ON THE USEFULNESS OF SLAM-II
FOR THE MODELING AND SIMULATION OF LARGE TRANSPORT SYSTEMS

by: Andre Graber &

Francois E,

Cellier

Institute for Automatic Control
The Swiss Federal Institute of Technology Zurich

ETH « Zentrum
CH-8092 Zurich
Switzerland

Since 1980, the new network-oriented simulation language

system

variety of simulation problems. This

SLAM, primarily useful for discrete

simulation but also applicable to combined continuous and discrete system simulation, is
available, and since then has been successfully applied by many Research Groups
software

to a large

system which was developed by

Pritsker & Associates, Inc, certainly is a mile stone in topological simulation software develop-

ment .

This
transport systems.
modeling of

paper discusses a very large industrial application of SLAM for the simulation of internal
The aim of this paper is to critically analyse the aptitude of SLAM for
such types of systems, to show its advantages, and to outline its limitations. By

the

these means, we hope to provide future potential users of SLAM with a decision aid for software

selection criteria.

1. INTRODUCTION

This paper describes briefly the modeling of a large
internal transport system for stock management which
was undertaken for Digitron AG, a Swiss Company pro-
ducing robot trailers and automated internal transport
systems making use of these robot trailers. The parti-
cular application, which was studied by wus wusing the
SLAM-II simulation software, concerned a large stock
management system in which approximately a dozen robot
trailers traveled between a delivery conveyor, 8 fully
automated high bay ware houses, 6 manned picking sta-
tions, a manned inventory and quality control station,
and the collecting station from where the stored goods
are sent further.

The main objective of this study was to figure out:

1) how many robot trailers were precisely needed to
cope with the required good movement, by:

2) determining an optimal disposition of traillers to
Jjobs, and

3) optimally routing the trailers through the system.

The model can be conceived as of having four
hierarchical 1levels ({described from bottom to top
level):

1) movement of the robot trailers,

2) block reservation mechanism,

3) disposition of paths to trailers, and
4) disposition of trailers to jobs.

Quite obviously, the 1lowest level is application de-
pendent and thus of not much interest to a larger com-
munity of simulation specialists. On the other hand,
levels 2 to 4 are quite general and, therefore, deserve
to be looked at a little closer. If one replaces each
previous occurence of the word "robot trailer"™ by the
word "train", one can immediately see that level 2 of
the hierarchy can be applied one to one to this modi-

fied situation, while level 3 would apply at least to
larger railway stations. Level 4 does not apply, as
this step would be taken care of during the evaluation
of the time table, that is off-line. If the word
"robot trailer" were replaced by "taxi", level 2 could
(for obvious reasons) not be directly used, while
levels 3 and 4 would apply one to one to the new situa=
tion as well.

It is certainly not in our intention to describe the
above outlined application to a great detail as this
would be of no direct value to others. It is the ex-
perience as concerning capabilities and limitations of
the SLAM~II software which we want to convey in this
article, an experience which we gained during this
large-scale modeling process. As the problems mentioned
pertain to all transport systems equally, we hope that
this experience may become a valuable decision aid for
future potential users of the software confronted with
the need to develop larger transport system models to
decide whether SLAM would be an appropriate vehicle to
try their hands on or not.

2) ROBOT TRAILER MOVEMENT

As robot trailers move around with constant speed, it
was easiest (and most cost effective) to model the
trailer motion by discrete modeling rather than by sets
of differential equations. An activity monitoring ap-
proach was used for that purpose. A robot trailer
leaving one "station" (node) enters an activity. In

some cases, the activity duration can be predetermined
and can, therefore, be directly assigned, while in
others the duration depends on the circumstances

(e.g. whether the trailer has to stop at the next node
or can drive through). In such places, the USERF option
of SLAM-II was used to model the activity duration,
that is: the computation of the activity duration is
done in FORTRAN.

3) BLOCK RESERVATION

Let us discuss the simplest of all cases, a
"transit stop", that is: a point of the network at
which the robot trailer may be forced to stop because
the following block is currently occopled by another
trailer but otherwise would always drive through as it
is neither a place where palettes are to be delivered
to nor a place from where palettes are to be picked.
Fig. 1 models such a "transit stop"™ in terms of SLAM
network elements, while Fig. 2 shows the actual program
for one particular transit stop (stop 17).

ARNRREEERRARRNERARNAAARNRREERAFRARRAREEAARNRRARRARERRRRS

STOP NO 017 *
; ARERBERR RSB RR AR AR RE RN RRRER BB RRREARRRERRREERRRRERR
8017 EVENT, 17,13 ENTERING STOP Q17
ACT,ATRIB(6); DRIVE TO STOP
FO17 EVENT,217,1; FREE PREV. TRACKS
ACT, ,ATRIB(4) .EQ.1.,B017; NEXT TRACK RES.
ACT, ,ATRIB(}) .EQ.0.,A017; NEXT TRACK OCC.
A017 AWAIT(17),ALLOC(17),,1; WAIT FOR NEXT TRACK
BO1T7 GOON,1; CONTINUE
ACT,USERF(17) ; LEAVES STOP 017
K017 EVENT,417,1; FREE STOP 017

.. we we

ACT,ATRIB(6),ATRIB(2).EQ.1.,S018; GOTO 018
ACT,ATRIB(6),ATRIB(2).EQ.2.,5031; GOTO 031
ACT,ATRIB(6),ATRIB(2),EQ,3.,8063; GOTO 063

Fig. 2: SLAM Network Program Segment for Transit Stop

The robot trailer (RT) enters the
EVENT-node labeled Si. At this moment, the subroutine
EVENT is called by SLAM-II with an event code of 1i.
This EVENT-node represents the interface to the
hierarchically higher levels 3 and 4. The target number
is compared to the direction code and is possibly ad-
Jjusted (level 3). At "disposition stops", a job may be
assigned to a previously idle RT (level 4). After this
has been accomplished, ATRIB(4) and ATRIB(6) obtain
their values, ATRIB(Y4) is used to determine whether the
next track could be immediately allocated (=1) or was
currently occupied (=0). ATRIB(6) determines the time
needed to pass through the stop. This time interval de-
pends on whether the RT has to stop or may drive
through, and possibly whether it has to await a new job
disposition.

stop at the

After ATRIB(6) time units (activity duration), the RT
enters another EVENT-node labeled Fi. Now, the EVENT
subroutine is called by SLAM-II with an event code of
(200+1). Here, all previously allocated tracks are
freed (possibly with the exception of one stop back, as
there exist a few stops which are so close to each
other that they may not be simultaneously occupied by
two RT's). It is necessary to perform this in an
EVENT-node rather than in a FREE-node, as there are

ACT, ATRIB(4).EQ.1.

possibly several tracks to be returned at once, and as
FREE~nodes do not allow to refer to resources by number
rather than by name. This would require network pro-
gramming for each stop individually.

If the following track(s) could not yet be reserved,
the RT comes to an AWAIT~-node labeled Al in which sube
routine ALLOC is called for resource allocation. This

call to ALLOC is unavoidable as it is often necessary
to reserve several tracks at once. This cannot happen
sequentially, as there may occur deadlock situations
otherwise. '

After the RT received the required tracks, it passes
through the GOON-node labeled Bi and then enters an
activity the duration of which is computed in the USERF
subroutine (time to speed up in case the RT had to
stop). In the EVENT-node labeled Ki, finally, the just
left stop is freed (except if the next one is very
close). The time to travel to the next stop is computed
and stored in ATRIB(6). ATRIB(2) contains the direction
code which is used for branching.

This concludes the description of the simple transit
stop. Loading and unloading stops are a 1little more
complex, and also the picking places are modeled se=-
parately in terms of SLAM-II network elements.

Altogether, the network contains about 120 stops, cor-

responding to roughly 3000 lines of network description
code,

4) DISPOSITION OF PATHS TO TRAILERS

The disposition problem involves
sequential logic which 1s not easily expressible in
terms of a SLAM-II network. All disposition logic is,
therefore, programmed in FORTRAN, interfaced to the
network through the EVENT-nodes labeled Si.

basically a lot of

Whenever a branching is possible, the direction code
must be recomputed (and stored as ATRIB(2)). This is
currently done by table look-up, that is: corresponding
to¢ the programmed network structure, there exists slso
a topological data structure from which it is possible
to evaluate for each stop its direction code given the
actual stop number and the target code (that is: the
number of the stop at which a palette is to be de~-
livered or from where a palette is to be fetched). This
disposition is currently entirely static, that is: it
does not take into account how much traffic is on the
way to determine dynamically alternative paths to the
target stop. The program is, however, written in a very
modular way in that all table look-up for disposition
of paths takes place in one single subroutine which
could be easily replaced by a more intelligent one.

Fig.

' ACT, ATRIB(4).EQ.O, q ALLOG(H) D

.ACT.USERF (i)

1: SLAM Network for Transit Stop

5) DISPOSITION OF TRAILERS TO JOBS

There exist basically two different algorithms to as-
sign trailers to jobs. One approach would be to 1let
each new Jjob "look around™ for the next free trailer,
while the other algorithm 1lets each free trailer
"look around" for unassigned jobs. It is this second
algorithm which was used in our program, Idle RT's
travel restlessly in a circular path around the
6 picking places, and, along this path, there exist a
few distinct "decision stops"™ in which idle trailers
look for new jobs. Also this disposition problem is
interfaced to the network through the EVENT-nodes
labeled Si. As for the previous disposition probiem,
the currently used strategy is still fairly simple, but
takes place in a separate subroutine which could easily
be replaced by something more elaborate.

6) CRITICAL ASSESSMENT OF SLAM-II FOR THIS PROBLEM

Array Limitations: SLAM=1IT is programmed in FORTRAN,
and thus inevitably places limitations on the size of
some "system quantities™ (e.g. state variables, re-
sources, ete.,). As these 1limitations are not ex-
plicitely mentioned in any SLAM document of which we
dispose (we had to read them out from the source
listing!), it was decided to list these limitations ex-
plicitely in table 1 of this paper.

| SLAM quantity

| size
number of differential eq. 100
number of state conditions 25
number of entry nodes 25
number of gates 25
number of resources 75
number of histograms 50
number of cells (4in histo.) 500

!
!
|
|
|
|
|
number of collect stat. | 50
1
g
(]
1
!
!
|
i
|
i
|
|

number of time pers. stat. 50
number of attributes 100
number of files 100
number of plots 10
number of dep. var. per plot 10
number of random streams 10
number of activities 100
number of nodes 500
number of service activities 50
number of global variables 100

 mm e - ——————— —— ——— e e me =

Table 1: Size Limits in SLAM-II

For our application, we had to enlarge 7 of these
18 quantities (e.g. the number of activities of which
we required 750). It was a very pleasant surprise to
learn that all these limitations appear in the program
only in terms of array dimensions, while the limit it-
self 1s kept as a variable which is assigned precisely
once for each of these quantities and then used
throughout the program (no more explicit references in
DO-loops or similar as with the former GASP system!).
In this way, the modifications could be achieved within
a few hours and the enlarged SLAM system was opera-
tional upon the first trial.

] eness of the Language: The program described
in this paper was developed by one student during his
diploma thesis (with a duration of 8 weeks). The fact
that such a complex study could be performed in this
short time by an (admittedly good) student who had no

experience in wusing SLAM before shows better than any
detailed analysis one of the highlights of SLAM, namely
the ease with which models are developed. We faced no
major problems in expressing any of the system com=-
ponents by means of SLAM (which would certainly not
have been the case for a software system like Q-GERT or
GPSS~V, that is, for a software which does not provide
for such a flexible FORTRAN interface).

Program Debugging: As it was to be expected, the pro-
gram contained many errors in the beginning. We noticed
that network errors are extrémely easy to debug by
means of the (well readable) tracing facility offered
in SLAM. FORTRAN errors were much more difficult to
trace, and also the use of process interaction routines
within the FORTRAN portion of the program created some
problems in that these calls often generate entries
into the trace which are not so easily interpretable.
Debugging the FORTRAN portion required several nights
of work of the project supervisor (!), while network
errors were in all cases found by the student himself.

f : The original version of SLAM,
as described in [4], does not allow to allocate several
different resources at one node (that is: simul-~
taneously). This feature is, however, essential when
deadlock situations are to be avoided. Let us assume
that there exist two types of resources with a capacity
of one each. Two different transactions (possibly at
different points in the network) require both re~
sources. If each of them allocates one resource first,
they both must wait forever to get the other onei In
our problem, this situation may happen with the alloca~
tion of multiple intersections which may be required by
the RT's coming from different sides. The only way
around this problem is by providing a means to allocate
several different resources (e.g. a multiple intersec=-
tion) in one single (that is: uninterruptable) command.
SLAM-II, described in [3], provides now the possibilty
to achieve this by calling subroutine ALLOC from an
AWAIT-node,

Beside of these SLAM-specific (meanwhile resolved) re-~
source allocation problems, there exist also the
"usual™ shortcomings of commonly used resource alloca-
tion mechanisms, as they are described in a companion
paper [5]. Resources may readily be freed which have
never before been allocated; transactions may leave the
system without returning their allocated resources,
thus taking them to grave (nice feature to model the
behavior of people passing away while leaving their
meney on a number account in a Swiss bank!).

Executjon Efficiency: It is still too early to finally
Jjudge the efficiency of SLAM-II as compared to other
programs. During the oral presentation, we may have
more resulis available as to this point. One remark
can, however, be made already now: The compilation of
the network description becomes quite expensive as the
network grows in size. For our example (with about
3000 lines of network code), more than 120 sec of
CPU time were required on a CDC CYBER installation for
the compilation of the network. This is acceptable if
there exists a possibility to store the compiled net-
work away for later reuse, like:

SAVE, 8#
to store the network description on tape 8, and
LOAD, 8%

te reload it from there. Remember that the disposition
logic is coded entirely in FORTRAN. It makes a lot of
sense to try different disposition strategies on one
and the same topological model. Unfortunately, such a
feature does not exist at the moment.

¢+ Unlike Q-GERT, SLAM does (until now)
not provide for a macro facility. In larger networks,
such a facility is, however, essential as there tend to
exist larger portions of the network which are often
repeated (like the stops in our application). Such a
facility, when properly designed (which is not really
the case in Q-GERT as macros there may not carry formal
arguments!), also allows for a much more modular
hierarchical structuring of the model. In our case, we
decided to develop a (relatively short) PASCAL program
to generate the network description out of a few master
elements (like the previously sketched transit stop)
together with a topological network description of the
system (data file). This seemed easier than to use one
of the available general purpose macro languages (like
ML/I [1]) for which the definition of macro bodies
tends to become somewhat clumsy. (An application of
that approach was discussed in [2].)

- ¢ Although a macro facility would be
very useful, it does not sclve all problems either. For
our application, we required CM240000 on our CYBER in-
stallation which 1is almost at the upper 1limit of
available core. (ECS could have been used also, but
would have required a larger portion of the SLAM soft-
ware to be modified). Obviously, the operating system
on our CYBER 1s somewhat old fashioned as it does not
provide for a virtual memory mechanism (on either our
VAX or the IBM 3033 we would have faced no space
problems at allt). Nevertheless, it may be preferable
to reduce the required memory anyhow for efficiency
considerations. This reduction could e.g. be achieved
by recycling the RT's again and again through the same
standard block. However, to do this, we would have to
reprogram even larger portions of the network in
FORTRAN. In the end, it may become easier to forget
about the network description capability all together
and resort entirely to FORTRAN. (Notice that even now
most of the utilized network elements are just links to
FORTRAN subroutines.) However, this does not mean that
the network description becomes useless. Even in that
case, SLAM would have helped us through its network
capabilities in the structuring of the software to an
extent which cannot be overestimated. We are convinced
that, without the support from the SLAM software, the
student would have had no chance whatsoever to obtain
any results for this problem within the short available
period of 8 weeks. ‘

Hierarchical Structures: As it can be seen from Fig. 1,

it 4is not easy to separate in this model the
hierarchical levels (1 and 2) from each other, Also
levels 3 and 4 are coded in two parallel rather than

hierarchically structured subroutines. This tendency of
"smearing® hierarchy levels is inherent in the
network modeling approach. In another project, the
process oriented (PASCAL extension) language MODULA-II
[6] has been used to control (in real-time) a railway
system (childrens' toy). In that project, the hierarchy
of train process, train scheduler process, block re-
servation process, and disposition process could be
quite naturally maintained in the software.

Overall Assessment: All of the previously available
transaction oriented simulation software systems (1like
GPSS-V or Q-GERT) were much too inflexible to allow
real complex systems (as they are found in industry) to
be adequately and conveniently modeled. SLAM-II is the
first such system which, as we feel, provides for suf«
ficient flexibility to make it also appropriate for
large~scale industrial processes. Even if the final
production software (as in our case) has to resort
largely to FORTRAN programming, the modeling support
available in SLAM justifies by far the inevitable over-
head inherent in any "cure-all" system.

ACKNOWLEDGMENTS

We would 1like to thank Digitron AG for the highly
interesting practical application problem and for sall
the excellent support which we received from them du-
ring the execution of this project. We would also like
to thank Dr., Hazeghi and Mr. Benninger from the
Institute of Operations Research at ETH for their co-
operative support of this project.

REFERENCES

[1] Brown P. J.: (1975) "Macro Processors and Tech=
niques for Portable Software®. John Wiley.

[2] Cellier F., E.: (1976) "Macro-Handler for Simula-
tion Packages Using ML/I"., Proceedings of the 8th
AICA Congress on Simulation of Systems,
(L. Dekker, ed,), North-Holland Publishing
Company, pp. 515 - 521.

[3] Duket S. b., J. J. O'Reilly and R. J. Hannan:
(1981) "SLAM-II, Enhanced Simulation Capabili-
ties". Pritsker & Associates, Inc., P.0.Box 2413,
West Lafayette, IN 47906.

[4] Pritsker A. A. B. and C. D. Pegden: (1979)
"Introduction to Simulation and SLAM", Halsted
Press (John Wiley) and Systems Publishing
Corporation.

[5] Rimvall M. and Cellier F. E.: (1982) "The GASP-VI
Simulation Package for Process-Oriented Combined
Continuous and Discrete System Simulation", (this
volume).

[6] Wirth N.: (1980) "MODULA-II". Internal Report
No 36, Institute for Informatics, ETH~Zentrum,
CH-8092 Zurich, Switzerland.

