THE GASP-VI SIMULATION PACKAGE
FOR PROCESS-ORIENTED COMBINED CONTINUOUS AND DISCRETE SYSTEM SIMULATION

by: Magnus Rimvall & Francois E. Cellier
Institute for Automatic Control
The Swiss Federal Institute of Technology Zurich
ETH - Zentrum
CH-8092 Zurich
Switzerland

GASP-V, the predecessor of GASP-VI, was presented for the first time during the 8th AICA (IMACS)
Congress held at Delft in 1976. This software was finally completed in spring 1978 and since then
it has been very successfully applied by many (both industrial and university) research groups.
GASP-V provides for mechanisms for: (i) continuous simulation (in the state-space domain), (ii)
diserete simulation (event oriented), and (iii) distributed simulation (method-of-lines) and any
mixture of the three (combined simulation). In the mean time, it was decided that thia
(FORTRAN-based) software package should be enhanced by adding to it a process interaction
mechanism for both continuous and discrete processes., This enhancement is particularly essential
in the context of the new simulation language COSY for which GASP-VI is the run-time system. How-
ever, even independently of COSY, a process interaction mechanism is very useful as it supports a
much more modular programming, and, by these means, helps the user in formulating his models and
in coding them error free.

The here presented new system GASP-VI is upwards compatible with GASP-V and provides for the
above mentioned additional process interaction mechanism. This paper concentrates on the inno-
vative aspects of this new development as there are: (i) a new mechanism for list processing with
variable-length list entries, and (ii) a new resource allocation mechanism which allows for a
significantly improved monitoring of resource allocations, and which moreover allows to add indi-
vidual attributes to resources in a resource pool.

1. INTRODUCTION

GASP~VI is a new (upwards compatible) extension to the
well known and widely distributed simulation packages
GASP-IV [8] and GASP-V [2,3].

While GASP~IV was already able to perform combined
simulation, this software system was still fairly
simple, using an event view on the discrete side, and
offering only few features on the continuous side
(e.g. only one Runge-Kutta integration algorithm which
made this software system unusable for stiff system
simulation).

GASP-V extended this software system by adding to it:
1) a library of integration algorithms including among
others the Kahaner implementation of the GEAR algo=~
rithm for stiff system integration,

simulation
equations) by

2) facilities for distributed system
(modeled by partial differential
using the method-of-lines approach,

3) improved capabilities for state event detection by
employing inverse Hermite' interpolation,

4) a library of discontinuous functions (comparable to

the one offered by CSMP), 1including among others
hysteresis, step, and pulse functions, but re-
solving all discontinuities by an internal event

handling mechanism and, by these means, getting
around the numerical problems (creeping effects)
which are well known to arise when these functions
are used in a CSMP (or similar) program,

5) a data base mechanism to store simulation data away
during the run together with a postprocessor to re-
trieve the data from the data base and to display

them in a variety of attractive formats, and
6) improved facilities for optimization studies.

As one can see, all these improvements concern the con-
tinuous side while the discrete side was left unchanged
in GASP-V.

GASP-VI, finally, adds a proceess interaction view to
GASP both for discrete and for continuous processes.
GASP-VI programs resemble to a large extent GASPPI pro-
grams [101, another software development from
Pritsker & Assoc. which was, however, never brought to
an end. Still, the GASP-VI software is entirely recoded
and uses internally quite different mechanisms from
GASPPI.

One of the major reasons for the development of this
new extension GASP-VI was to obtain a reasonably ade~
quate target system for the COSY simulation language
which was described in [2,4,6]. Originally, COSY was
intended to be an easy to use front end for GASP~V to
make the coding of GASP programs somewhat easier and
more error safe. During the design of the new language,
we then realized that COSY could be much more than what
our original intentions were. We now view COSY as the
Swiss contribution to a replacement for the (meanwhile
somewhat outdated) CSSL specifications [11]. With this
modified design goal in mind, we noticed that, sticking
too closely to GASP-V, would be more of a hindrance
than of a help. So, COSY contains now several new fea=-
tures which are not easily expressable in terms of
GASP-V, while some of the previously available GASP-V
features are no longer supported in COSY. When the de~
sign of COSY came close to its finalization, we
realized that GASP-V no longer was an acceptable candi-
date for use as a target software for the COSY prepro-
cessor. This 1led to the development of GASP-VI which,
on the one hand, supports all features offered by COSY
reasonably well but, on the other hand, is still up~



wards compatible with GASP-V to make this software at-
tractive also to former (and future) GASP programmers.
One problem with this approach is the difficulty that
error reporting should, in all stages, be done with
respect to the source code, that is, differently for
COSY programmers (who need to obtain references to
their original COSY programs) as compared to GASP-VI
programmers who need references to their GASP programs.
For this reason, the COSY preprocessor must generate,
in addition to a GASP-VI program, a (machine readable)
crossreference table of COSY and GASP variables and
line numbers together with a switch in the GASP data
foards®t which tells the GASP executive software whether
the code was generated by the COSY compiler or directly
user written. This flag, however, influences only the
error reporting as well as the monitoring and tracing
activities, thus creating some memory (space) overhead
but no execution (time) overhead.

GASP-VI, the youngest "child™ in the GASP program
family, is to be briefly presented in this article.

2) DATA STRUCTURES IN GASP-VI

Beside of the standard FORTRAN data types (scalars and
arrays), GASP-IV (and with it also GASP-V) offers one
additional standard data type which is a linearly for-
ward and backward linked list (called "file" or "queue"
in GASP-IV). The elements of this 1list structure are
records (in GASP-IV called "entities" or "entries").
Each 1list has associated with it one (out of four
available) ranking rule (e.g. FIFO, or HVF on ATRIB(5),
etc.). The manipulation of records in 1lists is done
through standard subroutines (e.g. FILEM to insert a
record into a list, or RMOVE to remove a record from a
list).

This data structure is used for two distinet purposes:

1) the modeling of waiting queues which are elements
common at least to all transportation problems, and

2) the maintenance of the galendar of events. This
latter usage is somewhat special, in that:
a) Each event record contains two

- event time (time when the event is to take
place): ATRIB(1), and

- event code (type of event to take place):
ATRIB(2).

b) Event removal from the calendar of events is
performed automatically at event time.

¢) There exists precisely one calendar of events:
(file no 1).

d) The ranking rule for this list is always LVF on
ATRIB(1) (in GASP~V: HVF on ATRIB(1) in case of
backward integration) with a possibility to

specify a secondary ranking for simultaneous
events.
puring the implementation of SLAM-II [9], another
direct descendant of GASP-IV, the inaugurators

(Pritsker & Assoc.) obviously realized that the
outlined approach was not ideal as:

above

1) the GASP-IV user had always to remember that, in
the event list, the first two attributes are system
reserved -- and so they modified the scheme in that
SLAM-II maintains the standard attributes as the
last rather than as the first attributes in the
record, and

2) the GASP-IV user had always to remember that
file no 1 is reserved for the calendar of events,
that is that the freely available lists for waiting
queues start from index no 2 -- and so they modi-
fied the scheme to preserve the calendar of events
as the last rather than as the first file number.

However, although this modification clearly indicates
an improvement, it does not solve all problems, as, in
process interaction, additional "special purpose" list
types should be introduced, e.g. to store the attri-
butes of transactions. Due to the above mentioned limi-
tations, SLAM~II does not store these attributes in the
user accessible 1list structure with the implication
that attributes of "other" transactions are not easily
user accessible, and that there exists only a limited
possibility to modify transaction attributes from with~
in the event portion of the program (except for the
case when a transaction causes the event by passing
through an EVENT-node).

It was one of the design goals of GASP-VI that both
transaction records and resource records (the latter
shall be described in more detail in the next section
of this paper) should be transparently stored by use of
the standard list processing mechanism. For this pur~
pose, however, the list processing mechanism of GASP-IV
had to be extended and, in effect, to be largely re=-
coded.

Let us look more closely at a transaction record.
such a record, GASP~VI maintains 11
specific standard attributes (called
attributes"™ in GASP-VI):

For
transaction
"hidden

1) pointer to time event record

2) pointer to resource request records

3) pointer to records of allocated resources
4) pointer of timeout event record

5) current status of the transaction

6) process number

7) block number

8) generation time of the transaction

9) mark time of the transaction

10) priority
11) new block number (in

being performed)

case of a GGOTO statement

From this list, it should become clear that:

a) Neither is it acceptable that the wuser starts
counting his own (user) attributes from index 10
onwards (and again differently for continuous pro-

cess records, resource records, etc.), nor is it
acceptable that the wuser is forced to access
e.g. the mark time by counting his own attributes

plus an offset of 5. We obviously need a separate
access mechanism for hidden attributes., In GASP-VI,
the user must count only his own (user) attributes
while all hidden (system) attributes are auto-
matically copied from and to special common blocks
(except for the before mentioned standard attri-
butes of the calendar of events for reasons of up~
wards compatibility).

b) We may easily face situations in which one list
(e.g. containing transaction records) requires
50 attributes while another (e.g. for a waiting

queue) requires only one or two. In the case of the
event queue, it shall even be the normal situation
that one record contains many attributes while an-
other contains only very few. That is: neither the
GASP-IV rule that all records in all lists must be
of equal size, nor the other GASP-IV rule stating
that the maximum allowed size is 25 are acceptable,
To circumvent this problem, we now distinguish
between:



~ logical records which may be of any size (no
limitation) and which may be of unequal size,
and

~ physical records (also called "slices") which
are of equal size but without restriction as
concerning their tolerated size.

Each logical record contains now (at least) three
pointers, two of them to denote the logical predecessor
and successor (as in GASP-IV), and a new one to point
to the next slice belonging to the logical record.
Three additional hidden attributes pertain to all re-
cords:

1) number of (hidden and user) attributes of the re-
cord (statistics are automatically recorded on the
average number of attributes -- useful for tuning),
and

2) record type (used for proper monitoring and also to
prevent illegal use)

3) time the record was inserted in it's present file,
an information which is used for two purposes:

a) statistics are automatically recorded on the
average tige a record spent in a queue beside
of the (in GASP-IV available) average number of
records in the queue -- a quantity which we
noticed to be frequently very useful, and

b) to allow for an automated timeout mechanism for
the detection of deadlock situations.

The physical size of a slice (NNATR) must be user de-
termined. Whenever one or several processes take part
in the model, the minimum size is automatically put to
10. It is a good rule to dimension the slices such that
a 1little more than 50 percent of the logical records
occupy one slice only.

3) RESOURCES

Let us for once model a car rental company. Tourists
(transactions) arrive to get hold of a car (resource).
As long as there are cars available, the tourist shall
receive his car, otherwise he has to either wait until
a car comes back or do something else.

This situation is modeled in most process~oriented
simulation programs (e.g. in SLAM-II, GPSS-V, or
GPSS~-FORTRAN) by means of an integer counter which 1is
decremented whenever a car leaves the company and in-
cremented whenever a car is returned. Usually, a second
integer denotes capacity.

By use of this mechanism, any tourist may easily de-
posit his rented car at the next corner and fly home
(that 1s: the transaction leaves the system) without
being punished for doing so. Even worse, as long as al-
ways at least one car is out, a tourist who decided to
travel around by using the public transport system, may
readily return a car (which he never possessed) before
going home! (An error message shall be produced by some
of the available software systems when the number of
available resources increases beyond capacity.)

Most software producers are obviously happy when their
product is able to handle all "correct" programs cor-
rectly. However, we feel that it should be one of the
most noble duties of any software producer to support
the application programmer against his own stupidity!

In GASP-VI, we therefore went along a different 1line.

Each resource is represented by a record, All free re-
sources are linearly linked in a resource list. When~
ever a resource is allocated, this resource record is
taken out from the list of free resources and linked
into another list which in itself is 1linked to the
transaction record. That is: all resources (of possibly
different types) which a transaction currently holds
allocated are linked into a linear list which in itself
is forward and backward linked to the transaction re-
cord., If a tourist forgets to return his car, hotel
key, ete. when flying home, a warning message 1s
printed out, and automatically all allocated resources
are taken from him. If one tourist rents a car which is

then "stolen" by another tourist over night (a situa-
tion which is, in fact, quite difficult to program),
this other tourist must be an extremely clever GASP-VI

programmer if he should be able to return the stolen
car to the car rental company without being caught.

One side effect of this methodology is that auto-
matically resource utilization statistics can be ob-
tained even within resource pools for each resource ine
dividually.

Another side effect is that each resource in a resource
pool may carry its own individual set of attributes.
That is: the car company may dispose of large (ex-
pensive) and of smaller (less expensive) cars (classes
A to D), and each tourist may get a car out of his de-~
sired class only. The GASP-VI programmer may still de-
cide to keep all cars in one single resource pool
(e.g. to get global statisties on all cars).

As any other solution, also this approach has its in-
herent weaknesses. Let us model a computer system for
which the central memory is to be represented by a re-
source pool. A new job (transaction) arrives and wants
to occupy a portion of the central memory. Obviously,
it 41s not a splendid idea to model U4 MBytes of
available memory by 4 millions of resource records out
of which 128'000 are allocated (that is: relinked) to
the new Jjob! By our approach, it is important to keep
the number of resources in a pool within reasonable
limits, e.g. by using appropriate measurement units. In
the here described situation, we may for instance
foresee that memory is assigned in multiples of 32k
only which are then represented by one single resource.

4) STATUS OF IMPLEMENTATION

The current status of implementation is such that:

a) The COSY language design has been completed (except
for a few minor details) by use of a general pur-
pose parser program described in [1].

b) Many quite large application problems have been
coded in COSY and have been tested by use of the
parser program to verify the ability of COSY to
conveniently deal with large-scale problems.

¢) The new data structures for GASP-VI as well as the
new monitoring and debugging facilities are opera-
tional.

d) A basic set of process interaction routines has

been coded and is currently in the test phase. Ad-
ditional process interaction routines have been de~
signed but not yet implemented.

e) It is planned to complete the development of
GASP-VI (including a new manual for both GASP~V and
GASP-VI features) still in 1982, while the COSY im-
plementation must wait until GASP=-VI is fully
operational.



5) COMPARISON OF GASP-VI WITH SLAM-II AND WITH COSY

Was the development of the new software system GASP-VI
really Jjustified? An alternative approach could have
been to merge the enhanced features of GASP-V (enhanced
on the continuous side) with those of its Mbrother"
software SLAM-II (enhanced on the discrete side), a
task which would have been fairly easy to accomplish.
SLAM-II, an application of which is described in a com-
panion paper [7], enhanced the discrete modeling capa-
bilities of GASP-IV by adding a network description
mechanism to it. For simple applications (like the
single-server-single~queue problem: Joe's Barbershop),
it is fairly easy to show that this approach is equi-
valent and even almost identical to a process inter-
action mechanism. Unfortunately, this equivalence holds
only for very simple processes which basically consist
of sequential calls to process interaction routines
(like: generation of a new transaction, allocation of
resources, time-advance, etc.). However, more complex
processes may involve a large amount of sequential
logic. For such cases (like the elevator problem for
which a COSY solution was presented in [5]), a network
representation would have to consist almost exclusively
of EVENT~nodes which makes this approach neither
readable nor writeable, neither attractive nor ef-
ficient. That is: for simple processes, we would con-
sider SLAM~II and COSY approximately equivalent, while
SLAM-II 1s without question by far superior to GASP~-VI
both as concerning the length of the user code and as
concerning the probability for writing error-free pro-
grams. On the contrary, as soon as a simulation model
contains extensive logic, GASP-VI has some distinct ad-
vantages over SLAM-II, while certainly COSY must be
considered the most attractive of the three.

REFERENCES

[1] Bongulielmi A. P, and F. E. Cellier: (1979) "On
the Usefulness of Deterministic Grammars for
Simulation Languages". Proc., of the Sorrento
Workshop on International Standardization of
Simulation Languages (SWISSL), Sorrento, Italy,
Sept. 19 + 20, 1979.

[2) Cellier F, E.: (1979) "Combined Continuous/Dis-
crete System Simulation by Use of Digital Compu~-
ters: Techniques and Tools™. PhD Thesis,
Diss ETH No 6483, The Swiss Federal Institute of
Technology Zurich.

[3] Cellier F. E. and A. E. Blitz: (1976) "GASP-V: A
Universal Simulation Package". Proc. of the 8th
AICA Congress on Simulation of Systems, Delft,
Netherlands, August 23 - 28, 1976. Published by
North-Holland Publishing Company (L. Dekker,
ed.); pp. 391 - 402.

[4] Cellier F. E. and A. P. Bongulielmi: (1979) "The
COSY Simulation Language™. Proc. of the 9th IMACS

Congress on Simulation of Systems, Sorrento,
Italy, Sept. 23 - 27, 1979. Published by
North~Holland Publishing Company (L. Dekker,

G. Savastano and

pp. 271 - 281.

G. C. Vansteenkiste, eds.);

[5] Cellier F. E., A. P. Bongulielmi and M. Rimvall:
(1981) "Comments of the Swiss TC3 Group on the
'Outline Proposal for a New Standard for Con-
tinuous-System Simulation Languages (CSSL 81)'".
In: TC3 of IMACS, Committee on Simulation Soft-
ware, Committee Newsletter, no 10, Sept. 1981,
Appendix 3 (R, E, Crosbie and F. E. Cellier,
eds.). '

{61

(71

[8]

[9]

[10]

[111]

Cellier F. E., M. Rimvall and A. P. Bongulielmi:
(1981) "Discrete Processes in COSY"., Proc. of the
European Simulation Meeting on Simulation
Methodology held at Cosenza, Italy, April 9 - 11,
1981. (F. Maceri, ed.).

Graber A. and F. E. Cellier: (1982) "On the Use
of SLAM-II for Modeling and Simulation of Large
Transport Problems"., (this volume)

Pritsker A, A. B.: (1974) "The GASP-1IV Simulation
Language". John Wiley.

Pritsker A. A. B. and C. D. Pegden:
"Introduction to Simulation and SLAM",

(1979)
Halsted

Press (John Wiley) and Systems Publishing Cor-
poration.
W. B. Washam and A. A. B, Pritsker: (1976)

"Introduction to GASPPI".
Pritsker & Assoc., Inc,

Unpublished Document,

(1967) "The SCi Continuous System Simulation Lan-
guage (cssL)"., Simulation, vol 9, no 6,
Dec. 1967; pp. 281 - 303.



