Simulation of Systems, L. Dekker, editor
© North-Holland Publishing Company, (1976)

MACRO-HANDLER FOR STMULATION PACKAGES USING ML/I

Frangois E. Cellier

Institute for Automatic Control
The Swiss Federal Institute of Technology
Physikstr. 3
CH-8006 Zurich ; Switzerland

The demands on a macro—handler for use in simulation languages are described. It is shown how
general purpose macro generators may be used in this context. An introductory part of the pa-
per shows under which circumstances such macro-handlers are useful. The possibilities for de-—
viding simulation packages into several subpackages are discussed, out of which the macro-handler
will be one. Prospectives for further development of simulation languages suitable for use in
parameter identification and other optimization problems, interactive computer aided design
problems etc. are pointed out. Since such programs for most applications will have to run on
minicomputers an independently working macro-handler as described below will be one element

of it.
1. INTRODUCTION

In 1967 the SCi Simulation Software Committee
published the CSSL-Report [1]. This report de-
scribed a new simulation language far beyond
any language propagated before but at that time
existing only as a goal for further development
since no compiler existed to run CSSL on any
installation. Since this report has been widely
accepted newer packages base very much upon it.
The newest representative of this "family" of
simulation packages is ACSL [2] being even a
superset of CSSL. The enormous comfort of such
simulation packages has to be paid for by high
requirements of core memory and a rather slow
execution compared to the execution of a equi-
valent program which is e.g. entirely coded in
FORTRAN-1IV. Besides, the compilers to these
packages — if developed on a commercial basis -
will cost over $ 10000 which makes it more and
more attractive to the occasional user of such
a package to pay high amounts for data trans—
mission (via satellite) to be connected to a
computer placed anywhere on our globe rather
than to buy the compiler for his own instaila-—
tion. ’

Although there exists a great demand for these
packages they are not really suited if:

a) discontinuous functions form part of the
model as explained in [3]

b) interactive use is required, since all of
these packages run on "big" computer instal-
lations. Interactive utilization of user
programs (written in high level languages)
on such installations is uneconomic for most:
applications -

¢c) a simulation study exceeds a — verwv! =~
limited number of single simulation runs,
since the costs for one simulation rum witil
always be so high that e.g. parameter identi-
fication problems for several unkdown para—

meters requiring hundreds of simulation runs
would normally not pay out. Also for this
application the simulation should, therefore,
be carried out on a minicomputer.

The problem can be described as to find a way to
split up the simulation package into independent-
ly working subunits (modules) to allow a maximum
number of features to be coded within e.g. 28k

of core memory on a 16 bit machine.

The "classical" CSSL—pre simulation package
consists of two programs:

a) a preprocessor which interprets the user
supplied parallel code and translates it .
into procedural code written in an intermedi-
ate language (e.g. FORTRAN-IV)

b) a run—time program which reads in the actual
simulation parameters, carries out the simu-—
lation, interprets output request statements
and produces output accordingly.

These two programs always work independently.
If smaller modules are required it is possible
to cut down both programs in the following way:
Program (a) may be subdivided into:

a) a macro-handler which can be coded indepenr
dently of the rest since anyhow all macro
calls have to be replaced by their definition
bodies before any further preprocessing is
activated to guarantee for modularity. This
is shown in [4]

B) one or several preprocessors for the different
sections of the user's program where section
means a functional program block (e.g. deri-
vative section). It may be useful to have dif-
ferent preprocessors for different sectioms,
since each section may define a '"language” of
its own with a syntax of its own according to
its specific duty

516 FE. Cellier

v) a preprocessor for introduction of header in-
formation which is necessary to allow several
sections to have automatically updated common
variable lists. A statement

COMMON #*B* @D

placed at the beginning of section A should
cause the header information (£ specification
statements) generated by the preprocessor of
section B to be placed at the disposal of
section A.

Program -(b) may be subdivided into:

a) a program for reading in the actual parame-
ters and for carring out the simulation (data
input may be overlayed if necessary)

8) a program for processing of output requests
(postprocessor).

The most successful steps towards-the concept
described above so far published have been made
at the University of Arizona where the DARE
simulation language family has been developed.
The packages out of this family are described
in [5,6]1. A batch version DARE~P [7] has been
implemented by the author of this paper for use
on a PDP~11/45 running under DOS/BATCH versioms
9 and 10 within 28k of core memory without need
for overlay structure. This could be achieved
since DARE-P is structured as above consisting
of three independent programs for preprocessing,
run~time and postprocessing. DARE-P has no
macro facility available, but beside this short-
coming is almost as powerful as CSMP-III and
has even certain advantages over CSMP-III (as
for example the "logic''~section being more
flexible than the corresponding 'initial"- and
"terminal''-sections of CSMP-~III). The macro-
handler described below has been used to amelio-
rate the possibilities of DARE-P, but is not
restricted to this package. Since it is comple—
-tely modular it may be used in connection with
any other package as well.

Up to now only standard features of simulation
packages have been considered. The value of
such a package could, however, remarkably be
augmented if:

a) a nonlinear programing package would be over-
laid to the run—-time program (ba) for automa-~
tic minimization of a performance index which
is to be specified in a seperate section of
the user's program.

b) an additional program would be added at the
end of the program chain for interactive
input of new simulation data and/or output
request statements.

Taken all together we obtain the following pro-
gram structure:

macro—~handler

preprocessor

!

data input
simulation

output-handler
postprocessor

[

interactive
decisions

I

optimization

fig.l program structure of a simulation package
to run on a minicomputer

By coding the programs for this package the fol-
lowing should be taken into account:

a) the intermediate program should be generated
in a well readable form such that skilled
users have the possibility to code their pro-
grams directly in the intermediate language
itself bypassing all preprocessing activities.
This 1s realized e.g. in DARE-P but not in
CSMP-S/360.

b) the generated run—time program could as well
be of the GASP-type [3] to allow a broader
range of applications. The different subpro-
grams of the intermediate program would be
generated from different sections of the
user's program.

¢) their could be several different preproces—
sors or maybe several layers of preprocessors
made available from which the user may select
those best fitting his problem (e.g. prepro-
cessors for analysis of electrical networks,
pert networks etc.).

There 1is a lot of work still to be dome until
this goal is achieved. To start with, this paper

Macro-handler for simulation packages using ML/1 517

describes the first program block which is the
macro~handler. It is shown that a general pur-
pose macro generator (the author selected ML/I)
can be utilized and what special problems have
to be considered.

2. SELECTION OF COMPILER LANGUAGE

According to the author's opinion it is extreme-
ly important to select an adequate language for
the coding of the macro—handler, more than for
any other of the programs denoted above. The
macro~handler of CSMP-III, for example, which

is coded in FORTRAN-IV may only be used for
coding of dynamic functiomal blocks (which is,
of course, the most important part im this con-
text). However, execution is rather slow.

A more universal interpretative macro—handler

as offered in CSSL-III executes extremely slew
and needs very high amounts of core memory.

A macro-handler coded directly in macro assembly
or in a general purpose macro language which it-—
self is coded in assembly will execute between
10 and 100 times faster while occupying much
less core memory. Unfortunately, there does not
exist any "universally accepted" macro language.
The macro-handler will thus be installation de-
pendent. This disadvantage should, however, be
more than equalized by the advantages described
above. Besides, there is mo other way if a
powerful macro—handler should be coded for use
on a minicomputer with restricted amount of

core available.

For the PDP-11/45 computers there exist two such
packages: ML/I [8,9] and STAGE-2 [8] out of
which ML/I has been chosen. By use of STAGE-2

it would have been difficult to spread a macro
call over several lines, since STAGE-2 is line-
oriented. This feature is important in simula-
tion techniques applications since often the
number of arguménts of such macros will be rela-
tively high.

3. THE MACRO ENVIRONMENT

As a first step one has to come to an agreement
concerning the macro environment that is grammar
and syntax of the macro calls and their defini-
tion bodies.

Each macro call shall have the following form:
name (yl,yz,...,yk=xl,x2,...,xm) (2)

with name being the name of the macro, y. being
formal output parameters and x. being formal in-
put parameters. The distinction between input
and output parameters has no functional meaning.
It ameliorates the readability of the programs
and thus serves for the users convenience. In-
put and output parameters are called arguments
of the macro.

Parameter lists may be continued over several
lines by simply breaking the statement after any

m"mon n_mn,
T or "=

name (yl,y?_,---,yl)(EETTRERR P (3)
R
In ML/I this can be coded by giving each macro
definition an appropriate delimiter structure,
describing how the arguments of the macro are
separated from each other. Since the delimiter
structure of all macros should be the same (as
described above) the delimiter structure will be
coded as a macro itself. The appropriate coding
in ML/I will be:

MCDEF <PARENS>)

AS <WITHS (N1 OPT , N1 OR , WITH NL N1 OR , -
WITH NL WITH SL N1 OR = = WITH NL OR = WITH
NL WITH SL ALL N2 OPT , N2 OR , WITH NL N2 OR ,
WITH NL WITH SL N2 OR) WITH NL OR) WITH NL
WITH SL ALL> -

WITHS (belongs to the macro name (since the
first argument y, starts only behind the opening
bracket). N1 denotes a label. The words OPT and
ALL embrace a list of several possible delimi-
ters separated from each other by the word OR
which are:

, WITH NL (, followed by a new line)
, WITH NL WITH SL (, followed by a
new line and a start line)

WITH NL
WITH NL WITH SL

The combination of "," or "=" with the new

line as one delimiter allows the continuation of
argument lists over several lines. After each
delimiter starting with a "," there is again a
label N1 showing back to the beginning of the
option list. The first N1 is therefore a label
whereas later uses of N1 (in this example) de-
note a ''go to''-statement. The distinction between
those two possible uses is done in accordance
with its position in.the string. This feature of
ML/I allows definition .of macros with a variable
number of arguments (as required for this pur-
pose) .

Any further macro definition can now be written
as:

MCDEF <name> PARENS %)
AS <....>

Macro calls are only to be detected as such if
they are not placed within a comment line. For
use in DARE-P they are lines marked by a C or
by an * in column 1. This can be coded by a
command to skip over each line starting with
one of those symbols:

518 F.E. Cellier

MCSKIP DT, OPT SL WITH C OR SL WITH * ALL NL

All text is skipped over which is included in

the two delimiters "start-line followed by a C"
or "start-line followed by an *" and "new line".
The two parameters D and T cause both the delimi-
ters and the text between to be copied over to
the output file.

In the following macro call:
NAMET (A=AMAX1(B,AMINT(C,D)},E) - (5)

the whole expression AMAX1(B,AMIN1(C,D)) logical-
ly describes one argument. Syntactically the
following "arguments' . would: be: found:

- A
AMAX1 (B
AMIN1(C
-D

and the string "),E)" would not belong to the
macro call. To avoid this missinterpretation
the following statement may be used:

MCSKIP DTM, ()

Text between parenthesis will be skipped over
with text and delimiters copied to the output
file. The search for the delimiters is done on
a matched basis. The opening parenthesis of the
macro call will not be detected since it belongs
to the macro name (ML/I always searches for the
longest possible text strings).

To delay the insertion of macros until a later
time the statement

MCSKIP TM, <>

is used, which causes a skip over a text string
encompassed by the two matched delimiters "<"
and ">"., The text is copied to the output file
whereas the delimiters are deleted. Text in a
macro definition should always be placed between
those brackets to cause imnserts to be made only
at macro replacement time and not at macro defi-
nition time.

Inserts are characterized by the encompassing
symbols %" and "." using the statement:

MCINS %.
The statement:

MCSKIPG £

allows the user to separate two text strings
consisting of only alphanumeric information from
each other. by placing the symbol "£" between
which is.deleted immediately.

The complete macro environment body has now the
following form:

MCSKIP TM,<>

MCSKIP DTM, ()

MCSKIPG £ :

MCSKIP DT, OPT SL WITH C OR SL WITH * ALL NL
MCINS %.

MCSET P1=99

MCSET P2=9999

MCSET P3=0

MCSET P4=0

MCDEF <PARENS>

AS <WITHS (N1 OPT , N1 OR , WITH NL N1 OR , WITH
NL WITH SL N1 OR = OR = WITH NL OR = WITH NL WITH
SL ALL N2 OPT , N2 OR , WITH NL N2 OR , WITH NL
WITH SL N2 OR) WITH NL OR) WITH NL WITH SL ALL>
The meaning of the MCSET-statements will be ex-—
plained in the next chapter.

4. SPECIAL PROBLEMS OF SIMULATION MACROS

The output file of the macro-handler still con-
sists of parallel information that is a set of
statements which have not yet been rearranged
into their appropriate order at execution. This
implies that all variables may only be defined
once (may only appear once at the left side of
the equal sign). To allow macros to be inserted
several times, all locally defined variables
within the macro definition body (£ all variables
appearing on the left side of the equal sign and
not belonging to the formal parameter list) have
to obtain new, unique names each time they are
evaluated. This can be achieved by giving each
such variable a name consisting of the two sym-
bols ZZ followed by a unique number. The state-
ment :

MCSET P1=99

in the macro environment body assigns the value
99 to the system variable P1l. The i-th locally
defined variable of a macro definition body may
now be represented as ZZ7ZPl+i.. At macro replace-
ment time the two letters ZZ followed by the
inserted actual value of the expression Pl+i

will be copied over to the output file. The first
locally defined variable will, therefore, obtain
the name ZZ100. At the end of the macro defini-
tion body the system variable Pl has to be aug-
mented by the number of locally defined variables
k of the macro definition. For this purpose the
following statement may be used:

MCSET P1 = P1 + &

The same procedure can be used for the genera-
tion of local labels in a procedural text string.
Also these labels have to be unique since all of
them will after translation belong to the same
subroutine (DIFEQLl in the case of DARE-P). For

Macro-handler for simulation packages Lusing ML/1 519

this purpose the system variable P2 is used gene—
rating labels from 1000 upwards. ZP2+i. will re-
present the i-th local label of the macro defi-
nition.

As an example let us consider the model of a
DC-motor described by the following state equa-
tions:

R /L - /L, 0 I_llLa’
FR BLIVA SV of-x + }Ol'u
I D
where: X, = current through the motor
x, = motor speed
Xy = motor angle
u = voltage over the motor
Ra = motor resistance
La = motor inductivity
ch = back—-EMF constant
g = friction constant
Jm = motor inertia

By using the macro—handler of CSMP-III this model
would be coded in the following way:

MACRO X3, X2, TM = DCMOT (UIN)

X1 = INTGRL (0.0, X1DOT)

X2 = INTGRL (0.0, X2DOT)

X3 = INTGRL (0.0, X3DOT)

X1DOT = (1./LA)*(UIN - XT*RA - CM*X2)
X2D0T = (1./dM)*(TM - CF*X2)

X3D0T = X2

TM = CM*X1

ENDMACRO

Three kinds of variables can be distinguished:
formal parameters, locally defined variables and
global constants. Table 1 describes them:

num—| formal |local |global
ber para- def. const.
meter var.

1 X3 X1 LA (ALA for use in DARE-P)
2 X2 RA :

3 ™ CM

4 UIN CF

5 JM (AJM for use in DARE-P)

table 1: Variables of the macro describing
a DC-motor.

By use of ML/I the following macro definition
body (for a DARE-P program) can be used:

MCDEF <DCMOT> PARENS
AS<MCNOSKIPSZZ%PT+1..=(1./ALA)*(%A4 . -ZZ%P1+].*RA
L -CM*%A2.)
U2, .=(1./AIM)*(%A3.-CF*%A2.)
%A1, . =%A2.
YA3.=CM*ZZ%PT+1.
MCSET P1 = P1 + 1

>
A macro call:

DCMOT (XX3,XX2,TTM=UUIN) (6)
will result in:

Z7100.=(1./ALA)*(UUIN-ZZ100*RA-CM*XX2)
XX2.=(1./AJM)*(TTM-CF*XX2)

XX3.2XX2

TTM=CM*ZZ100

The first three statements of the CSMP-macro are
not necessary here since the equation:

Y= ax %)
which is coded in CSMP-TII as:

X = INTGRL (0.0, XDOT)
XDOT = A*X

is represented in DARE-P by:
X. = A*X

The above example illustrates furthermore the

coding of formal parameters (£ attributes) of

the macros. TM which is the third attribute of
the macro is coded as: Z%A3.

The following example shows proper treatment of
memory— and history-functions (£ functions re-
quiring a certain number of storage allocations
for backup ~memory). The statement:

HSTRSS (Y = YIC, P1, P2, X)
should result in:
Y = HSTRSS (x, YIC, P1, P2, X)

where k is a pointer pointing to the first

memory cell of a stack being used for this
specific call of the history-funection HSTRSS. For
this purpose the system variable P3 is used which
is augmented at the end of the macro defimition
body by the number of storage allocations requi-
red by the function (3 in the case of the HSTRSS-
function).

The macro for the HSTRSS—function may be coded

520 F.E. Cellier

as:

MCDEF <HSTRSS> PARENS
AS<MCNOSKIPE%AT . =%WDO. %P3+1. ,%A2. , %A3., %A4. , %A5.)
MCSET P3 = P3 + 3 :

>

In this example it is also shown how to use the
macro name in the macro definition body itself.
ZWD0O. is the written (= not evaluated) delimiter
number "0" which is the delimiter in front of the
first argument - corresponding to the name of

the macro followed by a left parenthesis.

5. ADDITIONAL USEFUL FEATURES OF ML/T

Up to now those features of ML/I have been
described which are necessary in the context of
macro facilities for simulation languages. In
the following example there will be described

a more complicated feature showing the inter-
pretative use of ML/I.

In DARE-P all output requests are processed in
the output—-program which is executed only after
the whole integration procedure is terminated.
If -- during the simulation -- the program could
not proceed any longer for an unknown reason it
is sometimes difficult to find out how far the
simulation could be carried out, since no output
at all will appear. For this reason a subroutine
PRINT should be coded which prints the contents
of a stack onto the output device at each k-th
evaluation of the derivative section. Another
subroutine ARRAY should be used to fill a va-
riable number of simulation variables into the
stack . This is necessary since no indexed va-
riables may be used in DARE-P. For this purpose
the statement:

ARRAY (DUMMY = T, DT, X3, X2, TM, UIN)
should result in:

PROCED ZZ13
CALL ARRAY (
CALL ARRAY {
CALL ARRAY (
CALL ARRAY {
CALL ARRAY (
CALL ARRAY (
ENDPRO

This can be achieved by the following macro
definition:

MCDEF <ARRAY> PARENS
AS<MCNOSKIPEPRGCED ZZ%P1+1. = ZZ%P1+2.
MCSET P5 =1

%L1, CALL %WDO.%AP5+1.,%P4+P5.)
MCGO L2 IF %T1.GR%P5+1.
ENDPRO

MCSET P4 = P4 + P5

MCSET P1 = P1 + 2
MCGO LO

%L2.MCSET P5 = P5 + 1
MCGO L1

>

This macro is maybe more difficult to understand
for the novice user of ML/I. 7Li. is the i-th
label. Its replacement text is mnone, but it may
be used to mark a point of the macro to which
during evaluation of the macro may be jumped.
ZAP5+1. is the argument with the number P5+1

(2 actual value of the system variable P5 plus
one). ZT1l. is the number of arguments of the
specific call. MCGO L2 IF 7ZT1.GRZP5+1l. means,
therefore; ''continue at label L2 if the number of
arguments of the macro is greater than the actual
value of the system variable P5 plus one".

MCGO L0 is a statement which corresponds to a
RETURN-statement in a FORTRAN subprogram. The
system variable P5 counts locally the arguments,
P4 counts them globally. This allows to fill new
variables into the stack by additiomal calls to
the macro ARRAY.

6. RESULTS

By use of the technique described above there
have been modeled machine tools in ML/I and DARE.
The models of such machine tools normally con-—
sisted of more than 150 statements in more than
100 variables. The program runs on a PDP 11/45
under DOS/BATCH versions 9 or 10 within 28k of
core memory without need for using overlay struc-—
ture. Over 20 macros could be generated within

20 seconds of time whereas earlier programs coded
in CSMP-III needed over 40 seconds on an IBM 370
installation for the same purpose. Interpreta-
tive macros are generated with almost the same
speed as others. Equivalent macros coded in
CSSL~III and in ML/I both computed on a

CDC 6500 installation turned out to need 10 + 100
times more execution time in the case of CSSL-III.

The author of this paper knows from his own expe-
rience that the coding procedure by using ML/I is
problematic and that there exists a much higher
probability for errors than by using CSMP-III or
CSSL-III. Beside that the machine dependency is

a great disadvantage of using ML/I. However,

ML/I -- as other similar packages -- is very
useful for the application of simulation techni-
ques 1if:

a) the utilized language has no macro facility
available (as in the case of DARE-P, MIMIC and
others)

b) the macro generation by use of the own macro-
handler turnes out to be to expensive and

¢) the program has to work on a minicomputer on
which the own macro—handler of the simulation
language cannot be used, because of tog:high

Macro-handler for simulation packages using ML/1 521

reguirements for core memory.
ACKNOWLEDGHENT |

The author wishes to express his gratitude
towards AGIE Ltd. Losone/TI Switzerland for
their scientific and financial support of the

" research described in this paper. Furthermore

he wants to thank Prof.Dr.M.Mansour, the head of
the Institute for Automatic Control at the Swiss
Federal Institute of Technology Zurich, who gave
him the opportunity to carry out this. work.

REFERENCES

[1] The Sci Continuous System Simulation
Language (CSSL) Simulation Vol.9 No.6
December 1967

[2] advanced Continuous Simulation Language.~
User/Guide Reference Manual. Mitchell and
Gauthier Assoc., 1337 0ld Marlboro Road,
Concord Mass. 01742 USA.

[3] F.E.Cellier, Blitz A.E.: GASP-V: A Univer-—
sal Simulation Package. Proceedings: AICA
1976, Delft, The Netherlands.

[4] F.E.Cellier, Ferroni B.A.: Modular, Digital
Simulation of Electro/Hydraulic Drives using
CSMP, Proceedings: 1974 Summer Computer
Simulation Conference (SCSC), Houston Tex.
USA.

[5] G.A.Rorn: Project DARE Differential-Analyzer
Replacement by On-Line Digital Simulation.
Proceedings: AFIPS/FJCC 1969, AFIPS Press,
Montvale N.J. 1969

[6] G.A.Korn: New Techniques for Continuous-
System Simulation. Automatic Control Theory
and Applications vol.2 No.l, Acta Préss,
Calgary, Canada, January 1974 ’

[7] J.J.Lucas, Wait J.V.: DARE-P User's Manual.
CSRL Report 255, University of Arizona,
College of Engineering, Dept. of Electrical
Engineering, Computer Science Research Labo-—
ratory, Tucson AR., USA 1974.

[8] P.J.Brown: Macro Processors and Techniques
for Portable Software. John Wiley 1975.

[9] P.J.Brown: ML/I Macro Processor. DECUS
Program Library.. Decus No. 11-69. July 1972.

