SIMULATION OF SYSTEMS '79
L. Dekker, G. Savastano, G.C. Vansteenkiste (eds.)
© North-Holland Publishing Company, 1980

THE COSY SIMULATION LANGUAGE

Francois E, Cellier Antonio P. Bongulielmi
Institute for Automatic Control
The Swiss Federal Institute of Technology Zurich
ETH -~ Zentrum)
CH-8092 Zurich
Switzerland

COSY is a new simulation language for the simulation of COmbined continuous and discrete
S¥stems. With its continuous subsystem, COSY represents a new CSSL-type simulation lan-—
guage.COSY-coded continuous simulation programs.look quite similar to CSMP-coded pro-
grams., As a matter of fact,the COSY definition even constitutes a superset of CSSL since
many additional structuring elements are incorporated (e.g. for comfortable modeling of
variable structure systems., For the discrete subsystem, a combined process— and event
orientation has been used. Discrete COSY programs will, thus, look similar to SIMULA-67
or GPSS-V programs. In addition to these two subsystems, new elements have been incorpo-
rated into the language definition to allow for coding combined continuous and discrete
systems as well.A PASCAL-coded preprocessor translates COSY input into GASP-V executable

code where GASP-V
IMACS Congress in Delft [3,57.

1, INTRODUCTION

Few simulation software packages/languages exist
for the simulation of combined continuous/dis-
crete systems. As shown in [4], most of them are
extensions to previously defined packages/lan-
guages for discrete simulation which in most
cases have been developed by scientists with a
background in Operations Research. For this rea-
son, most of these software systems offer only
limited facilities for modeling of continuous
systems, not taking into account much research
being devoted to the development of the
CSSL-type software which led to so powerful lan-
guage definitions as ACSL.

Even the accessible CSSL software suffers, how~—
ever, from notable shortcomings. There has
recently been much research devoted to the de-
finition of formal languages. These ideas have
not properly been applied to the definition of
CSSL software so far.

COSY tries to surmount these shortcomings of
earlier simulation software by combining the
powerful numerical capabilities of the success—
ful GASP software with generous structuring
facilities for both program and data, and with
user—friendly model description capabilities.
These allow for modeling of complex situations
in a comfortable and also safe manner., COSY is a
context-free, deterministic, left-to~right lan-
guage. Its syntax is fully described by syntax
diagrams, and also by using the EBNF-notation as

271

is an ANSI-FORTRAN-IV coded subroutine package presented at the last

proposed by WIRTH [15].

2. THE BASIC LANGUAGE ELEMENTS OF COSY

The COSY language consists primarily of the well
known elements of continuous and discrete simu-
lation languages. Few additional elements have
been incorporated to weld these two subsystems
together,

2.1, The state-event and its
associated state—conditions

The only essential new element 1is the state-—
condition describing conditions of the con-
tinuous subsystem status required to branch to
the discrete subsystem. A typical situation 1is
illustrated in the following:

When the angular velocity of a DC-motor
crosses a threshold of 1 500 RPM in the
positive direction, the motor has to be
loaded,

The crossing of the threshold by the velocity is
a typical state-condition, whereas loading the
motor is the associated state—event.

The state—condition, in the above
coded wusing a 'CONDIT'-statement
tinuous subsystem:

problem, is
in the con-

272 F.E. Cellier, A.P. Bongulielmi

CONTINUOUS
CONDIT EV1: OMEGA CROSSES 1500.0 POS
TOL=1,0E~-3 END;

and the reaction to this is coded by an event
description in the discrete subsystem:

DISCRETE
EVENTS
EV1l: TL := 200.0 END ;

(the torque load (TL) is. to be reset to 200.0).
The CONDIT~statement is similar to a CSMP FINISH
condition, except that the time of the crossing
is iterated until a prespecified tolerance 1is
met (TOL=1,0E-3), and in that the simulation run
is not terminated, but control is handed over to
the discrete simulation system. After event
handling, as described by the discrete subsys—
tem, control is returned to the continuocus sub-
system where the new value of TL will be wused
somewhere in one or several equations on the
right hand side of the equal sign.

2.2, Operations of the continuous
subsystem on the discrete
subsystem

There are none,

2.3, Operations of the discrete
subsystem on the continuous
subsystem

It is most commonly found that not only para-
meters of the continuous subsystem (as the
torque load TL above) change their values at
event times but that some of the equations are
replaced by others., This situation can be taken
care of by the following language elements:

a) The "one~out-of=n" situation

There are n possible '"models" out of which one
is always active, This situation can best be ex—
pressed by a CASE-statement:

CASE NMOD OF

where NMOD is an integer number pointing to the
currently active model, This language element is
used in general to describe n different funec—
tional ways of behaviour of one model component,
e.g. n continuous branches of a discontinuous
(but piece-wise continuous) functional block.

b) The "k—out—of-n' situation

Another ffequently found situation is 1illustra-
ted by the following example:

There are n cars in a system, . out of
which k are moving around and (n-k) are
parked somewhere,

This situation can be represented by the fol-
lowing syntactical construct:

FOR I:=1 TO N DO
IF CAR[I] THEN

where CAR is a boolean array with the wvalues
"true" for cars moving around and “false" for
parked cars.

For n = 1 this case degenerates to a simple
IF-clause.

Another way of coding a "k—out—of-n" situation
in a more flexible manner 1s to describe its
single component as a full-MODEL of which
MODEL~instances can be CREATEd, SUSPENDed,
RESUMEQ, and DELETEd.

c) Example

Let wus consider a mechanical system with a dry
friction torque (TFR) modeled somewhere in the
system. The functional relationship which models
the friction torque (TFR) as a function of the
angular velocity (OMEGA) and of the driving
torque (T) can be shown by the following graph:

TFR
Ta 4 C%:I tg Q= CM
T
@ OMEGA
-T
y =T,
Fig.l: Dry friction torgque
versus angular velocity
In this example we face the typical

"one~out—of-n" situation, where n = 3 are the
three continuous branches of the discontinuous
TFR-function, Each of them is represented by a
different equation and by a different set of
state-conditions, !

This situation can be coded as shown in Fig.2,
Using this formalism for describing a combined
system, the resulting description is mnot much
more complicated than using a normal CSSL-type
language, but it allows the preprocessor to pro-
duce properly executable run~time code,

The COSY simulation language 273

SYSTEM
CONTINUOUS
MGDEL DRYFRICTION (TFR <= T, OMEGA)?}
{* COMMFNTt <- SYMBOLIZES A LEFT ARROW AND IS USED
TO SEPARATE INPUT FROM OUTPUT VARIABLE LISTS ¥)
CASE NL OF
13 TFR = T1 + CHM¥OMEGA?
CONDIT MOD2t OMEGA LROSSES 0.0 NEG TOL=1.0€-3 END
END3
23 TVFR = T3
CONDIT MODit T CROSSES T2 POS TOL=1.0E-3 END}
CONDIT MOO3t T CRNSSES -T2 NEG TOL=1.0E-3 END
END}
3t TFR = =71 & CM¥OMEGAS
CONDIT MOD2t OMEGA CROSSES 0.0 PGS TOL=1.0E-3 END

END
END (* NRY FRIGTION *)3

END (* CONTINUOUS SUBSYSTEY ¥)3

DISCRETE
EVENTS
MODLt NL 2= 1 END3
MOD2t NL 1= 2} OMEGA 3= 0.0 ENDS

MOD3t NL 1= 3 IND
END (* STATE-EVENT DESCRIPTION *)
END ¢* DISCRETE SUBSYSTEHN *)
END (% SYSTEM DESCRIPTION *)3
Fig.2: Combined description

of a dry friction torque

The mode selector switch NL determines the three
continuous branches of the discontinuous dry
friction torque. Continuous simulation, as de-
scribed by the CONTINUOUS block, goes on until
one of the state-conditions associated with the
currently active mode is met, At this moment ,
integration is interrupted, and control is
transferred to the discrete subsystem modeled by
the DISCRETE block. The associated state-event
is executed which basically changes the selector
switch NL, in the above example, to point to an-—
other mode, Now, the control is transferred back
to the continuous subsystem, and the integration
algorithm is restarted to integrate the model
over the next inter—event time span.

3. ATTRIBUTES OF COSY
AND THE BASIC CONCEPTS

3.1. Flexible Structures

COSY is generally applicable, It has the same
wide range of applicability as GASP-V [3,5].

It provides facilities for modular programming.
The user can declare a part of the system's
description as an autonomous submodel which com-—
municates with its enviromment through a pro-—
grammable interface (a 1list of formal para-
meters), This can e.g. be realized by a
'"MODEL''-element as shown in Fig.2 above. In the
context of its environment, a MODEL behaves in
the same way as the PROCED construct proposed in
the CSSL definition. It is a sandwich statement
which 1is regrouped as a whole within the other
parallel statements., As in the case of the
PROCED construct, the formal parameters must be
separated in lists of inputs and outputs of the
MODEL. They are required only to enable proper
sorting of the MODEL with vrespect to 1its en-—
vironment, Global constants and state variables
need not be listed, and can be accessed impli-

citly as long as the MODEL is not to be precom—
piled and stored in object form for later reuse.
Contrary to the PROCED construct, the statements
of the MODEL are again parallel code, that is,
they are sorted among each other. As a matter of
fact, all modeling elements apply to a MODEL in
the same way as to the whole continuous sub-
system, It is, in particular, possible to define
MODELs in a hiérarchical manner, This language
element 1is not identical with the CSSL-type
MACRO either, as shall subsequently be shown. As
a matter of fact, MODEL is a new language ele—
ment which 1is not accessible in today's
CSSL-type languages, and which is most useful
for structuring problems, especially when a team
of several scientists is involved in modeling a
complex system jointly.

It is possible to code NOSORT and PROCED sec~
tions 1in COSY, but they are much less "useful”
than in a so called "continuous" simulation lan-
guage since the compiler takes care that no il~
legitimate discontinuities are coded in such a
section. (The main advantage of PROCED and
NOSORT sections as praised by CSSL software 1is
the possibility to code discontinuities by wri-
ting IF ... THEN ... ELSE. Precisely this must
not be done in a combined system simulation lan—
guage since it deprives the compiler of any fair
chance to generate numerically well-conditioned
run—time code,)

There are five legitimate ways to code discon-
tinuities in COSY:

a) By wusing precoded discontinuous functions
offered by the language (like the
GASP-functions of [3],

b) by modeling discontinuities as time- and
state—events in the discrete subsystem with
associated CONDIT statements in the con-
tinuous subsystem, ’

c) by coding subroutines which are declared to
be parallel, and which, in fact, enlarge the
set of (a),

d) by coding '"full" MODELs, and

e) by coding MODULEs which are kept as source
modules in a symbolic library.

The usual ways to code discontinuities are (a)
and (b), whereas (c) and (d) require some so—
phistication, and are not recommanded to the un-—
skilled user., Mainly (c¢) is a quite dangerous
way since this is the only possibility to cheat
the system (!). (e) is not really an additional
concept, but rather an extension to improve
modularity.

274 F.E. Cellier, A.P. Bongulielmi

3.2, Extendability

The wuser of the software can extend the
available simulation operators by his own
problem—-specific ones (open—ended operator set).
Such language extensions can take place an four
different levels.

On a very basic level, the language operators
can be extended by coding FORTRAN subroutines.
On a second level, the language operators can be
extended by formulating MODELs. These can also
be preprocessed into subprograms. In the defini-
tion of such MODELs (so called "full MODELs"),
the user must now include all interacting
variables and constants as formal parameters of
the MODEL. Variables not included must be in-
ternally declared, They are local to the MODEL .
A precompiled MODEL can be called in by de-
claring it to be an EXTERNAL MODEL, This is very
similar to calling EXTERNAL SUBROUTINES. How-—
ever, to allow for proper bookkeeping, the user
must, in addition, specify how many state
variables (for differential and difference equa-
tions) and how many history functions (requiring
a unique identifier each) are internally used in
the MODEL definition body.

On a third level, the language provides for a
"MACRO"-facility. Formally this looks very
similar to the previously presented
"MODEL"-facility. It 1is, however, treated dif-—
ferently by the compiler, All MACRO calls are
first replaced by their MACRO definition bodies,
before any further preprocessing (like sorting)
takes place, In this way, the statements which
form a MACRO definition can be spread throughout
the system's description, once an executable se-
quence of statements has been found. On the con-
trary, MODELs are only sorted internally, where-
as the body remains together as an entity.
Consequently, MODELs can be precompiled and
stored in compiled form, whereas MACROs must al-
ways be kept in source form in a "symbolic"
library. The MACRO~facility is needed since it
is often not possible to avoid mixing equations
from different MACROs to obtain an executable
sequence of statements., Thus, the MACRO con-
struct grants a higher degree of modularity com-—
pared to the MODEL construct, but it requires
each MACRO definition body to be preprocessed
together with the environment in which it is
used.

Since the MACRO replacement must preceed all
further preprocessing activities, the MACRO
feature need not form an intrinsic part of the
language definition. It 1is taken care of by a
separate MACRO handler which is called prior to
preprocessing. Advantages of this solution have
been discussed in [2], In this way, one can be
more generous in the capabilities offered by the
MACRO definition language (like offering inter—

pretative MACRO handling) while saving core
memory requirements, The additionally required
computation costs are comparatively small,

On a fourth level, the language provides a pro-
grammable topological input description com=~
bining the advantages of a network formulation
with those of an equation oriented language.
This can actually be thought of as an extension
to the previously discussed MACRO construct,
When coding a MACRO, the modeler must declare
which are its inputs and which are its outputs.
This has some disadvantages, as will be il-
lustrated in the following example,

Let us consider a small electrical network as
depicted in Fig,3., The RC-circuit 1is to be
modeled by a MACRO,

r —_— ——— -7
uc
o .
Iq (] 1" _ 12 e
tlc |,
'R
uq 7] R up u L

L — o —

Fig,3: RLC-network with voltage source

Under the assumption that all differential equa=—
tions are to be solved for state derivatives
(which 1is reasonable, since integration is nu-
merically much better conditioned than differen-
tiation), there exists only one valid formula-
tion for the required MACRO. This 1is coded in
Fig.4.

MACRO RCL (U2, I1 <- Ul, I2, R, C)%
MACVAR.
STATE UCS
ALGEBR IR
MACCONTIN
uc* = I1/C3

MACEND (* CONTINUOUS *)
MACEND (* RCi *)3

CONTINUDUS
va = FITIME)
RC1 (UL, IQ <- UQs ILy R, G2
IL" = uL/sLs

Fig.4: Model of a RLC-network
with voltage source

UQ must be specified as an input to the MACRO
since it 1s an externally computed control sig-
nal. Also, IL must be an input to the MACRO
since it is a state variable of the system

The COSY simulation language 275

which, consequently, cannot be a computed quan-
tity.

Let us now replace the voltage source by a
current source as depicted in Fig,5.

Fig.5: RLC~network with current source

Again, just one valid model can be specified for
the MACRO which is depicted in Fig.6.

NACRO RCZ2 (U1, U2 <- I1, I2, Ry C)3
HACVAR
STATE UC3
ALGEBR IR}
MACGONTIN
uce =I1/C}%
I1 - 123%
R*IRSY
vz + uc
MACEND (* CONTINUQUS *)
MACEND (* RC2 *)3

(=3
N
it

CONTINUOUS
I0 = FUYIME) §

RCZ tul, UL <- IQ, ILs Ry C}3
IL® = UL/L3

Fig.6: Model of a RLC-network
with current source

This time, the source current (IQ) must be an
input to the MACRO since it 1is an externally
computed control signal.

As one can see, two different MACROs are needed
to describe one and the same module. In both
MACROs the same equations are represented, but
rearranged to meet the demands of the required
inputs and outputs. This simple example il-
lustrates that the MACRO element is mnot really
modular either. For this reason, we define a new
language element, which we call a '"MODULE", as
shown in Fig.7a.

NODULE RG tUl, U2, X1, I2, R, CI3
VAR
STATE UG}
ALGEBR IRj
CONTINUOUS
uc* = I1/C3
I1 = IR & I2j
U2 = R*IRS
Uz = Ui - uc
END {* CONTINUOUS *}
END (* RC *)3

Fig.7a: MODULE for a RC-circuit

This MODULE can be used in both networks, If a
voltage source feeds the RC-circuit, the MODULE
can be called as shown in Fig,7b.

CONTINUOUS
ua = FATIMEY§
RC (UL=U2, IQ=I1 <- YQ=U1, IL=I2, R,y C)3}
IL® = uUL/Ls .

Fig.7b: Model of a RLC-network
with voltage source

If the RC-circuit 1is fed by a current source,
the same MODULE can be used as shown in Fig.7c.

CONTINUOUS
10 = FUTIME) 3 .
RC (UQ=UL, UL=U2 < IQ=I1, TL=IZ, R, 01}
e = vt

Fig,7c: Model of a RLC-network

with current source

In a MODULE, equations may be solved for any
variable, as long as their number is correct
(problem neither under— nor overspecified), and
as long as no contradictory assumptions are
made. The same variable may appear several times
to the left of the equal sign as U2 in Fig.7a.
Formal parameters of a MODULE definition need no
longer be separated into inputs and outputs.
Only upon usage of a MODULE, one has to specify
which are its inputs and which are its outputs .
The logical mapping of actual to formal para-
meters is no longer implicit, but is specified
by explicite assignments. UL=U2, for example,
specifies that the actual parameter UL is to re—
place the formal parameter U2 of the MODULE de-
finition header.

The MODULE definition language 1is more general
than the MACRO definition language in two
senses.,

1) Besides replacement of parameters, it uses
formulae manipulation to reorganize the
statements,

2) A MODULE definition may contain an INITIAL
block, a TERMINAL block and also a DISCRETE
block in addition to the CONTINUOUS block.
When the MODULE 1is called from within the
continuous subsystem, these blocks will
automatically be transferred to their cor—
rect locations.

The MODULE definition language 1is less general
than the MACRO definition language in that it
does not allow any interpretative execution, as
we want to allow it for MACROs.

The MODULE definition language is similar to the
MACRO definition language in that all involved

276 F.E. Cellier, A.P. Bongulielmi

activities must be performed prior to any
further preprocessing. Also, the MODULE Thandler
is separated from the preprocessor. It forms one
program together with the MACRO handler.

This idea has first been formulated by Elmqvist
[6] and by Runge [12]. Both scientists came to
quite similar constructs independently. In both
languages, DYMOLA [6] and MODEL [12], there
exist language elements comparable to the MODULE
presented herein. DYMOLA proceeds by using
structural analysis of the equations and
formulae manipulation techniques, whereas MODEL
leaves the statements as they are, and uses
implicit numerical integration techniques during
execution, as has been done for years in linear
network analysis programs, Implicit integration
is somewhat more general since there exist legi-
timate system's descriptions which cannot be re-
arranged to form an executable set of statements
(if equations cannot be solved for a particular
variable in a closed form, or if algebraic loops
are 1involved which inhibit proper grouping of
statements to form an executable sequence).
Using formulae manipulation is, on the contrary,
somewhat more robust since illegitimate models
will be automatically detected whereas this is
not necessarily the case when implicit dintegra-—
tion 1is used, Implicit integration will result
in lower compilation and higher execution cost
compared to the proposed solution technique.

A MODULE can be thought of as a network element
with as many legs as there exist formal para-—
meters of the MODULE. Elmqvist and Runge de-
scribe their '"MODULEs" in a quite similar way to
the one proposed except that their "MODULEs" are
only intended for purely continuous simulation,
However, both apply a programmable topological
description to ''plug" different MODULEs to-
gether, "whereas we use an equation oriented ap-
proach for that purpose as for the description
of the MODULEs. (This feature exists as an op-—
tion in DYMOLA as well,)

Fig.8 shows how the simple RLC-network can be
further decomposed.

MODULE RES U, I, RIS

END (* RES ®)3
MODULE CAP tU, I, C)3

END (¥ CAP *)3
WODULE IND tU, I, LIS
I = UsL
END (% IND *) 3
MODULE RC (U1, U2, I1, 12y Ry C)3

STATE UC3
ALGESR IR}
CONTINUOUS
CAP (UG, I1, C13
It = IR ¢ 123§
RES (U2, IR, R}
Uz = Ui - uC
END {* CONTINUOUS %2
END (* RGC *)3

CONTINUOUS
Ua = FITIME) S

RC (UL=U2, IQ=I1 <- YOQ=Ui, IL=IZ2, Ry C)3
IND €IL=I <- UL=U, 1)}

Fig.8: RLC-network further decomposed

In this program, the user must still know that
the IND-MODULE has to compute the current (IL)
and not the wvoltage (UL) to obtain a set of
equations in integral form.

He can, however, also automate this procedure by
specifying an additional MODULE OUT which has no
inputs and which defines as outputs precisely
those variables needed for printout (e.g. IL and
UL). This is demonstrated in Fig.9.

MODULE OUT (UL, IL)S
VAR
ALGEBR UQ, 1Q3
REAL Cy Ls R}
CONTINUQUS
uQ = F{TIME}}
RC (UQy UL,y IQy ILy Ry O3
IND (UL, IL, L}
END (* CONTINUOUS *}
END {* OUT *)3
CONTINUGUS
0UT (ULy IL <~)
END (¥ CONTINUOUS SUBSYSTEM ¥33

Fig.9: RLC-network finally modular

As one can see, the user must specify the inputs
and outputs at MODULE calls only if he uses them
directly in the continuous subsystem, but not if
they are used within another MODULE definition.
This 1s evident since, in the latter case, one
can first replace MODULE calls by their MODULE
definition bodies and then handle the already
expanded MODULE in globo. That is, MODULEs when
called from MODULEs are treated like MACROs. In
the above modeling technique, the continuous
subsystem will consist of one single statement
only to call the root-MODULE "OUT", and the user
is entirely relieved of solving any equation for
particular variables. This modeling technique
combines the flexibility and wuniversality of
equation oriented languages with the convenience
of network modeling techniques.

The system engineer is given the possibility to
extend the basic language definition itself. For
this purpose, the preprocessor has been con-
structed in such a way that it can be easily
augmented to accommodate new ideas, For this
task, the most recent compiler building tech-—
niques employing structured programming and
structured data representation have been applied
as described, for instance, by Wirth [13].

3.3. "One-to-one" Correspondence
between System and Model

We tried to construct COSY in such a way that
the modeler can represent the single building
blocks of the physical system under investiga-
tion by (eventually composed) building blocks of
the language, and toc rtepresent the modes in
which the elements of the system cooperate with
each other by constructs of the language to com—
bine building elements to larger building blocks
and, finally, to a functional description of the
system. This '"one-to-one" correspondence of
system and model will certainly lead to a much

The COSY simulation language 277

more methodical way of modeling and, by these
means, improve the robustness of the model.
Furthermore, there are often several system en-—
gineers involved in the formulation of one model
of a complex physical system (e.g. an atomic
reactor). This modeling approach is essential to
allow for a subdivision of the model into single
entities which can be constructed and debugged
independently, and which cooperate only through
interfaces which can be properly described be-
forehand, '

The single modeling element consists partly of
structures and partly of ‘data. These are
separable within the building block, but both
are, nevertheless, codable within the same buil-
ding block so that.one physical building element
can be expressed by one building block of the
language as well, The building elements of the
physical system are connected by ~ topo-
logical structures, Corresponding structural
elements have been made available in the lan-
guage as well. These are, furthermore, also de-
scriptive elements of the building blocks them-—
selves to allow for a hierarchical structuring
of building blocks.

Physical "modules" <can, of course, consist of
partly continuous and partly discrete elements.
For this reason, it is certainly useful if this
situation can be coded in one single building
block of the language as well, This demand con—
flicts with the wish to have a clear separation
of the continuous and the discrete subsystem.
Therefore, the user can specify MODULEs which
possibly consist of both a continuous and a dis—
crete part, whereas the MODULE handler regroups
the description in such a way that, on output,
all continuous subsystems and all discrete sub-
systems are merged to form a system's descrip-
tion as the preprocessor should find it to pro-
duce numerically well-conditioned run~time code.

When a model of a physical system has been con-—
structed, it remains to describe in terms of
language elements, the experiment which is to be
performed on the model, It seems essential that
different experiments can be carried out without
need for redesigning the model of the system, as
one would do in a real-world experiment. It
could prove useful to let several experiments be
executed by one simulation program. For this
reason, the language should be designed to allow
several EXPERIMENTs to be formulated sub-
sequently. All these EXPERIMENTs form together
the MONITOR-segment of the simulation program.

The experiment description is composed of one
part describing the control signals (input
signals) to the model, and one part describing
the quantities which are to be measured and
output (output signals). It may be convenient to
separate these two parts from each other in that
the MONITOR segment only describes modes of

control whereas an OUTPUT segment is used to de~
scribe graphical representations of the sampled
quantities,

The considerations in this section are strongly
influenced by the pioneer work in modeling
methodology " as ‘performed by Zeigler [16] and
Oren [10,11], These were the first scientists
who tried (only recently) to conceptualize
modeling in a methodological manner.

3.4, Ease of learning Syntax
and Semantics

Two main goals are to be achieved: It should be
easy to write programs by one's self, and it
should be easy as well to read programs coded by
somebody else. These two goals tend to compete
with each other. To meet the former goal, we
want the different elements of the language to
use the same syntactical constructs as much as
possible. To meet the latter goal, we want to be
as flexible as possible in choosing appropriate
mnemonics and close to conversational English
constructs, o

To give an example of the conflicting nature of
the two goals, let us consider, once again, the
dry friction example stated above (Fig.2). To
meet the second goal, we introduced the
'="-symbol - in the notation of equations of the
parallel section and the ':="'-symbol in the
notation of statements of the procedural sec-—
tion., By these means the inherent difference
between parallel and procedural code is clari-
fied, in that, for instance,

I:=I+1;
is a meaningful statement, whereas

I=I+1;
is a meaningless equation, This rule, thus,
helps to improve the readability of programs.
However, it complicates, at the same time, the
writing of programs since it simply introduces

an additional (not necessarily required) syntac-
tical construct to remember.

4, GLOBAL VERSUS LOCAL VARIABLES

- In the old days of information processing, com~

puter languages used to be cohstructed in such a
way as to let each indeépendent programming unit
have its own set of variables assigned to it. We
call this a concept of local variables. A
typical example of this type of language is
FORTRAN-IV, Each SUBROUTINE has its own
variables assigned to it which keep their values
even over several calls to the routine. Data
communication between SUBROUTINEs is only pos-—
sible through 1lists of formal parameters or

278 F.E. Cellier, A.P. Bongulielmi

through COMMON variables.

Good modern computer languages like PASCAL make
use of a global variable concept. By these
means, the user can declare new variables on
each hierarchical level which are then valid in
the PROCEDURE in which they are defined as well
as in any PROCEDURE called by it, There is no
need to include any variable in the list of the
formal parameters as long as the PROCEDURE is
not called several times by different actual
arguments. PROCEDUREs which are on the same
hierarchical level can communicate data with
each other only by declaring variables an a
hierarchically higher level for that purpose.

This elegant concept is very clear and clean
from the aspect of information processing. It
has, however, two major drawbacks:

a) PROCEDUREs making use of global variables
(and direct exits) may not be precompiled.
They must be stored, if at all, in source
form. In fact, PROCEDUREs are not really
meant to be compiled separately.

b) PROCEDUREs making use of these possibilities
are much more difficult to describe since
they do not communicate data through a dis-
tinct interface only ("back-door" program-
ming!).

Such a concept 1is, therefore, not really
modular. However, modularity is an important re-—
quisite in a simulation environment. In the de-
sign of the concepts of a simulation language,
one has to take this aspect into account, and
design the language 1in such a way that pro-
visions exist to precompile those structural
blocks which can be stored in compiled form. For
this reason, a language like PASCAL is very well
suited for the coding of a simulation compiler
which is a "closed" program, whereas a
FORTRAN-like language is much better suited for
the coding of a simulation run—time system which
is, principally, to be compiled once, but to
which different subprograms are to be added for
each application problem.

In the long run, it would be more consistent
with our ideas to use a PASCAL-like general task
language for which the PROCEDURE concept has
been enlarged to a PROCESS- or CLASS concept
(which again would be modular) also for the
simulation run-time system. However, although
these concepts have been discussed on many occa—
sions, and although there exist implementations
of such features (SIMULA-67 , MODULA [14],
PORTAL [8,9]), there does not exist any such
language to date which is widespread and which
has been generally accepted, SIMULA-67 has cer—
tainly found many "disciples', but even for this
language there does not exist any good library
of carefully debugged CLASSes for specific ap-

plications like numerical integration which
could, for example, compete with the Kahaner im-
plementation of the Gear algorithm. Such
libraries exist to date only for FORTRAN-IV and
for ALGOL-60. '
Moreover, the main disadvantage of wusing
FORTRAN-IV, namely its unsatisfactory program—
ming safety, is not so critical in our applica-
tion since the target language code of the
users' programs is machine generated and not
hand coded.

MODULEs and MACROs must be stored in source
form, as we have seen., they can, therefore,
easily use a global variable concept. Variables
which are locally declared obtain a new unique
name each time the MODULE (MACRO) is expanded.

Subprograms look syntactically similar to PASCAL
PROCEDUREs, to grant safe programming, but ef-
fectively they are rather similar to FORTRAN
SUBROUTINEs to satisfy the requirements of modu-
larity.

It may, furthermore, also be useful to precom—
pile MODELs. Since the statements of a MODEL are
only sorted internally, but remain together as a
block, this is feasible. The resulting code is
again similar to a FORTRAN SUBROUTINE , except
that the number of internally wused state
variables and predefined functions must be de-
clared when a MODEL is called in as an EXTERNAL
MODEL. Consequently, MODELs must also use a con=-
cept of local variables for that purpose.

Since this will, however, not be the normal
case, we allow MODELs to use global variables in
general. If a MODEL is to be precompiled, it
must be declared to be a "full" MODEL which is
not allowed to use global variables.

5, RESTRICTIONS OF COSY

It is evident that only such features can be of-
fered in COSY which are codable in GASP-V as
well., This imposes some restrictions on the de-
finition set of COSY which are to be discussed.

The data structuring capabilities of COSY are as
limited as those offered in FORTRAN-IV, The TYPE
statement may be used only to define RECORDs of
file entries where a RECORD may consist of a
variable number of attributes which are ad-
minstered by GASP-V as forward and backward
linked 1linear 1lists. No more complex RECORD
structures are available, and also the pointer
variables to link RECORDs in a programmable man-
ner are not accessible to the user. No symbolic
TYPEs can be defined., All user variables must be
declared to belong to one of the (admittedly
high number of) predefined TYPEs:

The COSY simulation language 279

ALGEBR, BOOLEAN, COLLECT, DSTATE,
FACILITY, GATE, HISTOGRAM, INTEGER,
LOGIC, MEMORY, MODEL, PRINTPLOT,

PROCESS, RANDOM, REAL, SAMPLE, SEVENT,
SETFILE, STATE, STORACE, TABLEPRINT,
TEVENT, TIMEPERS

or ARRAYs of them. No SETs are available either,

Routines, although looking very much like PASCAL
PROCEDURESs, are really SUBROUTINEs 1in that
variables which are locally declared keep their
assigned values over several calls. Routines may
not be called recursively, and it is forbidden
to leave them by a GO TO statement (which is a
very doubtful option even in PASCAL (Il)).

Discrete PROCESSes are not as versatile as they
could be, A more axiomatic approach to their se-
mantics would be useful, but FORTRAN SUBROUTINEs
are a very unwieldy carrier of such a language
element, and without heavy constraints not ap-—
plicable at all.,

For these reasons, one may conclude that other
languages like SIMULA-67 or PORTAL [8,9] are
still more useful for purely discrete simulation
problems than COSY, although these languages
offer much 1less language elements directly de-—
dicated to simulation, and although their wuse
will, consequently, result in longer, less safe,
and less readable application code.

These obvious shortcomings of COSY cannot be
overcome as long as there does not exist any
other generally accepted language which could
replace FORTRAN-IV as a target language for
COSY. We have seen that either FORTRAN-IV or
PASCAL are not suitable for this purpose.
ALGOL-60 has drawbacks similar to PASCAL., PL/I
would be a possible candidate, but many people
consider its definition set too large and its
semantics not axiomatic enough to make this lan-—
guage very enlightening either. PL/I programs
coded by others are usually not easily readable.
This can, for instance, be seen in the PL/I-code
generated of SIMPL/I programs, a discrete
simulation language on the basis of PL/I. PORTAL
[8,9] would, as to our opinion, be a promising
candidate, but since this language is not ad-
ministered either by a comupter manufacturer or
by a non-profit organization, we give it little
chance to take the barrier of international ac-
ceptance in the near future. We do not see any
chance to overcome this problem, as long as the
computer manufacturers find a market for their
hardware without offering appropriate software
for it. Only the customer will, finally, be able
to force them to sit together to come to an
agreement concerning a modern, widely supported
general task language for which not only an ef~
ficient and well tested compiler is developed,
but for which also cautiously debugged mathe-
matical application software is made available.

6. EXAMPLE -- PILOT EJECTION STUDY

This is a commonly cited benchmark problem for
"continuous" simulation. According to our ter—
minology, it belongs to the class of combined
problems [4],

System description: The pilot ejection system,
when activated, causes the pilot and his seat to
travel along rails at a specified exit
velocity VE at an angle THETAR (measured in
radians) or THETAD (specified in degrees) back-—
ward from vertical. After traveling a vertical
distance Y1, the seat becomes disengaged from
its mounting rails and, at this point, the pilot
is considered out of the cockpit. When this oc-—
curs, a second phase of operation begins during
which the pilot trajectory is influenced by the
force of gravity and atmospheric drag.

This problem belongs to the class of combined
systems since the model is discontinuous at the
moment when the ejector seat is disengaged from
its mounting rails. Even the number of state
equations is time dependent. The system is of
second order (NNEQD := 2) during the first
phase, but it 1is of fourth order (NNEQD := 4)
during the second phase of the simulation run.
During the first phase, there exists a state-—
condition to establish the condition when to
branch to the second phase. During the second
phase, this state~condition is no longer active,

Experiment description: The experiment is car-—
ried out to analyse how large the maximum velo—
city of the aircraft (VA) may be, as a function
of the height above sealevel (H), in order to
allow for a secure ejection. An ejection is 'said
to be "secure" if the ejection seat clears the
vertical stabilizer of the aircraft which is 9m
behind and 3.5m above the cockpit in a distance
of at least 2.5m. For this purpose, a first
simulation run is carried out with a small velo-
city (VA := 30.0) at ground level (H := 0.0). If
this ejection is successful (according to our
rules (!)), the wvelocity is 'increased by
15.0 m/s, and the experiment is repeated. If the
ejection 1is mnot successful, the height is in~
creased by 150,0 m, and the experiment is repea-
ted, 1In this way we proceed until either the
velocity has reached a value of 270.0 m/s or
until the height has reached a value of
16 500,0 m above sealevel, which ever occurs
first. The experiment cannot start at zero velo-—

"city since, for this velocity, the specified

model is not wvalid.

Usually, the simulation is terminated by a
CSSL-type FINISH-statement

FINISH X = -9.0 ;

to indicate that the critical portion of the
pilot trajectory is over. However, in this way,

280 F.E. Cellier, A.P. Bongulielmi

the simulation is continued over the last
i i FUNCTABLE
integration step and' may end at a much more SPLINE RHO = ¢ 0.0 1 1.293) ¢ 300.0 5 1.256) (600.0 ¢ 1.220)
negative value of X. Since we are interested in € 1200.0 1 1.152) (1800.8 3 1.082) ¢ 3000.0 ¥ 0.955}

. . € 45000 1 0.815) { 6000.0 t 0.676) (9000.0 t D.476)
knowing the wvalue of Y at X = -9,0 to decide €12000.0 z 0.319) (15000.0 t 0.196) 118000.0 $ 0.122)3
upon success or. failure of the ejection, we must

. . : WONITOR
compute this x_zalue w1t}'1 some accuracy. For tl'us INITOOND X = 0.0y ¥ = .03
reason, a continuous simulation language will LAST 3= FALSE3 STOREOFF;
. THETAR t= THETAD/57.29577953
have to restrict the integration step-size arti- ROTATE (VECOS, VESIN <- VE, THETAR, 2)%
.. . . . H 1z 8,03 VA 8= 30.0%
ficially whereas, in a combined system simula- SIMULATE FROM 0.0 TO FINISH GOMINT = 0.2
tion language we can replace the END (% EXPERIMENTAL FRANE BLOCK *3
s
FINISH-condition by another state-CONDITion to SYSTEM
locate the critical point, X = -9.0, precisely, INITIAL
. HELP 1= VA - VESIN;

The associated.state~event can then be used to V 1= SQRT (HELP*HELP ¢+ VECOSSVECOS)$

THETAS 8= ATAN (VECOS/HELPYS
RHOL = 0.5%CD*S*R40 (H)3
PHASE t= 135 NNEQD t= 2

END (* INITIAL SECTION *)%

terminate.the simulation run.

This specific experiment description has been
CONTINUOUS

taken from [7]. except that all data have been ROTATE {VX, VY <= v, THETAS, 11}
) . : X* = WX - VA3 Y = vY3
converted to metric units, MODEL INOROUT (<=)3

CASE PHASE OF
L. , 13 CONDIT DISENGAGE! Y CROSSES Y1 POS TOL=1.0E-3 END
Output description: After each successful ejec—

END
2s ROTATE (GX, GY <= G, THETAS, 1)3

tion, the actual values of the ejection Ve = <D/M - GY3

. . THETAS® = ~GX/V3
level (H), and of the aircraft velocity (VA), D = RHOLWSVS
are to be stored for later graphical representa— Ewp | OVER? X OROSSES -9:0 NEG ToL=1.08-3 END

i i i £ND (* NODEL IN-0R-QUT ®)
tion of H as a function af VA, During the last END. (e CONTINIOUS SUBGYSTEN =13
run, we want, furthermore, to store X and Y.
. DISCRETE

These values are to be plotted versus time. EVENTS

DISENGAGE® PHASE $= 23 NNEQD 3= & ENDS
OVER: FINISH END

1 isti i END (* STATE-EVENT DESCRIPTION %)
Fig.10 shows 'the listing of a possible COSY END (s DISCRETE SUBSYSTER oy
program for this benchmark problem.

TERMINAL
IF NOT LAST THEN
, BEGIN
M IF ((H <= 16500.00 AND (WA <= 270.0)) THEN
«~ o BEGIN
b COMBINED SYSTEM SIMULATION 2 IF ¥ > 6.0 THEN
- PILOT EJECTION STUDY) B =y - 2.51
b O = .53
s) FORTRAN
WRITE (OUTPUT,100) X, Y, DIST
. 100 FORMAT (5H X = pE412.645H Y = ,E12.4,8H DIST = ,E12.4)
. END (* FORTRAN #13
PROGRAM PILOTEJECT (INPUT,OUTPUT); ROSSPLOTS VA = ¥A + 15.0
. END ELSE
PROJECT 56 BY $CELLIERES Hss W & 150.0
END ELSE
BEGIN
' MACRO ROTATE (X, Y <- ¥, THETA, CONST FLAG); ENlt.usr t= TRUE; STOREON

MACIF vFLAGv = 1 THEN
MAGBEGIN
X = ¥*COS (THETA) 3

END
- *
Y = ¥*SIN (THETA) END (* TERMINAL SECTION *)

END (*® SYSTEM DESCRIPTION ¥ %

MACEND
MACELSE
HACBEGIN
s ouTRUT
: : z:gg: :;:E;:;’ TITLE $PILOT EJECTION STUDYSS
NAGEND LIST (CROSSF) VA, H$

PLOT (CROSSF) VERSUS VAT H3
FACTOR XFAK = 2.0 YFAK = 2.0
GRAPH {CROSSF) VERSUS VAL H3%
GRAPH (TIMEF) X, Y

NO
NACEND (* ROTATE *);

LABEL

2003 END (¥ OUTPUT BLOCK *)
END .
CONST .
R:AL Fig,1l0: COSY program for the

VE = 12.0 (* WS %) s . .
M = 100.0 (% KG %1, pilot ejection problem
Y1 = 1.2 (* H*),
THETAD = 15.0 (* DEGREES ¥,
co = 1.0 (% -—- w, Fig.1ll shows the resulting graph of the ejection
s = 1.0 (% we . 2 i
6 S 9,81 (* MP(S*S) *1; level depicted versus the aircraft velocity.

"

3

REAL DIST, H, HELP, RHO1, THETAR, VA, VECOS, VESIN}
STATE X, ¥, V, THETASS

ALGEBR D, VX, VY, GX, GY}

INTEGER PHASE;

BOOLEAN LAST;

SEVENT DISENGAGE, OVER;

MOBEL INOROUT;

STORE
Hy YAy Xy Y3

1

H

The COSY simulation language

PILBT EJECTI@N STUDY - HEIGHT VERSUS VEL@CITY @F AIRCRAFT

1600104

. safe ejection

unsafe ejection

~0.20 M ¥ T T T]
-1.00 -0,50 0,00 0.50 1.00 1,50 200 250 3.00 3.50 4.00x102
VA

Fig.ll: Safe and unsafe ejection

This example can illustrate only a small part of

the features available in COSY, but the limited
space does prevent us from either presenting a
more complex example or from presenting several

different examples.

7. CONCLUSTONS

In this article we tried to outline the methodo-

logical aspects which led to the development of
the

new simulation language COSY for a comfor-

table and safe simulation of both continuous and
discrete as well as combined continuous/discrete
systems, It is not the goal of this paper to re-—
place a users' manual for COSY.

[1]

[2]

[3]

[4]

. Semesterwork,

8. REFERENCES

(1978) "Definition
Simulationssprache COSY".

A.P.Bongulielmi: der

allgemeinen

Institute for Automatic
Control, The Swiss Federal Institute of
Technology Zurich. To be obtained on micro-
fiches from : The main library,
ETH - Zentrum, CH-8092 Zurich, Switzerland .
(Mikr. S637).

F,E.Cellier: (1976) "Macro - Handler for
Simulation Packages Using ML/I". Proc. of

Automatic Control,

the 8th AICA Congress on Simulation of
Systems, Delft, The Netherlands, Published
by North-Holland Publishing Company
(Editor: L.Dekker) ; pp. 515 - 521.

F.E.Cellier: (1978) "The GASP-V Users'
Manual"”. To be ordered from: Institute for
The Swiss Federal Insti-
ETH - Zentrum ,

tute of Technology Zurich,
CH-8092 Zurich, Switzerland.

F.E.Cellier: (1978) "Combined Con-—

tinuous/Discrete System Simulation Lan-—

guages Usefulness, Experiences and Fu-

ture Development'. Proc., of the Symposium

on Modeling and Simulation Methodology,
Rehovot, Israel. Published by North-Holland
Publishing Company (Editor: B.P.Zeigler).

[5]

[9]

[10]

[111

[12]

[13]

[14]

[15]

(161

281

F.E.Cellier, Blitz A,E.: (1976) "GASP~V: A
Universal Simulation Package”. Proc. of the
8th AICA Congress on Simulation of Systems,

Delft, The Netherlands. Published by
North-Holland Publishing Company
(Editor: L,Dekker) 3 pp. 391 - 402,

H.Elmqvist: (1978) "A Structured Model Lan-

guage * for Largeé Continuous Systems". Form:
CODEN LUTFD2/ (TFRT-1015)/1-226/(1978).
Ph.D. Thesis, Lund Institute of Technology,

Dept. for Automatic Control, Lund, Sweden.

G.A.Korn,Wait J,V.: (1978) "Digital Con-
tinuous~System Simulation'". Prentice Hall.

H.Lienhard: (1978) "PORTAL Language Defini-—
tion". To be ordered from: Landis & Gyr AG,
Zug, Switzerland. (Partly in German).

H.Lienhard:
miersprache
Landis & Gyr
pp. 2 - 8.

(1978) 'Die Echtzeitprogram—
PORTAL, eine Uebersicht".
Mitteilungen 25(1978);

T.I.0ren: (1978) '"Concepts for Advanced
Computer Assisted Modeling"”. Proc. of the
Symposium on Modeling and Simulation
Methodology, Rehovot, Israel., Published by
North-Holland Publishing Company
(Editor: B.P.Zeigler).

T,I.0ren, Zeigler B,P,:
for Advanced Simulation
Simulation, vol., 30 no. 6

(1978) "Concepts
Methodologies'.
: June 1978,

T.F.Runge: (1977) "A Universal Language for
Continuous Network Simulation". Form:
UTUCDCS-R-77-866. Ph.D, Thesis. University
of Illinois at Urbana-Champaign, Dept. of
Computer Science, Urbana, Illinois, U.S.A..

N.Wirth:
tures =

(1976) "Algorithms + Data Struc-—
Programs', Prentice Hall, Series in

Automatic Computation.

N.Wirth: (1977) "MODULA: A Language for
Modular Multiprogramming”. Berichte des In-

stituts fuer Informatik, Nr 18, To be
ordered from: Institute for Information
Processing, The Swiss Federal Institute of
Technology Zurich, ETH ~ Zentrum,

CH~8092 Zurich, Switzerland,

N.Wirth: (1977) "What can we do about the
unnecessara diversity of notation for syn—

tactic definitions?", Comm. ACM, vol 20 ,

no 11 : November 1977,

B.P.Zeigler: (1976) "Theory of Modeling and
Simulation'. John Wiley.

