEX

COMMON /UCOM1/ MSET,MMAX,STATEV,TIMEV,SW

c
C***+*BRANCH TO APPROPRIATE EVENT
c
GO TO (1,2,3), IX
C

C*****EVENT CODE 1: SET TIMEV TO BUSY AND
C*****SCHEDULE NEXT TIME EVENT FOR T=TNOW+12.0
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c
1 ATRIB(1) = ATRIB(1) + 12.0
ATRIB(2) = 2.0
CALL FILEM (1)
TIMEV = 1.0
GO TO 3
c

C*****EVENT CODE 2: SET TIMEV TO IDLE AND
Cr****SCHEDULE NEXT TIME EVENT FOR T=TNOW+12.0
C
2 ATRIB(1) = ATRIB(1) + 12.0
ATRIB(2) = 1.0
CALL FILEM (1)
TIMEV = 0.0

c

C*****EVENT CODE 3: CHECK WHETHER A STATE-EVENT
Cx****TYPE 1 OR TYPE 2 HAPPENED AND SET STATEV
C*****TQ BUSY OR IDLE ACCORDINGLY.

C

3 CONTINUE
IF (LFLAG(1).NE.-1) GO TO 4
STATEV = 1.0
RETURN

4 IF (LFLAG(2).NE.+1) RETURN
STATEV = 0.0
RETURN
END

Subroutine SSAVE is used to store data for
output documentation by calling the GASP-IV
subroutine GPLOT and by calling the FORSIM-V
subroutine RITER.

SUBROUTINE SSAVE

DIMENSION U(11),PLOT(4)

COMMON /GCOM1/ ATRIB(25),JEVNT,MFA,MFE(100)
1,MLE(100),MSTOP ,NCRDR,NNAPO,NNAPT ,NNATR , NNF
2IL,NNQ(100),NNTRY ,NPRNT ,PPARM(50 ,4) , TNOW, TT
3BEG,TTCLR,TTFIN,TTRIB(25),TTSET

COMMON /GCOM2/ DD(100),DDL(100),DTFUL ,DTNOW
1,ISEES,LFLAG(50),NFLAG,NNEQD,NNEQS ,NNEQT, SS
2(100),5SL(100), TTNEX

COMMON /GCOM7/ NNDIF,NNDIV,XXL,XXU,AAUX,AAU
1XX, NNEQX, DDX, XX( 300)

COMMON /UCOM1/ MSET,MMAX,STATEV,TIMEV,SW

EQUIVALENCE (SS(1),U(1))

c

C*****PRODUCE PRINT PLOT

c
PLOT(1) = SS(1)
PLOT(2) = SS(11)
PLOT(3) = 30.0%SW
PLOT(4) = SS(12)
CALL GPLOT (PLOT,TNOW,1)

c

C***+*pRINT THE PDE

c

DATA COOR/4HCOOR/,UU/4H U /
CALL RITER (XX,COOR)

CALL RITER (U,UU)

RETURN

END

By using GASP-IV to realize this example the user
would have to code himself the algorithms for the
computation of the space derivatives and for the
upsetting of the boundary conditions which is
done automatically in GASP-V by use of the sub-
routines PARSET and PARFIN. By using FORSIM-V the
user would find it difficult to code the events
in a proper way. To the best of the authors'
knowledge GASP-V is the first package capable of
handling such models in an easy and attractive
form both from the side of coding and from the
side of numerics.

3. FUNCTIONAL BLOCKS WITH DISCONTINUITIES

As it has been stated already in the introduction
to this paper proper handling of functional
blocks containing discontinuities requires brea-
king up the discontinuous models into a set of
continuous models (branches). For illustration
let us consider a hysteresis function (back-lash)
as it is given in fig.3.

y

N

fig.3 Graph of a back-lash function

This function should be broken up into the two
branches shown in fig.3 plus a horizontal branch
which can be placed anywhere depending on the
history of the function. We, therefore, have to
distinguish between three different models:

Model 1:

Yy =y o
where y_ means the last computated value for y.

This mo&el has to be selected for

¥ > xP, Uy < xP (8)

and is valid until:

Event A: x crosses y+P2 in positive direction

> switching over to model 2.

Event B: x crosses y+P_ in negative direction

- switching ovVer to model 3.

Model 2:

y=x-F, (9
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This model has to be used when:
> +
x 2y +P, (10)

and is valid until:
Event C: X < X
- swi%ching over to model 1.

Model 3:

y=x- Pl (11)

This model has to be utilized when:
x <y +P (12)

and is valid until:

Event D: X > X
- switching over to model 1.

Another example of proper spliting up of such
functional blocks (for the description of a
friction force) is_given in [8].

It has been found a way to enable the user to
code a hysteresis function (and most of the
other functional blocks offered by a package
like CSMP-III) in a very simple form when using
GASP-V:

Y = HSTRSS (IX,YIC,P1,P2,TOL,ID) (13)
where: IX describes the input function:
x = {SS(IX) ; IX>0 (state variable)

DD(-IX); IX<0 (state deriv.)
YIC initial condition for y

1’P2
TOL required accuracy for locating
state events

P1,P2 as described above P

ID identifier which is unique to each
call

This utilization is syntactically almost equi-
valent to the use in CSMP-III. The TOL parameter
is new (meaningless in CSMP-III, since no state-
events exist). The ID parameter is necessary in
CSMP-IIT as well, but there it is automatically
added during preprocessing.

To show how this goal could be achieved, let us
consider now the following system:

0

X, = x xl(O)
X, = 7% XZ(O) =1

y, = HSTRSS (1,0.0,-0.5,0.5,1073,1)
y, = HSTRSS (2,0.5,-0.5,0.5,10" 3,2)

vy, = STEP (5.0, 3)

The system described by x, and %, results in a
sin- and a cos-function. y, and ¥, are the out-
put functions of a back-lash with“sin-input. y
is equal to zero until t=5 and then jumps to ohe.

Below the appropriate STATE-subroutine for GASP-V
is given:

SUBROUTINE STATE

COMMON /GCOM2/ DD(100),DDL(100),DTFUL, DTNOW
1,ISEES,LFLAG(50) ,NFLAG,NNEQD,NNEQS ,NNEQT ,SS
2(100),SSL(100),TTNEX

DD(1) = $S(2)

DD(2) = -SS(1) :
SS(3) = HSTRSS (1,0.0,-0.5,0.5,1.E-3,1)
SS(4) = HSTRSS (2,0.5,-0.5,0.5,1.E-3,2)
SS(5) = STEP (5.0,3)

RETURN

END

For illustration how this goal could be achieved,
below the GASP-IV listing of the HSTRSS and STEP
function and of the subroutines SCOND and EVNTS
are given:

FUNCTION HSTRSS (IX,YIC,P1,P2,TOL,ID)
COMMON /GCOM2/ DD(100),DDL(100),DTFUL,DTNOW
1,ISEES,LFLAG(50),NFLAG, NNEQD,NNEQS ,NNEQT ,SS
2(100),SSL(100) , TTNEX
COMMON /GCOM12/ XXMEM(200),IISTRT(50),IITYP
1E(50), TIDENT(50),IITRY,IIATR, IIPNT,I1IUPD,TN
20WL
DIMENSION IIMEM(200)
EQUIVALENCE (XXMEM(1),TIMEM(1))
IF (IIPNT) 10000,2,1
1 D0 1000 J=1,IIPNT '
IF (IIDENT(J).NE.ID) GO TO 1000
I = IISTRT(J)
GO TO 5
1000 CONTINUE
2 TIPNT = IIPNT
TITYPE(IIPNT)
IISTRT(IIPNT)
I = 1IUPD
I1UPD = IIUPD
TIDENT(IIPNT)
XXMEM(142) = YIC
TIMEM(1+8) = 1
IF (IX) 3,10001,4

1
1
ITUPD

noun o+

11
1D

+

311 = -IX
XXMEM(I+6) = DD(I1)
XXMEM(I+7) = DD(I1)
G0 TO 5

4 XXMEM(I+6) = SS{IX)
XXMEM(1+7) = SS({IX)

5 IIMEM(I+1) = IX
XXMEM(T+3) = P1
XXMEM(I+4) = P2
XXMEM(I+5) = TOL

IM = IIMEM(I+8)
IF (IM-2) 6,7,10
6 XXMEM(I) = XXMEM(I+2)
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7
8

9

10

11

12

13
10000

10001

1000

10000
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G0 TO 13
IF (IX) 8,10001,9

11 = -IX

XXMEM(I) = DD(I1) - P2
GO TO 13

XXMEM(I) = SS(IX) - P2
GO TO 13

IF (IX) 11,10001,12

11 = -Ix

XXMEM(I) = DD(I1) - P1
GO TO 13

XXMEM(I) = SS(IX) - P
HSTRSS = XXMEM(I)
RETURN

CALL ERROR (907)
RETURN

CALL ERROR (902)
RETURN

END

FUNCTION STEP (P,ID)

COMMON /GCOM1/ ATRIB(25),JEVNT ,MFA,MFE(100)
1,MLE(100),MSTOP ,NCRDR, NNAPO, NNAPT ,NNATR , NNF
2IL,NNQ(100) ,NNTRY ,NPRNT ,PPARM(50,4) , TNOW, TT
3BEG,TTCLR, TTFIN, TTRIB(25),TTSET

COMMON /GCOM12/ XXMEM(200),IISTRT(50),IITYP
1E(50), 1IDENT(50), IITRY, IIATR, IIPNT,1IUPD,TN
200L

DIMENSION IIMEM(200)

EQUIVALENCE (XXMEM(1),IIMEM(1))

IF (IIPNT) 10000,2,1

DO 1000 J=1,IIPNT

IF (IIDENT(J).NE.ID)

I = IISTRT(J)

GO TO 4

CONTINUE

IIPNT = IIPNT

IITYPE(IIPNT)

IISTRT(IIPNT)

I = IIUPD

IIUPD = IIUPD + 1

TIDENT(IIPNT) = ID
IITRY = IITRY + 1
I
)

GO TO 1000

nn +
-

ITUPD

| —

IIATR = MAXO (IIATR,3)
IF (P.GT.TTBEG) GO TO 3
XXMEM(I) = 1.0

0

Wouon

b=
ot
=
=
jvs)
~
=
1

AT (I) + 0.5
CALL FILEM
STEP = XXMEM(I)
RETURN
CALL ERROR (901)
RETURN
END

0
p
2
FLO
(1)
M(I

SUBROUTINE SCOND

COMMON /GCOM1/ ATRIB(25),JEVNT ,MFA,MFE(100)
1,MLE(100) ,MSTOP ,NCRDR,NNAPQ ,NNAPT, NNATR, NNF
2IL,NNQ(100),NNTRY,NPRNT ,PPARM(50,4 ), TNOW,TT
3BEG,TTCLR, TTFIN,TTRIB(25),TTSET

1

2

3

4

1000

7
1001

10001

10002

COMMON /GCOM2/ DD(100),DDL(100) ,DTFUL, DTNOW
1,1SEES,LFLAG(50) , NFLAG,NNEQD ,NNEQS , NNEQT, S
2(100),SSL(100),TTNEX

COMMON /GCOM12/ XXMEM(200),IISTRT(50),11TYP
1E(50),1IDENT(50),1ITRY, IIATR, IIPNT,I1IUPD, TN
20WL

DIMENSION IIMEM(200)

EQUIVALENCE (XXMEM(1),TIMEM(1))

IF (WNEQT.GE.100) GO TO 10002

IF (IIPNT.EQ.0) RETURN

DO 1000 J=1,IIPNT

I = IISTRT(J)

IT = IITYPE(J)

G0 TO (1,1000), IT

IM = IIMEM(I+8)

IF (IM-2) 2,3,4

TIMEM(I+9) = KROSS (IIMEM(I+1),0,0.0,XXMEM(
1142)+XXMEM( I+4),+1, XXMEM(1+45))

TIMEM(1+10) = KROSS (IIMEM(I+1),0,0.0,XXMEM
(142 )+XXMEM{ T+3) ,-1, XXMEM(1+5))

IX = TIMEM(I+1)

GO T 1000

SS(100) = XXMEM(I+6)

SSL(100) = XXMEM(I+7)

TIMEM(I+9) = KROSS (IIMEM(I+1),100,1.0,0.0,
1-T,XXMEM(145) )

IX = TIMEM(I+1)

G0 TO 1000

SS(100) = XXMEM(I+6)

SSL(100) = XXMEM(I+7)

TIMEM(I+9) = KROSS (IIMEM(I+1),100,1.0,0.0,
141, XXMEM(1+5))

IX = TIMEM(I+1)

CONTINUE

IF ((ISEES.NE.0).OR.(TNOW.LE.TNOWL)) RETURN

THOWL = TNOW

DO 1001 J=1,IIPNT

I = IISTRT(J)

IT = IITYPE(J)

GO TO (5,1001), IT

XXMEM(1+2) = XXMEM(I)

XXMEM(I+7) = XXMEM(I+6)

IX = TIMEM(I+1)

IF (IX) 6,10001,7

Il = -IX

XXMEM(1+6)

GO TO 1001

XXMEM(1+6)

CONTINUE

RETURN

CALL ERROR (902)

RETURN

CALL ERROR (903)

RETURN

END

DO(I1)

SS(IX)

SUBROUTINE EVNTS (IX)

COMMON /GCOM1/ ATRIB(25),JEVNT,MFA,MFE(100)
1,MLE(100),MSTOP,NCRDR,NNAPO ,NNAPT ,NNATR ,NNF
2IL,NNQ(100),NNTRY ,NPRNT ,PPARM(50,4) ,TNOW,TT
3BEG,TTCLR,TTFIN,TTRIB(25) ,TTSET

COMMON /GCOM12/ XXMEM(200),IISTRT(50),IITYP
1E(50),I1IDENT(50),IITRY,ITIATR,IIPNT,IIUPD,TN
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20WL
DIMENSION IIMEM(200)
EQUIVALENCE (XXMEM(1),TIMEM(1))
TNOWL = TNOW
GO TO (1,7), IX
1 D0 1000 J=1,1IPNT
I = IISTRT(J)
= 1ITYPE(J)
T0 (2,1000), IT
= TIMEM(I1+8)
(IM-2) 3,5,6
3 IF (IIMEM(I+9).NE.1) GO TO 4
TIMEM(I+9) = O
TIMEM(1+8) = 2
GO TO 1000
4 IF (IIMEM(I+10).NE.-1) GO TO 1000
TIMEM(I+10) = O
IIMEM(1+48) = 3
GO TO 1000
5 IF (IIMEM(I+9).NE.-1) GO TO 1000
TIMEM(I+9) = 0
TIMEM(I+8) = 1
GO TO 1000
6 IF (IIMEM(I+9).NE.1) GO TO 1000
TIMEM(I+9) = O
IIMEM(I+8) = 1
1000 CONTINUE
RETURN
7 1 = IFIX (ATRIB(3))
XXMEM(I) = 1.0
RETURN
END

In GASP-1IV the user would have to code all the
subprograms coded above. In GASP-V there exists
in parallel with the user-supplied subroutine
SCOND a system—supplied subroutine GCOND in
which state conditions resulting from the use of
such functional blocks are evaluated. Time-events
are recorded by use of the ordinary file handling
system of GASP-IV but showing negative event
codes (not used in GASP~IV). If a time-event with
negative event code is realized or if a state-
event is detected in GCOND the system—supplied
subroutine GEVNT is called (instead of EVNTS)

for accomplishment of the event. In GEVNT all
event handling resulting from the use of such
functional blocks is-coded.

By introducing this feature both core memory re-
quirement and execution time of a GASP-IV program
raise by not more than 5 + 10 Z (subroutines
GCOND and GEVNT). This can be avoided by simply
not loading the two subroutines. Another possi-—
bility would be to keep both subroutines GASP
under two different names (e.g. GASP and GASP5)
in the library. GASP-IV programs may then be
executed by calling GASP, whereas GASP-V pro-
grams require a call to subroutine GASP5 instead.

4. THE INTEGRATION

In GASP-IV a Runge-Kutta algorithm of fourth
order with step size computation is coded direct-—
ly in subroutine GASP. For this reason serious
modifications are required if another algorithm
should be used instead.

It can be assumed that in most cases at least
some discrete events will take place in every
program, since for pure continuous simulation
problems other packages are easier to apply and
are more efficient than GASP for equivalent re-
sults. It can be said in general that for inte-
gration of systems in which discontinuities
exist, always one step algorithms should be used,
since multi-step algorithms always have to be
restarted when a discrete event is realized. For
most applications, therefore, the Runge-Kutta
algorithm will be almost optimal and will give
satisfactory results. The Runge-Kutta algorithm
will then be no more optimal when a system is
very stiff.

Let us consider now a PDE of form eq.(4). For the
k-th u(t) called uk(t) it can be written:

uk(t) = O.5°{u (t) +ouy (t)} + 0(Ax) (14)
For Ax being sufficiently small the above
equation describes an almost linear relationship
between neighbouring functions, which implies
that the eigenvalues of this system will be wide
spread. A system of ODE's resulting from the
discretization of a PDE will, therefore, almost
by definition form a stiff system.

For this reason the most commonly used algorithm
in FORSIM-V is the Hindmarsh-implementation of
the Gear algorithm [9,10]. This algorithm, how-
ever, is a multistep algorithm and, therefore,
not optimally well suited for proper handling of
discontinuities.

According to the authors' opinion the best suited
"eclassical" algorithm in this case would be the
tangent rule, which is an implicit one step algo-
rithm, with a bit of interpolation for raising
the order. Such an algorithm is described in [11,
12]. It is, however, very well possible that an
even more optimal algorithm for this purpose
still could be developed.

To facilitate the implementation of new algo-
rithms the subroutine GASP is entirely rewritten
to allow easy implementation of new algorithms.
Implementation of a Gear—algorithm and of

a tangent rule has been considered but not yet
realized.
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5. NUMERICAL RESULTS AND EFFICIENCY CONSIDERATIONS

To discuss the efficiency of GASP-V let us come
back once more to the heat diffusion problem.
Fig.4 shows the GASP-V echo check of the input
data for this problem. The meaning of all va-
riables is identical te GASP-IV (cf. [1,2])
except for NNPDE denoting the number of PDE's
in the system, NNDIF being the number of points
used for the computation of the spatial deriva-
tives, NNDIV corresponding to the number of
spatial divisions, NNX indicating whether equal
or unequal divisions have been selected, XXL
pointing to the lower bound in space and XXU
fixing the upper bound correspondingly. Fig.5
shows a part of the graphical output showing the
temperature at the lower and at the upper bound
versus time. At initialization the temperature
in the whole building is equal to the outside
temperature (0 C). After one hour the left side
temperature is controlled to reach 30°C. This
strategy continues until the temperature at the
upper border raises to 22,5°C, Then the control
low is changed to cool the building down again
to 0°C (bang-bang control) until the temperature
at the upper bound falls below 19.5°C, This
bang-bang control continues until 13 hours of
the simulation time have passed. Then the con-
trol low is changed again to cool the building
down to 0 C, independently from the temperature
at the upper limit in space.

To execute this problem the CDC 6500 computer
needed 65000 octal words of core memory and
66.7 sec. of CPU-time (translation included),

SIMULATION PROJECT NUMBER 3

DATE 11/ 20/ 1975
LLSUP=000000000000000

NNCLT= O NNSTA= 0  NNHIS= O  NNPRM= O

NNATR= 2  NNFIL= 1  NNSET= 20  NNEQD= 12

NNDIF= 3 NNDIV= 71 MNX = -

XX = -0, XX = . T000E+401

GPLOT NO. 1  LLABP=TIME IITAP= 2 NWAR= 4
VAR NO. 1 A=TEMPLEFT LLPLO= -0 LLPHI= -0
VAR NO. 2 B=TEMPRIGT LLPLO= -0  LLPHI= -0
VAR NO. 3 C=TEMPSORC LLPLO= -0  LLPHI= -0
VAR NO. 4 D=SWITCH  LLPLO= -0 LLPHI= -0

KKRNK= (1)

IIN=( 1)

TIEVI= 3 LLERR= 0  AAERR= .1000E-01

DTMIN= .1000E-01 DTMAX= .2500€+00

MSTOP= 1 JJCLR= O  JJBEG= 1 IICRD= O

WFIL= ]

1ISED= -0

PARTIAL DIFFERENTIAL EQUATION

RUN NUMBER
GASP V  VERSION 300KT75

corresponding to 43,-~ sfr. of total costs for

the job. A comparison with other programs for this
problem was not possible, since no other program
as far as it is known to us is capable of handling
the problem in a comparable way.

As an example of handling discontinuities a power
electronic convertor circuit has been evaluated.
In this example a current is controlled to follow
a sinus-wave in a chopped manner over one period.
The original program coded in CSMP-6000 costed
about 800,-- sfr, to be executed on our CDC 6500
installation. A corresponding GASP-IV program
costed 45,-- sfr, and an equivalent GASP-V program
costed 32,-- sfr, both computed on the same instal-
lation. The two GASP programs are much more accu-
rate since the discontinuities are located proper-—
ly. The GASP-V program was somewhat faster than
the GASP-IV program due to different algorithms
used for the integration, the error estimation,
the step size control and the iteration of state
events, The much higher costs of the CSMP program
result from the effect of creeping described
above. All other known parallel packages would
show similar effects for the same reason.

It is clear that a parallel language could be
developed in which the user has the possibility
to define discrete events. The preprocessor of
this package would have to translate the parallel
code into a target language which is similar to
GASP. Such a package, however, does not exist
yet.

BLITZ

1 OF 1

NNPLT= 1 NNSTR= 1 NNTRY= 5
NNEQS= 2 NFLAG= 2 NNPDE= 1
LLPLT= 2 DTPLT= +2500E+00
PPLO = -0. PPHI = ~0.

PPLO = -0. PPHI = -0.

PPLO = -0. PPHI = -0.

PPLO = -0. PPHI = -0.

RRERR= .1000E-01

DTSAV= .2500E+00

TTBEG= 0. TTFIN= .3600E+02

fig.4 GASP-V echo check of input data for the heat diffusion problem

1 WILL BE DISCRETISED USING 3 POINT FORMULAE AND 11 EQU. SPATIAL DIVISIONS



A=
B=
C=
D=

0

TEMPLEFT
TEMPRIGT
TEMPSORC
SWITCH

TIME

.2500E+00
.5000E+00
.75C0E+00
. 1000E+01
. 1250E+01
. 1500E+017
.1750E+01
.2000E+01
.2250E+01
.2500E+01
.2750E+01
. 3000E+01
.3250E+01
.3500£+01
.3750E+01
.4000E+01
.4250E+01
. 4500E+01
.4750E+01
.5000E+01
.5250E+01
.5500E+01
.5750E+01
.6000E+01
.6250E+01
.6500E+01
.6750E+01
.7000E+01
. 7250E+01
. 7500E+01
. 7750E+01
.8000E+01
. B250E+01
.8500E+01
. 8750E+01
.9000E+01
.9250€+01
-9500£+01
.9750E+01
.1000E+02
.1025E+02
. 1050E+02
.1075E+02
.1100E+02
L 1125E+02
. 1150E+02
.1175E+02
. 1200E+02
. 1225E+02
. 1250E+02
.1275E+02
. 1300E+02
.1325E+02
. 1350E+402
< 1375E+02
. 1400E+02
. 1425E+02
. T450E+02
.1475E402
. 1500E+02
. 1525E+02
. 1550E+02
. 1575E+02
. 1600E+02
.1625E+02
.1650E+02
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**PLOT NUMBER 1**
RUN NUMBER 1

SCALES OF PLOT

0. .7481E+01 .1496E+02 . 2244E402
0. .5963E+01 .1193E402 . 1789E+02
0. . 7500E+01 . 1500E+02 . 2250E+02
0. .2494£+00 .4987E+00 .7481E+00
0 5 10 15 20 25 30 3 40 45 50 55 B0 65 70 75 8 8 90 95 100
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fig.5 Graphical output of the heat diffusion problem

.2992E+02
.2385E+02
. 3000E+02
.9974E+00

DUPLICATES

AB AC AD
AB AC AD
AB AC AD
AB AC AD
AB AC AD
AD

AC AD
AC AD

AB AD

401
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