Simulation in Engineering Sciences

J. Burger and Y. Jarny (eds.)

Elsevier Science Publishers B.V. (North-Holland)
© IMACS, 1983

SIMULATION SOFTWARE: TODAY AND TOMORROW

Francois E. Cellier

Institute for Automatic Control
The Swiss Federal Institute of Technology Zurich
ETH - Zentrum
CH-8092 Zurich
Switzerland

This paper describes briefly the current situation on the simulation software market.
A list of simulation software features is presented which is then graphed in tabular

form versus a couple of current simulation languages and packages.

In a second part,

some of the major shortcomings of current simulation systems are outlined, and some

prospectives for development are given.

1. INTRODUCTION

Eight years ago I have been asked already once
to survey the numerical techniques used in con-
tinuous simulation together with the major soft-
ware systems which existed at that time for this
purpose [8]. When I was now asked once more to
repeat this task, I tried to figure out whether
our knowledge about simulation techniques has
sufficiently advanced over the past eight years
to justify a reconsideration. I then came to the
conclusion that most of the "prospectives for
development" mentioned in that paper had mean-
while become everydays state-of-the-art issues,
while most of the software systems considered at
that time are meanwhile obsolete. Moreover, I
have some new ideas about future development of
simulation software which were not present yet
in 1975. Therefore, I considered the time come
to write another survey now.

In this paper, I shall not review the basic fea-
tures (such as numerical integration) dealt with
in my previous survey [8]. I shall assume that
the reader of this article has already acquired
a basic knowledge of the functioning of simul-
ation software. Moreover, I shall extend my view
to discrete simulation as well, as it was
realized in the mean time that the techniques
used in these two classes of simulation systems
are very much related to each other, and as
there exists now a considerable number of soft-
ware systems capable of performing combined con-
tinuous and discrete simulation.

There are meanwhile so many simulation software
systems on the market that it has become im~
possible to review even e major ones within a
reasonably limited numbgfipf pages. For this
reason, the mentioned software systems (which
are those that I know best) are meant to be re-
spresentative for many other software systems
showing only minor differences.

This paper shall basically consist of three
parts. In a first section, I shall try to pre-

sent a crude clustering of simulation software
systems based on a selection of classifying
features. In a second part, I shall then list a
few simulation systems which are either
available on the market now or which are cur-
rently under development. The paper shall then
be concluded with a list of proposals how some
of the more important shortcomings of the
available systems might be overcome in the
future.

2. SIMULATION SOFTWARE FEATURES

. In the following table, a rather large set of

characterizing features of nowadays simulation
software systems are listed. Altogether 15 soft-
ware systems have been analysed with respect to
the availability of these features. If a feature
is not available in a system, this is indicated
by (-). If the feature is available, this is
marked by (x). In many cases however, the imple-
mentation of a feature being present in several
software systems differs with respect to . the
degree of sophistication (e.g. comfort of
usage). In such cases, the better implementation
is indicated by (xx). Sometimes, a foot note is
added to explain the difference. Please note
that a (~) does not necessarily indicate that
the respective feature is not programmable in
that language. It just means that no particular
provision is taken by the language for that pur-
pose. To cite an example: it is of course
possible to receive a histogram by use of SIMULA
(as SIMULA is a flexible general purpose pro-
gramming language). Still, the respective box in
the table is marked by (-) as no particular pro-
vision is taken by SIMULA to relieve the user
from writing his own program to collect
statistics and get a histogram printed.

4 F.E. Cellier

I TAIDISIDISIFISIPISIGIGISIGIGICT
I \ ICIAITIYIYIOIIIRIIIPIPILIAIAIOTI
I \ Languages: ISIRIMIMISIRIMIOIMISISIAISISISTI
I N\ e ILIEINIOIMISIUISISISISIMIPIPIVYTI
I \ I I-I0OILIOIIILIIICI-I-I-I=-1I=1 I
I \ I IPINIAIDIMIAIMIRIFIFI2I5IG6TI I
I Features: \ I I I I I I-1I I ITII-I-1I I I I I
I emeeeeo \ I I I I I I61 I IPI21I3I1 I I I I
I \ I I I I I I I I ITI I I I I I I
I I I I I I I I I I I I I I I I I
I EXPRESSIVENESS OF THE LANGUAGE I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I
I Continuous Systems I I I I I I I I I I I I I I I I
I Ordinary Differential Equations Ixx T x I xIxx Ixx I xI-1 I-I-~-1 IxIxIxIxxI
I Partial Differential Equations I x1I x21 =« I -~ I - Ixx I - I - I~I~-1-1- I x3Ixx Ixx I
I Difference Equations IxI~IxxT -IxI-IxIxIxI I IxIxIxIxI
I I I I I I I I I I I I I I I I I
I Discrete Systems I I I I I I I I I I I I I I I I
I Event Handling IxI-I-I-IxI-1xT1zxIxx Ixx Ixx Ixx Ixx Ixx Ixx I
I Process Interaction I-I=-I=-I«1I=71=1Ixx Ixx I - Ixx Ixx Ixx I - Ixx Ixx I
I Activity Scanning I~-~I~-TI~-I-1I=1I=T1Ixx Ixx I - Ixx Ixx Ixx I - Ixx Ixx I
I I I I I I I I I I I I I I I I I
I Symbolic Library (at Source Level) Ixx I - I - Ixx Ixx I -~ I I I~-I1-1I-I1-I~-1I=1Ixx1
I I I I I I I I I I I I I I I I I
I Run-Time Library I I I I I I I I I I I I I I I I
I for Continuous Systems Ixx I I I Ixx I XxXI=-IXxI-TI-=-1Ix1IzxIxx Ixx Ixx I
I for Discrete Systems I-I-I-1 IxI~IxIxI Ixx Ixx Ixx Ixx Ixx Ixx I
I I I I I I I I I I I I I I I I I
I Data Handling (Data-Base Management)I - I x I - I - I x I -1 -1 -I-I-IxIxx5I xIxIxI1
I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I
I NUMERICAL BEHAVIOR I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I
I Integration I I I I I I I I I I I I I I I I
I Library of Integration Methodes IxIxx1I I Ix1I I -IT~-1-I-IxI-IxIxIxI
I Own Integration Method I ~-IxxI~-I-1I-1 I-I-I-I-IxI~-~IxIxIxI
I Automatic Selection of Method I-I-I-I-I-1-1-I-I-I-1I=1I=1RxX6bI x6I x6I
I Partitioning of State-Space I I I I I I I I I I I I I I I I
I Manual Partitioning Ixx T I I Ixx I-I-I-I-1I-1 I-I~-I-1I-1I
I Automatic Partitioning I-I-I-I-TI-1Ixx71-1-I-I=-1-1I~-1=1=1I=1
I Algebraic Loop Solver Ixx I - I -1 = IxxIxx I -I-1-1=-1-I1-IxI%xIxxTI
I Root Solver (State Events) IXI-I-I-IxxIXxI-I-I-I=1Ix171zxIxx Ixx Ixx I
I Steady-State Solver IxI~-I~-I-1-I1I-I-I-I=-I=-1=-1I-1I~-1I=-1I-=1
I Tracking Problems IxI-I-IT-I~-I1-I1I-I-I-I1-1-1I-1I-1=-1=1I
I Integral-Differential Equations I1-I1-I-I-I1-I1-I-1-I-I-I1=-=1=J1=I-T1I-1
I Sparse Linear System Solver I-I-I-I-I~-Ix1-1-1-I-1I=-1=-1I-IxIx1I
I Stiff Systems Ixx Ixx I I Ixx Ixx I - I -1-1-1I I - Ixx Ixx Ixx I
I Highly Oscillatory Systems I-I~«I~I-I~-I-I-I-I~-I1-I-I1=-1I-I-1I-1
I Linear Systems (Special Method) l1-1-1~-I1-1-I-I-I-I-1%-1=-1=-1I-I-1-1
I Noisy Systems IxIxI I-IxIxI-IxI-I-IxIxIxIxIxT
I I I I I I I I I I I I I I I I I
I Partial Differential Equations (PDE)I x I x I = I = I = Ixx I - I =11 -1-1I-1Izx Ixx Ixx I
I Spatial Derivatives Computation I I I I I I I I I I I I I I I I
I One-Dimensional Derivatives I-IxI-I-1«IxxI-I=I«1I-1I=-=1T1--Ixx Ixx Ixx I
I Two-Dimensional Derivatives I~-I-I-I-I-1IxxI-I1=-I=I-1I=-1=1I=1IxxIxx1I
I I I I I I I I I I I I I I I I I

1)
2)
3)
4)
5)
6)
7)

By use of the REPEAT-operator.

Formulation through vector-integration and interpretive

macros.

As GASP-V is restricted to 100 ODE's, only PDE's in one space dimension can be formulated.
Special operator. All other systems treat difference equations by means of time events.
By use of a special simulation data language (SDL) which is available through Pritsker & Assoc.
Provided to date only in an experimental version which is not yet made available.

Not in the public version of FORSIM-VI, but well documented, tested and available from AECL.

Simulation Software: Today and Tomorrow

HH =
90
-
vl A
o
0 a
H -
< =
[|
(2R 2]
HH
[R5
o
PN]
Ll]
ow
=
=D
=
~ 0
Ll
0=
f]
=0
= H
==
HH
[a-pcal
[}
20|

I
I
I
I

I
I
I

ITII-I-1
IPI2I3I

I
I
I

I

IPINIAIDIMIAIMIRIFIFI2IS5IG6TI
I671

JAIDISIDISIFISIPISIGIGISIGIGICTEI
I-I0OILIOIIILIIICI-I-I-I-I-1I

ICIAIIIYIYIOIIIRIIIPIPILIAIAIOI

I
—————————— I
I
I
I
I
I

Languages:

Features:

HHHHHHHHAH

I
I=-I«T«I-~1I~-IxxI=-I=-1I~-I=-1I=-1-1I=-1Ixx1IxxlI
I-«I-I«I-TI-IxxI=I~-1-1I=-1I=1«-1IxTIxx Ixx1I

I~-I-I-I~-1-1Ix1-I-1I-1-~1-I-1I-XIxIxI
I-I~-I1-I~-I-1IxI=-I-«I-1-I-I-I-IxIxI

I-
I -

Three~Dimensional Derivatives

Library of Methods

o

Spline Interpolation

Up-wind Interpolation

Automatic Selection of Method

Own Interpolation Method
Variable Grid Width

HH
1
H -
(]
HH
(]
HH
1
HH
(]
o
(]
HH
(]
HH
1
HH
1
H
[
HH
(]
HH
(]
HH
(]
]
(B
HH
1t
H o

Automatic Grid Width Control

Error Estimation

= H

I-I-I-I~«I~-1I-1-1-~1-I-1I-I1-I-I-1I-1

IxIXI~I-TI-IxxI=I1~1I-1=1I=1I-1IzxTIxx Ixx I
IxIxI~-I-I1-IXx1~-I~-~1I=-1I1=-I-I-IxIxIxI
IXxI-I~-I-I~-IxI-I-I-I1-I1-I-I~-IxIxI

Parabolic PDE's
Hyperbolic PDE's

I

Ellyptic PDE's

I-I-I-I~-I1-1-1I-I-~1I-1=-I=-1I=1~I-1I-1

Shock Waves

I
I
I
I

IXIXI=-I-T1I-1IxxJ1=1I-1-1=1I2-1T1-a-Ixx Ixx Ixx I
I
I

2]
m
a n
(o] i
2]
el =3
=1 —
L] a
=i
2} <
(=3 -
a d
A Q
o
° +
1 9]
= @
+
(2]
o

IxIxI~-I-IxI=-1Ix1IxIxxIzx Ixx Ixx Ixx Ixx Ixx
I-I~-1-«I~I-I=-Ix1I=-1IxxIxTIzx Ixx Ixx Ixx Ixx
I-I-I1-I-1I-I-I~-I-IxIxIxIxIxIxIzxI

Random Number Generation

Distribution Function Library

Tabular Distribution Functions

Distr. Funct. Parameter Fitting I - I = I = I « I = I =TI~ I« I =T ~I- Ixx1I =TI ~1I-1

Statistical Report Generation

I-I-I-I~-1I-1-1I-1I%x%xIxx Ixx Ixx Ixx Ixx Ixx Ixx I
I-I-I-I-1I-1I~-1-1I-Ixx Ixx Ixx Ixx Ixx Ixx Ixx I
I-I-I-XI-1I-1-1=1Ixx1TI~ Ixx Ixx Ixx Ixx Ixx Ixx I
I-I-I-I~-I-«1-1=-1=1-«IxIxIxx1I-I~1I-1

Sampling Statistics

Time-Persistant Statistics

Histograms

Confidence Intervals
Variance Estimation

I-I-I-1-1I-I-I-I-1I-IxIxIxIxIxIxlI

I-I-I1-I-1I-I-I-I-I-IXIXxI-1I-1I-1I-=-1
I-I-I-1-1-I1I-1I-I-1-IxIx1I-I-I-1I--1
I-I-1-I~«1-I-I-1-71=-IXx1IxIxx1I~-1-

I

Variance of the Mean

Run-Length Determination

Transient Period Duration

I-1
I I

7]
-+~
0 o
v O
|]
-+
® o
Q=3
fo o]
o QO
(=1
o
“~ o
i O
[= =]
&) ©
o e
(2
o
=g
[

<
O ©
g
o 0
[l

o
o g
<~
@ <
=
o @
o >
D5,
Q@
(o]
- g
=
Q,.0
03
= N
H

I I I I I I I I I I I I I I I
I-I~-I1-I1-I-I-1-1I-1-I-I1-«1-1I=-1I-1
I-I-I-I-I-I1I-I-I-1I-1I=-1I-I-1I-1-

I

Linear Approximation (Metamodel)I -

Sensitivity Analysis
Replication

I-1I
I I
I I

Table Look-up

HHH

IXIXxI-I~-IxIxI-I-I1=I-I-IxIxIxIzxI

Two-Dimensional Tables

IxIxI-I-I-IxI-1-I~-~I=1=-I-I-Ix1IxTI

Three-Dimensional Tables
Linear Interpolation

I

HH
Mo
HH
I
HH
Mo
HH
Ko
- H
(I
H -
(]
HH
1
HH
[
H o
(]
HH
Ko
H
(]
HH
(]
HH
1
H o
o
HH
o
HH

Non~linear Interpolation

R
[l
H
L]
HH
(]
HH
[
HH
[
HH
1
HH
(]
HH
1
HH
(]
HH
1
H
%o
HH
1
H
1
HH
(]
HoH
1
H
o
o
=g
L d
© O
—
o
Qo
5 e
o .Q
2 'd
o
P

s}
28
=
- g
o, B
ua
HH

Sequential Interpolation
Mass-Storage Interpolation

1) By use of a separate program (AID) also provided by Pritsker & Assoc.

FE.E. Cellier

I
I
I
I
I
I
I
I

=i

SIS
PIY

HHHH

ISI
IPI

HHHH

A
M

I-I0OCILIOIIILIIICI~-I-I~I=1I=-1

IPINIAIDIMIAIMIRIFI
6

HHHR
H -

(S

-

1
o
-

H - H

IMIMISIRIMIOIMISISI
INIOIMISIUISISISISI

IAIDISIDISIFISIPISIGIGISIGIGICTI
SIR
LIE

ICIAIIIYIYIOIIIRIIIPIPILIAIATIO

I
—————————— I
I
I
I
I
I

Languages:

Features:

HHMHHMHHHHHH

I STRUCTURAL FEATURES

Model Structuring Capabilities
Parallel Structures

Application Program Development

HoH R

IxIxIxIxxIxJI-I~-«IXI~I1-71-1I~-1-1I-1-1IxxT1

Continuous Systems (Sorting)
Discrete Systems (Networks)

Procedural Structures

I

I-I-I~-1I~-~I-I-I-I-I-TITxIxIxxI-I-I--1
Ixx T xI-I-IxxIxI-IxI~-T1I-1IxIxIxIxIxxlI

Continuous Systems (Nosort)

Discrete Systems (Algorithmic)I x I = I - I -~ I x I -~ Ixx Ixx I x I x I xIxIx1IzxIxxI

I
IxI-1-1=1IxxI~-1IxT1zx Ixx Ixx Ixx Ixx Ixx Ixx Ixx I
IxI~-TI-1=-=1IxXxI~-I=Ix1I-1-- Ixx Ixx Ixx Ixx Ixx I

o0
S 0
42
— 2
o)
[
o =
=+
[
L =
S
O =
>
2]
H -

State Events

I I I I I I I I I I I I I I
T - T~ Ixx Ixx Ixx I ~ T - T ~« I ~«I1~1I~-1-TI-I-1I-1

I

I

External Events

Operator Intervention
Real-Time Interrupts

Process Interaction

I-I-I-I=-I-1=-I=-1-I=-I=-I«I=-I«I-1-1I

IxIT~-IxxIxxIxx I -1 ~-1~I~I-1IxI-14=-T1Ixx1IxxlI

Continuous Processes
Discrete Processes

I-I-I-71=-1=1I=1Ixx Ixx I - Ixx Ixx Ixx I - Ixx Ixx I

I-I1-I-I-I-I-1-XI-I-IxIxIxxI=-I-1I=-1I
I~-I-I-1I-I~-1-1Ixx Ixx I - Ixx Ixx I x T - Ixx Ixx I

I

Network Description

Activity Scanning

I I I I I I I I I I I I I I

I
I XxI-IxxIxxIxx 1 -1-1-I-1-IxI-7I-TIxIxx1I

]
—~
[
=i}
o 9
-~ &
L a8
o3
[SR%!
=
w0
0 3
Qo
=
— g
O A
g L
o g
g 0
00
=5
7}
H

I I I I I

I

I-I-1I-I-1I-171~Ixx Ixx I -~ Ixx Ixx I ~ I - Ixx Ixx I
I I I I I I I I I

I

Discrete Submodels
Hierarchical Model Definition

HH

I ~-I-I~-~IxxIxxI1-I-I-I1I-1-I-I-1I-1-1IxxT>I

for Continuous Systems
for Discrete Systems

Initial Computations

I1-I1-I1-I-I-1-1IxxIxxTI ~-I~I1-I1-1-T1-1Ixx1I
IxIxIxI-IxIxI-I-IxIxIxIxIxIxIxI
IxIxIxI-IxIxI~-I-IxIxIxIxIxIxIzxI
I x Ixx Ixx IxX Ixx I - I - I - I x I - I - Ixx Ixx Ixx Ixx I

Terminal Computations
Controlled Experiments

J]-I-I-I1-I-1=-I=«1=«I~I-«I-I-1I-1-+-Ixx1I
]-I-I-I1-I-1~-I~-1-I-I-I~-I-1I-1-Ixx1I

Optimization

Parameter Fitting (provided)

Modularity

I

IxXX I = I = I =-IxXXxI =1=1=-I=1I1=I=I=1I=1=1Ixx1I

1

Macro Feature

Interpretive Macros

Module Feature

IxXx I = I = I =-IXXxI=I1=1=1I=I1=-I=-1I=1I=1=-1Ixx1

I-I-I~Ix%JI-«I-I1I-I-I-I-I-I-I-1I-1IxxT2T

o H
L}
HHHH

HHHH

I
I
I
I

I-I1-I-I-1-1=-1I=-I1=-I=I=1=12Ixx21=1=1=1

I
I

Graphical Model Specification

Sensitivity Analysis

Program Validation and Verification I
Model Comparison

HHHHH

I1-I1-1I-I-I-1-1=-1-I-I=-I-I=-1I=1I=-=1I=-1

Linearized Model Analysis

I x Ixx Ixx IxX IxX I = I = I - I =1 - 1 « Ixx Ixx Ixx Ixx I

Parameter Fitting (possible)

IxI-I-I=-I1-I-1=-1=-1=-I-I-I-I=-1I=1I-1

Eigenvalue-~ Eigenvector Analysis

Debugging Aids

I-I-I-I-I-1-I-I-I-I-I=1=«1I=-1I=-1I=1

Dimensional Analysis

I~ T-1IxIxx IxXxI=Ixx Ixx I x I ~I-1I~-1-1=-1Ixx1

Declaration of Variables

Steady~State Finding

IxI-I-1I-1-1=-1=-I1=-I1=-I-1I=-1I=-1I=-1I-1I-1

Graphical Model Representation I = I « I « I « T « I « T = I« T~ I~71~1Ixx2I -I-1I-~-1

Mo

1) By use of a separate run-time library (NLP) also available from ETH Zurich.

2) In an experimental version which is currently under development by Pritsker & Assoc.
3) By use of a special simulation data language (SDL) provided by Pritsker & Assoc.

Simulation Software: Today and Tomorrow 7

I IAIDISIDISIFISIPISIGIGISIGIGICTI
I \ ICIAIIIYIYIOIIIRIIIPIPILIAIAIOI
I \ Languages: ISIRIMIMISIRIMIOIMISISIAISISISI
I A S ILIEINIOIMISIUISISISISIMIPIPIYI
I \ I I-I0OILIOIIILIIICI-I=-I=-1I~1I-1 I
I \ I IPINIAIDIMIAIMIRIFIFIZ2IS5IG6I I
I Features: \ I I I I I I~-1 I ITI-I-1I I I I I
I eeeemeeee \ I I I I I I61 I IPI21I31 I I I I
I \ I I I I I I I I ITI I I I I I I
I I I I I I I I I I I I I I I I I
I Tracing I I I I I I I I I I I I I I I I
I Event Monitoring I-I~-I-I-1Ixx1I-1I+-1Ixx1 I Ixx Ixx I x Ixx Ixx I
I Range Surveillance I-I-I1-I-1I-I-1=-I=-I=I«-I-1=1I=1I=-1Ixx1
I Deadlock Detection I-I-I1-«I~I-I-I-I~I-I=-I-1-I-1I-1I-1I
I Range Analysis I-I-I-I-1-1-«I1-1I-I-I-I1-I1~I1=I=1I-1I
I I I I I I I I I I I I I I I I I
I Program Execution I I I I I I I I I I I I I I I I
I Batch Processing IxIxIxIxIxIxIxIxIxIxIxIxIxIxIxI
I Interactive Operation I I I I I I I I I I I I I I I I
I Parameter Setting IxIx1IxIxIxI-I=I~1I=-1=I=1-I-1I=-I-1
I Parameter Tuning I-I-I1«I~I1-I1-1I~-«I1-I-I=-1I=-1~-I-1=-I-1I
I Output Selection IxIx1IxIxIxI-I-1-1I-1-1I-1=-I~-1I-1-1
I Run-Time Display I-IxtI-I-JI~-~I=-I~-«I-JI-«I=I-I1-«I=-1-1I-1
I Operator Intervention I-I-IxIxIxI-I1~-I-I1I-I1=-TI=-1-«I-1-1I-1
I Execution of Monitors I~I~-I-I-I%xI-I~I-1I-I1=-I=-1~I-1I=I+-1
I Real-Time Synchronization I1-¥-I~-¥~-I-I-1-I-I-I1-1=-1~I-1I-1I-1
I I I I I I I I I I I I I I I I I
I Data Handling I I I I I I I I I I I I I I I I
I Library of Parametric Models I-I-I-I-I%xI-I-I1-~I-1-I1-I~-I=1I=1Ixx1
I Library of Parameter Sets IxIxIxIxIxI-I=-1-1-I-~I-I=-=I=I-1I-1
I Library of Experimental Frames IxTI~Ixx Ixx Ixx I -~ I=-I=-1=-I1-1I=-1I~I-I-Ix1I
I Library of Trajectories I ~-Ixx IXxIxIXI=-I=I=-1I-1I-1I-=-Ixx2Ixx Ixx Ixx I
I Numerical Manipulations I-I-I1-I1-I1=-I-I~--I=1=1=71«1Ixx2I -I~1I=-T1I
I Structural Manipulations I I1I-1-I1-1I1-1-1-1-I-I-1-1I-I-I1I-1=1I
I I I I I I I I I I I I I I I I I
I Input/Output I I I I I I I I I I I I I I I I
I Model Parameters IxIxIxIxIxxIxI-I=-I-IxIxI=-I=-1I-1Ixx1I
I Driving Functions I I I I I I I I I I I I I I I I
I Tabular Functions I-I-IxI-IxxI~-I-«I=-I1=I=I-1=1I-1-1Ixx1I
I Real-Time Input I~-I~I~-I~-~I1-«I-I1I-I-I-I~-I-=I1=-I=-1I=-I-1
I Graphical Model Representation I1~-I~-I~-I1~-1I~-I1-1-I-1I-1I-1I=1Ixx3I~-I~1I-1
I Graphical Model Specification I-I-I-I-I1I-I-1I=-I«71«71I=1=1Ixx31~-I-I-1
I Storing Output Data (on Files) I - Ixx I xIxIxxI=1I=1=-1T1-T71=x Ixx Ixx2Ixx Ixx Ixx I
I Retrieving Input Data (from Files)I - I = I X I = IXX I = I = I « I -« I -1 -1« I~ Ixx Ixx I
I Crossplots IxIxIxIxIxI-I~-~T1T-1-1I-1-1Ixx4IxIxIxI
I Overplots IxIxx I xIxIxxI~TI-TI=1I-171-=T1zx IxxiIxx Ixx Ixx I
I Three-~Dimensional Plots I-Ix51~I~I-I%I-1I=-I=-1-~1-I-IxIxIxI
I Histograms I-I-I-1-1I-1-I-1Ix71-1-IxXxTIxx8I xI xIx1
I Bar Charts I I~I-I-«I~«I~I-1I-I-1I=1I=1Ixx$31-1I-1I-1
I Pie Graphs I-I-1-I-I1I-I-1I-1I=-1~71I-1=-1Ixx4yI-I~1I-1
I I I I I I I I I I I I I I I I I

1)

2)
3)
L)
5)

6)

T)
8)

Not in the official version provided by the University of Arizona. There exist however several
interactive versions of DARE-P, one VAX version available from ETH Zurich, and one portable (but
less interactive) version from the University of Arizona.

By use of a special simulation data language (SDL) provided by Pritsker & Assoc.

In an experimental vesion which is currently under development by Pritsker & Assoc.

By use of a separate program {SIMCHART) also provided by Pritsker & Assoc.

Not in the official version of the DARE~P postprocessor as provided by the University of Arizona.
An enhanced postprocessor is available from ETH Zurich.

Only provided in an internal version from the Atomic Energy of Canada, Ltd. but not in the
version handed out to external users (bases upon a local graphics software package).

Quality plots base on the Erlanger graphics system. Not provided for external use.

Quality histograms only in connection with the separate program AID from Pritsker & Assoc.

8 F.E. Cellier

I \ TAIDISIDISIFISIPISIGIGISIGIGICTI
I \ ICIAIIIYIYIOIIIRIIIPIPILIAIAIOTI
I \ Languages: ISIRIMIMISIRIMIOIMISISIAISISISI
I N\ emem————— ILIEINIOIMISIUISISISISIMIPIPIVYTI
I \ I I-I0OILIOIIILIIICI-I~-I-I-I-1 I
I \ I IPINIAIDIMIAIMIRIFIFIZ2IS5IG6TI I
I Features: \ I I I I I I1-1I I III-I-1I I I I I
I e \ I I I I I I61I I IPI21I31I I I I I
I \ I I I I I I I I ITI I I I I I I
I I I I I I I I I I I I I I I I I
I Output Quality I I I I I I I I I I I I I I I I
I Lineprinter Plot IxIxIxIxIxIxI-IxI-1I IxIxIxIxIxI
I Plotter output monochrome IxIXxIxIXxIxIxx1I-I=-1I-1I-1Ixx2] x3I1 x I xIx1I
I Color Graphics I-I-IxIxI-I-1I-1-1I-I1=-I1=-I-I-I-1I=1
I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I
I STATUS OF IMPLEMENTATION I I I I I I I I I I I I I I I I
I Compiler IxIxIxIxI-I=4Ix1IxIx1I=-UI U xI~-4T 4T -1
I Run-Time System IxIxIxI-5I-IxIxIxIxIxI=-6bIxIxI=TI ~-8I
I Environment I-IxIxIxI-I-I-I~-1I-I-1-«1-I-I-T1I-1
I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I
I PORTABILITY I xIxXx I -JIxIxxI-«TI-TI-TI-1Ix1IxIxx Ixx Ixx Ixx I
I I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I I
I DOCUMENTATION Ixx I x I Ixx I -1 Ixx I x Ixx Ixx I -6Ixx I x I ~-1-1
I Machine Readable I-I-I-IxI-I-I1I-1-1I-I1=-I=-I-I1=-1Ix1Ix71I
I On-Line HELP Information I-I-IxI-I-1-1-1-1I=-I1-I-I=I=1I-«1-1
I I I I I I I I I I I I I I I I I

1) Only provided in an internal version of the Atomic Energy of Canada, Ltd. but not in the version
which is handed out to others (bases upon a local graphics package).

2) Quality plots base on the Erlanger graphics system. Not provided for external use.

3) By use of a separate program (SIMCHART) provided by Pritsker & Assoc.

4) These are FORTRAN packages. A compiler is therefore not required.

5) The run-time system of DYMOLA is SIMNON. A special run-time system is therefore not required.

6) The run-time system exists already at the University of Erlangen, but.has not yet been released
for external use. An official release is planned for late 1983 as soon as the complete document-
ation becomes ready.

7) A preliminary version of GASP-VI exists at ETH. This version is however not yet sufficiently
debugged and consolidated to allow for external distribution.

8) The run-time system of COSY is GASP-VI. A special run~time system is therefore not required.

A first set of characteristics describes general
features, e.g. whether a system is meant for
purely discrete simulation (like SIMULA) or for
purely continuous simulation (like DARE-P). This
group is headed "expressiveness of the
language™".

Continuous systems may be described by several
formalisms, 6}dinary differential equations
(ODE's), partial differential equations (PDE's),
or possibly difference equations. Please, note
that systems described by difference equations
are called continuous here, although many people
(e.g. most control engineers) would call them
discrete. This is due to the fact, that the
simulation methodology required for the solution
of difference equation systems is much closer
related to the continuous methodology than to
the "real" discrete methodology, a term which I
reserve for event oriented systems,

Discrete systems may either for

provide a

(primitive) event description only which may re-

sult in rather unreadable models when the
systems are large, or for a process interaction
mechanism. Activity scanning means that the

duration of an activity (e.g. service time) may
depend on some other parts in the system, e.g.
the completion of another service performed on
another transaction at the same time.

Symbolic libraries are libraries at source
level, e.g. macro libraries for the description
of submodels. Such source libraries provide in
some sense for an open ended operator set of the
language.

Data handling describes in global terms the way
in which the simulation data are managed by the
simulation system. I shall not further emphasis
on this point now, as this shall become a
central aspect of my chapter on future develop-
ments,

Simulation Software: Today and Tomorrow 9

The next section is headed "numerical behavior",
and describes many aspects of how the simulation
software treats a model numerically. Four major
topics here concern the numerical integration of
differential equations, computation of spatial
derivatives (for PDE's), statistical analysis,
and table look-up.

Almost any system able to cope with ODE's pro-
vides nowadays for a library of integration
algorithms. This is important as there does not
exist any integration algorithm which is equally
well suited for all types of ODE problems. In
particular, methods for the solution of stiff
systems are quite common in current simulation
software. SLAM-II (which is otherwise a strong
piece of software) is particularly weak in this
respect as it offers just one Runge-Kutta
algorithm for integration. Many continuous
systems can therefore not be successfully
treated by use of SLAM. By far the best library
is present in DARE-P. This software offers more
than a dozen different integration algorithms
both in single and double precision. A special
conversion routine allows to convert single
precision to double precision and vice-versa,
such that only one version of each algorithm
needs to be stored at any time.

However, many users are demanded too much by a
rich selection of routines. It would be highly
welcome, if the simulation software could find
out automatically which routine is best to apply
in each case, and load that routine from the
library. First steps towards an achievement of
this goal are implemented in an experimental
version of GASP-V [10]. A first commercially
available integration routine which is able to
switch between a stiff and a non-stiff algorithm
has been described by Petzold and Hindmarsh
[21]. However, this algorithm has to my
knowledge not yet been implemented in any
ready~to-use simulation software.

For some problems, it may be beneficial to split
them up into submodels which are integrated
independently by either a different step size or
even a different integration algorithm. This
feature is called "partitioning of the
state-space". Some software systems (such as
ACSL) allow for a definition of submodels,
whereby each submodel may be integrated by use
of a separate integration routine. Communication
between submodels takes place after each
communication dinterval only, that is: the
variables of each subsystem are considered
constant during each communication interval by
each other subsystem. This is not necessarily
optimal as: (a) the so introduced dis-
continuities may create serious numerical
stability problems; (b) the so introduced arti-
ficial sampling may introduce analytical
stability problems; and (c¢) the model splitting
which is optimal for model structuring and
readability is not necessarily also optimal for
numerical integration. Some other systems (such
as SIMNON) try to overcome these problems by

letting the user separately specify submodels
(which exist only at source level but no longer
during run-time) from groups of state variables
which are to be integrated together (slow sub-
system versus fast subsystem). The integration
method offered for that purpose in SIMNON is
somewhat obscure. It works neatly with some
adaptive control systems where it is quite clear
that the inner control loop consists of con-
siderably faster modi than the outer adaptation
loop, but in other cases the method tends to
fail. Another such algorithm has been described
by Eitelberg [14]. A third (and rather pro-
mising) approach is taken by Carver who
developed an automated partitioning scheme which
is rather simple to use and even works well on
non-linear problems [7].

Algebraic loop solvers are quite common in
current simulation software. However, their use
tends to be costly, as an iteration has to take
place during each function evaluation. For that
reason, it may be advantageous to apply an
integration routine which solves the algebraic
equations at once during integration. Such a
code has e.g. been described by Petzold [34].
This approach shall lead away from the currently
used state-space description of ODE's (that is:
x'=f(x,t)) to the more general form:
f(x,x',t)=0.

Root solvers are required for the location of
state events, and are essential algorithms for
combined continuous and discrete simulation.

Steady-state solvers allow for the computation
of the steady-state at less computational cost
than by simply integrating there. Such
algorithms are rare. ACSL offers something, but
the offered algorithm fails often in non-~linear
cases.

Tracking problems ask for "freezing" of state
variables during simulation. This feature is
currently only provided for by ACSL.

Integro-differential equations are numerically
harmful, and there is no. system which is
currently able to deal with them successfully.
Typical examples include the flow through a pipe
with variable delay. Some systems (like DARE-P)
claim to offer a solution which, however, mostly
fails when applied.

A sparse linear system solver is very much
needed for efficient integration of high
dimensional problems (e.g. PDE's). The
economization there may be dramatic. Still, most
simulation systems do not offer this feature,
though it is extremely simple to implement.

A stiff system solver is nowadays very commonly
found. However, it is rarely realized that not
all "difficult" problems are really "stiff", A
very good discussion of this point may be found
from Gear [18]. One other class of difficult
problems to solve 1is the class of ‘"highly

10 F.E. Cellier

oscillatory problems". Possible solutions may be
by means of stroboscopic integration methods
which use a low order integration scheme to
integrate over a short time by use of a small
step length while storing the maxima of the
oscillations away, and then a superimposed
higher order integration scheme which uses these
maxima as supporting values to extrapolate by
use of a much larger step length. One such
algorithm has been described by Petzold [33].
Another possible solution to this problem may be
to solve the problem x''=f(x,x',t), a represent-
ation into which many highly oscillatory systems
may be transformed, by means of a Fourier rather
than a Taylor series expansion. I am unaware of
any such code though.

Linear systems may be more efficiently solved by
special integration techniques (implicit
integration) which is commonly done in network
.analysis programs but never in general purpose
simulation software, although this feature would
be very simple to implement.

Noisy systems are formulatable in all languages,
but they are not necessarily also solvable, as
the variable step length integration algorithms
tend to fail, while fixed step algorithms pro-
duce rubbish. A4 (x) here means simply that there
is provision for a random number generator, but
nothing more than that.

PDE's are solved in simulation by the
method-of-lines approach. They are converted to
sets of ODE's by means of discretizing them in
the space dimensions. The time dimension is kept
"continuous" for integration. This methodology
works well on parabolic PDE's. The integration
over time should use a stiff system solver, as
the discretization in the space domain creates
stiff sets of ODE's. A sparse linear system
solver is here very advantageous.

Hyperbolic PDE's create some headache. A step
forward has been made by Carver and Hinds with
their up-wind interpolation routine [5]. The
idea behind this algorithm is very simple. A
central interpolation scheme does not make much
sense when a wave moves towards one direction
only {direction of the characteristic). Such a
scheme would mean to interpolate by use of the
unknown future. It is then better to use a
biased scheme which only requires values from
one side, that is: from the past. The trick in
this algorithm is to detect the direction of the
characteristic automatically, a task which is
much simpler to accomplish than finding the
characteristics as a whole.

The Jacobian of hyperbolic PDE's tends to have
its eigenvalues also wide spread. However, the
resulting ODE's are not stiff, as some of the
eigenvalues are complex and close to the
imaginary axis. The Gear algorithm does an awful
job on them. More research for adequate
integration schemes is still required.

Hyperbolic PDE's moreover tend to develop "shock
waves" which move through space with time. Such
shock waves require an adaptive spatial grid. A
first code which offers this feature has been
presented recently by Schiesser [42]. It might
meanwhile be implemented in either the LEANS or
DSS software which are not described further in
this survey, as they differ not sufficiently
much from FORSIM-VI to demand for a separate
discussion. An excellent survey on simulation
software for PDE problems has been very recently
worked out by Karplus [24].

Elliptic PDE's may be solved by means of
invariant embedding techniques. This approach is
mostly less efficient though than using a finite
element technique. A powerful steady-state
solver might make invariant embedding somewhat
more attractive again.

An entirely different topic is the discussion of
statistical analysis techniques. In current
simulation software, these techniques are much
further developed in discrete event software
than in continuous software, although they may

be used to a large extent also there. Some
systems (such as SLAM-II) provide for about a
dozen different distribution functions. Some

systems allow to describe the distribution func-
tion in a tabular form to allow for even more
general distributions. This feature 1is very
useful when the distributions result from
measured quantities. SLAM-II (in connection with
the separate program AID) even allows to fit the
statistical parameters of some distribution
functions such as the BETA and GAMMA distribu-
tions from measured data.

Statistical report generation is today only
available for discrete system simulation, al-
though it may be equally important to know from
a noisy continuous systems in which range the
results are expected to lie rather than getting
one single trajectory displayed (which may be
rather at random). Statistical analysis of the
results 1is available in few systems only.
SLAM~II does it in connection with a simulation
data-base system (SDL), while GPSS~-FORTRAN
offers a few functions for that purpose. The
separation of the statistical analysis from the
simulation task may on the long run be more
fruitful, as I shall discuss later.

Table look-up is another critical issue. Most
continuous systems provide for means of handling
at least two-dimensional tables. Some others
also allow to handle three-dimensional tables.
Interpolation formulae are mostly linear, but
some systems offer also non-linear interpolation
(e.g. CSMP-III,) some others also spline inter-
polation. However, most systems just provide for
static tables (e.g. "FUNCTION" in CSMP). This is
a nice toy for school examples. Real problems
(e.g. wind tunnel experiments) tend to require
very huge tables which cannot be handled in this
way. A minimum requirement is a dynamic table
load feature (e.g. offered in CSMP-III). Even

Simulation Software: Today and Tomorrow 11

better is mass storage interpolation which
allows to keep the data in the data base (where

they belong), rather than to copy them into the

central memory. A useful feature 1is also
sequential interpolation which allows to inter-
polate between data which are cuncurrently pro=-
duced (e.g. for real-time experiments).

Structural features describe the comfort with
which models may be generated by use of a
particular simulation software. Subheadings are:
application progranm development, program
validation and verification, program execution,
data handling and I/0.

A sorting algorithm is available in most
continuous simulation systems. It enables the
user to specify his set of equations in
virtually any sequence. DYMOLA and MODEL [39]
(which is not described here as being too
similar to DYMOLA to demand for separate discus-
sion) go both a giant step further, in that they
allow for the syntax: expression = expression
instead of the commonly used syntax:
variable = expression. DYMOLA tries to use
formula manipulation to solve for the required
output variable (which may be context
dependent). This procedure shall be only suc-
cessful if the output variable appears linearly
in the equation (though all other variables may
appear as non-linear as they like). MODEL keeps
the equations as they are, while utilizing an
integration algorithm which is able to solve the
problem: f(x,x',t)=0. Thus, DYMOLA shall require
more compilation but less execution time than
MODEL for the solution of the same problem.

Discrete systems may be "parallelized" by means
of a PERT network type description or similar.
Concurrent processes are another (algorithmical
rather than graphical) approach.

All discrete simulation systems offer time
events, all combined systems also state events.
However, there exist some more event types to be
mentioned which are not commonly found in cur-
rent simulation software. These are the external
events. In interactive simulation, the user may
wish to suspend a simulation run (e.g. by typing
CTRL_C). He may then want to modify a parameter
value and resume the simulation thereafter from
where it was suspended. Another typical example
of an external event would be a real-time inter-
rupt.

Modularity can be guaranteed by quite different
approaches. Quite common are macros (partly even
rather powerful, e.g. in ACSL). However, macros
imply that it is known beforehand, what are
inputs and what are outputs of a macro. This is
not necessarily always the case. A statement
such as: U=I¥R may well reappear as: I=U/R in
another context. Therefore, macros are modular
only in a restricted sense. A much more powerful
concept is the concept of "modules"™ (or "models"
as they are called in DYMOLA). The functioning
of this mechanism is quite simple. As there

exist formula manipulation routines in DYMOLA,
it is immaterial, whether the above equation is
coded as: U=I*¥R or I=U/R or even U-I¥R=(Q. The
formula solver shall produce the required form
automatically depending on the context in which
the equation is used. An alternative approach to
the previously presented mnodule approach con-
sists of a graphical model specification which
is e.g. provided in MODEL. (In fact, this is
just another layer of sophistication.)

How are models validated, once they are defined?
Obviously, there is no firm and final answer to
this question. A first step may be to be able to
compare the results from a simulation run to
some measured data or to some data produced by
another model. Both cases would require the
(simulation and measurement) data to be stored
away in one and the same data base for later re-
use. Sensitivity analysis provides another means
for gaining confidence into simulation results.
It is possible to automate this procedure even
for non-linear models. We have an ALGOL program
available which produces the derivative of an-
other ALGOL program with respect to any variable
or array of variables [23]. There exists also an
experimental version of a PASCAL program for the
computation of derivatives of FORTRAN
subroutines. Linearized model analysis is very
similar. These models may, however, be of lower
order. A discussion of so called metamodels can
be found from Kleijnen [26]. Also eigenvalue and
eigenvector analysis are useful tools to find
out whether the modi of the model are within a
reasonable domain. This works particularly well
for linear models where modal decomposition may
be applied.

Debugging of application programs seems not very
in vogue today. Some systems at least ask the
variables to be declared to allow for some re-
dundancy. Most typing errors can be detected in
this way. It is not necessarily true that a
simulation system which can represent the
Van-der-Pol equation elegantly (in terms of a
short user code) is equally well suited for
large scale models. Dimensional analysis (by
asking the user to provide the dimensions for
all of his variables) might be another way of
checking correctness. Most systems provide for
event monitoring (run-time check). However,
other run-time checks would also make sense,
like range surveillance (for large scale models)
or automated deadlock detection (e.g. timeout).

Most simulation systems today are batch
operated. Some systems provide for (still rather
moderate) means of interactive operation. Only
DARE-ELEVEN, a "dialect" of DARE-P, provides for
a run-time display which allows for %on-line"
surveillance of some simulation trajectories.
There exist some simulation systems for
real-time execution (e.g. MICRODARE, another
DARE "slang",) which are however not surveyed
here as they are supposed to run on very small
computers and offer little to no user comfort.
These systems hardly offer any of the other

12 F.E. Cellier

features (beside from the run=-time
synchronization), and make a discussion
therefore not very profitable. The problems here
are still so special and machine dependent that
it is far too early for a survey.

Data handling and I/0 shall be described in due
course.

3. SURVEY OF EXISTING SOFTWARE

ACSL [28]: is a powerful continuous simulation
language. It is also representative for another
program: CSSL-IV [30] which is therefore not
further discussed. Both supersede the famous and
widely spread CSMP-III software [22]. A current
extension to ACSL introduces state events and
time events, making ACSL also usable for com-
bined problems [29]. Still, the discrete
features offered are very limited, and it is
suggested to use ACSL only for "mildly" combined
problems (that is: continuous problems with some
discontinuities).

DARE [27,49]: stands for an entire family of
simulation languages. Described in this survey
is the version DARE-P which is the most
portable, most powerful, and best tested dialect
within the DARE family. DARE-P is certainly less
powerful than ACSL, but it has also its distinct
advantages. In particular, it provides for a
(very primitive) data base interface which
allows to compare different simulation results
with each other on one sheet of paper. By
separating out the postprocessor from the simul-
ation run, DARE-P offers much more flexibility
with respect to output representations. The
offered portable high quality output is a real
jewel., DARE-P is also particularly strong with
respect to integration techniques. This software
is very simple to teach and to learn, and it is
available at nominal cost. The jungest "child"
in the DARE family is EARLY DESIRE. An inter-
active version of DARE-~P, offering most of the
features of the previous DARE-ELEVEN software,
but running on VAX under VMS, is meanwhile made
available from ETH Zurich. Another DARE dialect
is PSCSP [19], a real-time simulation software
from ETH Zurich. There exist also multiprocessor
implementations of PSCSP and of MICRODARE.

SIMNON [15,16]: is a highly interactive
continuous simulation language running on VAX
under VMS. Other versions exist for UNIVAC and
DEC-10. A special feature of SIMNON is its
notation of subsystems described by difference
equations. Such subsystems may freely be mixed
with other subsystems described by ODE's. In
this way, SIMNON is particularly useful for
control engineers simulating continuous plants
with digital controllers. For model description,
ACSL is in almost any respect superior to
SIMNON. However, SIMNON offers a much higher
degree of interactiveness than ACSL. Controlled
experiments can be executed in a much broader
sense, as the "MACRO" feature of SIMNON (for re-

petitive execution of command sequences) is much
more powerful than ACSL's "PROCED" feature.
SIMNON provides also for something 1like a
primitive data base mechanism which bridges the
gap to some other interactive programs, e.g.
IDPAC for parameter identification (available
from the same source).

DYMOLA [17]: is really a modeling language
rather than a simulation language. A PASCAL
coded preprocessor (there exists also a SIMULA
coded version of the preprocessor) translates
DYMOLA programs into either SIMNON models or
FORTRAN subsystems which may be loaded and
executed together with the SIMNON system. The
beauty of DYMOLA lies in its modularity. Large
scale models can be coded much easier and less
error prone than in other languages. DYMOLA is
in so far experimental, as it offers no other
simulation features. That is: the user is often
forced to access the precompiled SIMNON program
to add some other features at that level. DYMOLA
is also representative for MODEL [28] which is
therefore not further discussed.

SYSMOD [1]: is basiecally a workable subset of
COSY (discussed further down). The main reason
to include this software in this review lies in
the assumption that SYSMOD shall be sooner
available and better (because industrially)
maintained than COSY. Moreover, SYSMOD has also
some nice extensions. SYSMOD is certainly the
simulation language with the nicest features for
description of experimental frames. Controlled
experiments can therefore be expressed
particularly nicely in SYSMOD. Alsc the run-~time
system is improved. Submodels can be separately
compiled but nevertheless be jointly integrated.
SYSMOD is predominantly a continuous simulation
software. There exist discrete events and
waiting queues, but no process mechanism is
foreseen. SYSMOD is meant for large scale models
(with declaration of variables, good structuring
capabilities), and is also designed to digest
large amount of data (e.g. measurements from
wind tunnel experiments or similar). SYSMOD is
currently under development by a British Company
(Systems Designers, Ltd.) under contract from
the British Ministry of Defence. Current plans
are to release this software in 1984,

FORSIM [6]: is a continuous simulation software
primarily designed for the solution of PDE
problems (by use of the method-of-lines ap-
proach). Parabolic PDE's can be solved ef-
ficiently in one, two or three space dimensions.
A very good implementation of the Gear stiff
system solver together with use of the Reid
sparse linear matrix routines makes FORSIM-VI a
very powerful tool for that purpose. Both the
integration method as the spatial discretization
method are parameterized. The user can select
among a large variety of different algorithms by
simply changing one single parameter. In this
way, FORSIM-VI is also a very hnice experiment-
ation tool, in that a large variety of
alternative algorithms can be tested out by

Simulation Software: Today and Tomorrow 13

minor program modifications. Hyperbolic PDE's
can be solved to a lesser extent. Up-wind inter-
polation implements a "pseudo-characteristic
method", but more research is still required
here to find better suited integration
algorithms and adaptive spatial grids (for shock
wave treatment). Elliptic PDE's may be solved to
a still lower extent. Finite element methods are
far more efficient here for most applications.
FORSIM-VI is also representative for some other
systems such as LEANS~III [41] or DSS [50] which
are therefore not further discussed here.

SIMULA [2]: is a powerful programming language.
Its strength lies in the fact that virtually any
problem can be solved in a highly structured
way. SIMULA'67 is a very good language to im-
plement compilers. As a simulation language,
SIMULA offers far too little simulation specific
support though. Looking into our table, SIMULA
must leave the impression of being a very poor
simulation language. In its basic version,
SIMULA may be used for the solution of discrete
event problems only, but even for that purpose,
the available support is minimal. The powerful
CLASS concept of SIMULA provides for a virtually
unlimited open-ended operator set. No wonder
therefore, that there exist several "extensions"
to SIMULA (which are basically collections of
precut SIMULA classes) to make SIMULA better
usable for simulation purposes. One such ex-
tension is DEMOS [3] which adds to SIMULA a
transaction flow view (comparable to GPSS),
tabular distribution functions, statistical
report generation (including histograms), event
monitoring, and automated deadlock detection (a
feature which is rarely found in today's simul-
ation software). Another extension is DISCO [20]
which adds some primitives for ODE solution,
making DISCO a combined simulation language
(although the continuous aspects of DISCO are by
far insufficient for complex continuous applic-
ations). The class concept of SIMULA is possibly
not optimal for maintaining continuous at-
tributes in a user friendly way. Another
extension, COSMOS (which is currently under
development by Kettenis from the Agricultural
University of Wageningen, The Netherlands), goes
therefore another way by implementing a (SIMULA
coded) preprocessor vwhich translates COSMOS
programs down to an intermediate SIMULA code.

PROSIM [45]: is another SIMULA dialect. Its im~
plementation is such that all SIMULA features
have been reimplemented in a PL/I environment.
PROSIM offers also some combined features.
Sierenberg has implemented ODE's - in a rather
original way, in that the ODE's in PROSIM are
not implemented as code, but rather as a
data structure. The specification of an ODE in
PROSIM is done by declaring a continuous at-
tribute. This genuine solution looks very
interesting. It is, however, rather difficult to
use in more complex application, as logical con-
nections between different continuous equations
are almost unexpressible. All continuous
problems which would require somewhere a NOSORT

section are almost uncodeable in PROSIM (and
these are, to my experience, almost all
realistically large problems). PROSIM is
therefore basically a discrete event simulation
language which allows a few attributes of
entities to change continuously in time rather
than discretely.

SIMSCRIPT [25]: is another rather popular simul-

ation language. The version described in this
report is SIMSCRIPT-II. As with SIMULA, there
exist several extensions to this version.
SIMSCRIPT-II.5 [40] adds a process interaction
to the software comparable to GPSS. Another
extension is C-SIMSCRIPT which adds some means
for ODE solution, making C-SIMSCRIPT another
combined simulation language. " The version
SIMSCRIPT-II.5 is well maintained by C.A.C.I.

GPSS FORTRAN [43]: is a GPSS dialect which im-
plements most features of GPSS-V [44] in terms
of a FORTRAN program. This implementation makes
the coding of small GPSS models somewhat cumber-
some (longer code) and more error prone {FORTRAN
and common blocks), but on the other hand makes
this software much more flexible for larger ap-
plications. Logical branching is much more
generally possible and easier accomplishable in
GPSS_FORTRAN-II than in GPSS-V. I, therefore,
have not included GPSS-V in my table, as I
consider this software to be really obsolete by
now. GPSS_FORTRAN-III shall add means for ODE
handling, making also this software a combined
simulation language.

SLAM [37]: dis a very powerful combined
continuous and discrete simulation language.
Discrete systems are modelled in terms of PERT
networks. However, to enhance the flexibility of
the tool, special event nodes have been intro-
duced. Whenever a transaction passes through
such an event node, an event subroutine (to be
coded in FORTRAN by the user) is executed. In
this way, SLAM-II combines the comfortable
modelling capabilities of its predecessor Q-GERT
[36] with the flexibility of its other predeces-
sor GASP-IV [35]. Continuous models are expres-
sed in terms of a FORTRAN subroutine (thus no
sorting capability is provided) precisely as in
GASP-1IV, SLAM-II is still rather weak with re-
spect to its continuous simulation features. In
particular, the integration algorithm (a
Runge-Kutta code) has been coded directly into
the execution control routine, making SLAM
unusable for stiff systems (which most of the
higher order systems are). SLAM-II is therefore
highly recommended for predominantly discrete
problems, whereas predominantly continuous
problems are better solved by use of other soft-
ware.

GASP [9,35,381: is a 1library of extremely
portable FORTRAN coded subroutines for combined
continuous and discrete simulation. GASP-IV
(which is meawhile obsolete) was designed by
Pritsker & Assoc. GASP-V added to GASP-IV many
continuous simulation features, making GASP-V as

14 FE.E. Cellier

versatile for continuous as for discrete simul-
ation problems. GASP-V can therefore be
considered to be the first fully combined simul-
ation package. GASP-VI finally adds to GASP-V a
process interaction view similar to those of
GPSS or SIMULA (transactions may pass through
work stations as in GPSS, but they may
alternatively also suspend processes as in
SIMULA). GASP-V is available from ETH Zurich at
nominal cost, whereas GASP-VI is still
experimental.

COSY [11,12]: was the first simulation language
to be formally designed from the beginning with
the help of a syntax analysis program [4]. It
uses strictly a LL-1 grammar which makes its
compiler easily maintainable and upgradable.
(Only SYSMOD shares this advantage with COSY).
COSY was originally designed as a front end to
GASP-V,. to make the use of that software some-
what more comfortable, but COSY has meanwhile
advanced much further. COSY is by far the most
general and versatile simulation language
proposed to date. A price, which we have to pay
for this versatility and universality, is the
complexity of the software. Although it is
possible to write users manuals for subsets of
COSY, making the use of that subset extremely
simple, it is quite difficult to master COSY in
its entirety. Thus, COSY shares some of the dis-
advantages of PL/I.

We may once try to add up all (x) and (xx) over
each of the columns, to get a measurement unit
for the |universality of these simulation
software systems. Doing so, we receive the
following table:

ACSL - 62
DARE-P 51
SIMNON 45
DYMOLA 47
SYSMOD 8y
FORSIM~VI 45
SIMULA'67 27
PROSIM 37
SIMSCRIPT-II 26

GPSS_FORTRAN-II 45
GPSS_FORTRAN-III 64

SLAM-II 92
GASP-V 71
QASP-VI 104
CcosY 136

Obviously, such a quality measurement has to be
taken with care. SIMULA and SIMSCRIPT-II turn
out badly, because they do not offer anything
for continuous systems, and because their simul-
ation support is insufficient. This does not
necessarily mean that there is no space for
these languages. Very powerful simulation
systems can be coded on the basis of these
general purpose programming languages. A very
nice continuous simulation language is ACSL,
probably the best among the currently available
systems. SYSMOD shall still be superior when it
becomes available. SLAM=II is highly recommended

for discrete simulation. Truely combined simul-
ation should at the moment probably best be
performed by using GASP-V.

4, SIMULATION SOFTWARE IN THE FUTURE

One of the problems of modern simulation
software lies in its complexity. The appetite of
the users has grown drastically, and with it
also the number of features, the software is
supposed to offer. This is in deed a problem, as
it becomes more and more difficult to (a)
implement such software, and (b) learn to master
it as a user. Every language designer knows that
a "good" and "successful™ computer language
should offer less than about 100 reserved
keywords, otherwise the compiler gets large and
clumsy. What happens to languages which do not
obey that rule, we know at least since the days
of PL/I. The user manual of any language should
be completely expressible in less than about 100
pages, otherwise the average user shall never be
able to master all features offered by the
language. Here we run into a serious problem
with the design of simulation software, as the
number of required keywords is dictated by the
complexity of the task rather than by the wishes
of the purist language designer.

What can we do to overcome that problem: As T
believe, the key lies in the data handling. The
base of a simulation system should be a data-
base management system (DBMS) adapted to the
needs of simulation users. A first step into
that direction has been reported recently by
Standridge [46,47,48]. Several independent
programs for different aspects of system
analysis and/or synthesis may then be
implemented independently of each other,
programs which communicate through their data-
base interface. Advantages of this approach are
manifold. Let me start with some advantages
which concern simulation alone:

1) Representation of one variable trajectory
from several runs (overplot). Many current
simulation languages offer this feature
("PAGE MERGE"™ in CSMP-III). However, while
current languages require an additional
concept to be mastered, implementation of
this feature becomes most natural when the
data are stashed away into a data-base
during simulation, while data retrieval and
display are accomplished by a separate
postprocessor grouped around the same
data-base as the simulation program. The
only means of communication between the two
programs takes place through the data-base.

2) Representation of one variable trajectory
from both simulation and real experiment on
one graph. The implementation of this
feature requires yet another program for
real-time data acquisition grouped around
the same data-~base. Otherwise, there is
nothing new about. This extremely useful

Simulation Software: Today and Tomorrow 15

feature (for model validation) does not
exist in any of the current simulation
languages I am aware of.

3) Dynamic table load. Tabular data need no
longer be coded directly into the simulation
program (e.g. by a CSMP "FUNCTION"®
statement), but may be stored in the
data-base. These data may be user generated,
generated by another (previous) simulation
run, or even generated by real measurements.
They may then be used as driving functions
to another simulation model. One application
of this technique could be the solution of
the finite-time Matrix-Riccati differential
equation where the Riccati equation needs to
be computed first backward in time from the
final time (T) to initial time (0.), while
the -system equations must be computed
thereafter forward in time from initial time
(0.) to final time (T) making use of the
previously stored trajectory of the Riccati
matrix.

4) Statistical analysis of noisy data. It may
often be interesting to analyse stochastic
data for their statistical parameters.
Again, this is not really a "job™ for the
simulation language to accomplish. It is
much more natural to store the stochastic
simulation data away into the data-base, and
to analyse them thereafter by an independent
statistics program grouped around the
data-base.

5) After many replications of a stochastic
model, one may wish to display not a
particular time history, but a range in
which the results are expected to be found.
Such a representation is much more useful
for a manager, as he may see trends in that
curve which are not easily expressible in
figures, as not a single digit of the
results may be significant. Again, the
implementation of such a feature would be a
command belonging to one of the
postprocessors, and need not really be mixed
up with the simulation language features.

6) There may exist several models for the same
system, or several submodels to form an
entire model. It may be very useful to store
also parametric models, sets of parameter
values for these models, experimental
frames, and possibly some other structures
in the data-base for more comfortable model
manipulations. These considerations have
been discussed in several articles by Oren
and Zeigler [31,32].

One may easily find more examples to show that
this concept is fruitful. Another advantage of
this concept is that independent manuals may be
written for the independent program modules. The
manager may then e.g. only study the
postprocessor manual, as his only direct access
to the computer will be to display the data

which have been gathered by other people before-
hand. In this way, the concept also allows to
split portions of the modeling business among
several individuals, a separation which is much
more natural and much easier accomplishable then
to ask several people to write independently
different submodels.

One of the beauties of good old closed-shop-
batch-processing lay in the fact that the user
needed not to learn anything beside the
simulation language, where to deliver his cards
and from where to get his listings. In the
"jdeal" case, there existed a special "box" for
CSMP input such that the user even was released
from those magic control cards he otherwise had
to add to the job (and never understood). The
introduction of interactive operation made the
task somewhat more difficult to the novice user,
as suddenly he had to learn something about file
manipulation programs (copy, delete, con-
catenate, ete.) and data manipulation programs
(full screen editor). The introduction of our
highly recommended new DBMS concept makes his
life by no means easier. It is no longer
sufficient to specify what results he wants to
see, he has to say what data are to be stored,
where they are to be stored, where they are to
be refound, how they are to be retrieved, what
has to happen with these data after the session
is over, and so forth. We suddenly realize that
simulation no longer consists of a single well
defined and well confined task, but that there
exists now a SIMULATION ENVIRONMENT similar to
the "environment" definition in ADA. A
simulation software no longer consists of a
simulation run-time system alone possibly
preceded by a compilation step (simulation
compiler), but -- equally dimportant -- of a
simulation environment definition describing the
way in which the simulation software is embedded
in the operating system of the implementation
machine.

Again, there seems to be a problem we should try
to do something about. One of the nicest
features of modern operating systems is the fact
that they allow to describe their own features
in their own terms. To state an example: it is
possible to implement the operating system UNIX
in terms of the operating system VMS running on
a VAX computer (which has been done several
times). If this program is then automatically
executed from within the LOGIN file, the user
gets the impression that his VAX machine is
running UNIX and not VMS. Obviously, this way of
running UNIX is less efficient than running UNIX
in native mode, and this technique is therefore
not necessarily recommended for a general
purpose operating system such as UNIX. However,
the nice thing about this technique is that it
may very profitably be used for the
implementation of a special purpose "SIMULATION
OPERATING SYSTEM", a new term which I want to
introduce as an alternative to the classical
"simulation languages" and "simulation
packages", Let me cite a very simple example: to

16 F.E, Cellier

run ACSL on a VAX 11/780 installation, I have
implemented a command procedure (roughly 200
lines of code) to compile, 1link, and execute
ACSL. This command procedure may be used in
three different modes:

@ACSL pilot LIST FORT GIGI

would effect the pilot ejection study (on file
PILOT.CSL) to be compiled with production of a
listing of both the ACSL program itself (option
LIST) and its FORTRAN precompilation (option
FORT) . Thereafter, the program is linked
together with the graphics driver for the GIGI
terminal (from which the program is operated).
Finally, the program 1is executed. Upon
termination, the user is asked whether he wished
to receive a hardcopy of both print- and plot-
files on a Versatek printer-plotter, and whether
he wants to clean up his intermediary files
thereafter. Specification of:

@ACSL HELP

would explain what parameters are at the users
disposal. A third possibility then would be to
specify:

@ACSL

alone in which case the command procedure would
enter an interrogative mode and ask for all
parameters needed.

This command procedure alone is already quite
useful. However, it does not solve all problems
for use of ACSL in a class environment. Still,
the students would have to learn how to call the
editor, copy programs, ete,. For that purpose,
another command procedure SIM.COM has been coded
which resides on my own accounting number (with
read permission only) while being strapped to
act as LOGIN file on the students account. This
second command procedure (roughly 400 lines of
code) enables a menu-type interaction with the
user. Each user logging in to the students
account is asked first for a second password
(his name) after which he enters his own
directory. Thereafter, he gets a menu of
possible commands displayed which reads as
follows:

Current ACSL Problem : NONE

Code: (A) Run ACSL problem
(C) Clean up files
(D) Delete ACSL problem
(E) Edit ACSL problem file
(F) Edit ACSL data file
(G) Display general HELP information
(H) Start/stop HELP menu.
(L) List of existing ACSL problems
(M) Display the message of the day
(N) Print Non-ACSL files (after error)
(0) Make old version current again
(P) Purge old versions
(Q) Show disk quota
(R) Read file from other problem
(8) Select ACSL problem
(T) Display status of queues
(V) Display VAX-specific information
(W) Write file to other problem
(Z) Exit from ACSL account

which we felt to be about the minimum number of
commands, a user must have at his disposal. The
user may now e.g. press "L <CR>" to obtain a
directory of all of his currently defined ACSL
problems. Thereafter, the HELP menu is repeated.
Now, the user may press "S <CR>" to be prompted
for the name of the problem to be executed (e.g.
PILOT). "A <CR>" would then result in a call to
the previously described command procedure
ACSL.COM for compilation, linkage, and execution
of the currently selected ACSL problem. "E <CR>"
would call the editor with the currently
selected ACSL problem file (depending on the
terminal type, this automatically results in
either a call to EDT or in a call to TECO). The
students obviously must get the impression that
their computer runs a special purpose ACSL
operating system, even though in reality it runs
under VMS (just hidden from the students). The
students remain within the LOGIN file throughout
their entire session. Our experiences with this
mode of operation were extremely positive. The
students were able to master this simple
simulation operating system without any
difficulties after a short demonstration of
20 minutes length.

Currently I am implementing a similar simulation
operating system for the second course on
discrete event simulation. For that purpose, I
base on the software by Pritsker and Associates,
that is: the SDL data-base management system
together with the SLAM-II simulation software.
Lateron, we shall add also the other programs
AID (for statistical analysis and interactive
fitting of distribution function parameters) and
SIMCHART (graphical postprocessor). The full
beauties of such a combination would be rather
difficult to feel if these programs were used
independently of each other. It is really the
introduction of the simulation operating system
which makes such a system easily manageable and
useful,

Simulation Software: Today and Tomorrow 17

The idea of such a mode of operation is in deed
not really new. Already 10 years ago people were
talking about Management Information Systems
(MIS) as a cure-all to any disease.
Unfortunately, these systems (as far as they
ever got) turned out to be diseases in
themselves, in that:

1) the systems were huge, clumsy, slow, and
unflexible,

2) they never were able to fulfil the task they
were build for, as managers were unable to
understand what was going on, and therefore
(and for good reason) had little trust in
the results produced.

Now, 10 years later, the idea of using a
computer to take decisions has been burried,
still the concept survived in a new outlook,
nowadays called Decision Support System (DSS).
The idea here is that the manager should no
longer be replaced by a computer. Instead, the
computer should provide the manager with all
available data to take a correct decision.
Obviously, the heart of a DSS is again a DBMS,
possibly enhanced by some additional modules for
statistical analysis, econometric modeling, data
display, and similar -~ as one can see,
precisely the concept which I advertised in this
chapter. However, I prefer the term "simulation
operating system"™ over DSS, as this new term
does not imply that the tool is to be used by
managers only which (partly and at times) well
may be the case, but certainly need not. There
are many technical applications for which this
concept (as shown above) is useful. Moreover,
modern operating systems shall now allow much
more efficient implementations than what was
possible 10 years ago, as this concept lends
itself readily to programming at the operating
system level (by means of a command language)
rather than at the language level (which to a
good extent would require assembly programming,
as most computer systems would not allow to call
a system program (e.g. the FORTRAN compiler)
from within a (e.g. in FORTRAN coded) user
program). Such comfortable command languages
were unavailable 10 years ago.

To close up this short discussion, I strongly
advertise a solution in which the .many demands
for system analysis (and synthesis) features are
properly separated into independent modules
(with independent documentation) which
communicate with each other through a data-base
interface. By these means, the flexibility of
the resulting tool is drastically enhanced (as
has been shown at some examples) while keeping
each of the program modules sufficiently simple
to let them be user manageable on one side, and
efficiently implementable on the other hand.

REFERENCES:

1] Baker, N. J. C. and Smart, P. J., The
SYSMOD Language and Run Time Facilities
Definition, Techn Note 6.82, Royal Aircraft
Establishment, Farnborough, Hampshire,
United Kingdom. (March 1982).

[2] Birtwistle, G. M., Dahl, 0.-J., Myhrhaug,
B. and Nygaard, K., SIMULA BEGIN.
(Studentlitteratur Sweden and van Nostrand
Reinhold, New York, 1973).

[3] Birtwistle, G.M., DEMOS: Discrete Event
Modelling on SIMULA. (Macmillan, London and
Basingstoke, 1979).

[4] Bongulielmi, A, P, and Cellier, F. E., On
the Usefulness of Deterministic Grammars
for Simulation Languages, Proc. of the
SWISSL Workshop, St. Agata, Italy. Shall
appear also in Simuletter. (September
1979} .

{5] Carver, M. B, and Hinds, H. W., The Method
of Lines and the Advective Equation, in
Proc. of the ACM SIGNUM Meeting,
Albuquerque, New Mexico. (November 1977).

(6] Carver, M. B., Stewart, D. G., Blair, J. M.
and Selander, W. N., The FORSIM VI
Simulation Package for the Automated
Solution of Arbitrarily Defined Partial
and/or Ordinary Differential Equation
Systems, Report AECL-5821, Atomic Energy of
Canada Ltd., Chalk River, Ontario.
(February 1978).

[7] Carver, M. B. and MacEwen, S. R., Automatic
Partitioning in Ordinary Differential
Equation Integration, in Cellier, F. E.
(ed.), Progress in Modelling and
Simulation. (Academic Press, London and New
York, 1982).

[8] Cellier, F. E., Continuous-System Simul-
ation by Use of Digital Computers: A
State-of~the-Art Survey and Prospectives
for Development, -in Hamza, M. H. (ed.),
Proc. of the International Symposium and
Course SIMULATION'75. (Acta Press, Calgary
and Zurich, 1975).

[9] Cellier, F., E., and Blitz, A. E., GASP-V: A
Universal Simulation Package, in Dekker, L.
(ed.), Simulation of Systems, Proc. of the
8th AICA Congress. (North-Holland,
Amsterdam, 1976).

[10] Cellier, F. E. and Moebius, P. J., Towards
Robust General Purpose Simulation Software,
in Skeel, R. D. (ed.), Proc. of the ACM
SIGNUM Meeting on Numerical Ordinary
Differential Equations, Dept. of Computer
Science, University of Illinois at
Urbana-Champaign. (March 1979).

18

[11]

[12]

[13]

[13]

[15]

[16]

[17]

[18]

[19]

[20]

E.E, Cellier

Cellier, F. E. and Bongulielmi, A. P., The
COSY Simulation Language, in Dekker, L.,
Savastano, G. and VanSteenkiste G. C.
(eds.), Simulation of Systems, Proc. of the

9th IMACS Congress. (North-Holland,
Amsterdam, 1979).
Cellier, F. E., Rimvall, M. C. and

Bongulielmi, A. P., Discrete Processes in

COSY, in Maceri, F. (ed.), Proc. of the
European Simulation Meeting held in
Cosenza, Italy. (April 1981). Also in
Crosbie R. E. and Cellier, F. E. (eds.),
TC3~IMACS, Simulation Software, Committee
Newsletter, No 11. (July 1982).

Cellier, F. E., (ed.), Progress in

Modelling and Simulation.
London and New York, 1982).

(Academic Press,

Eitelberg, E., Modular Simulation of Large
Stiff Systems, .in Cellier, F. E. (ed.),
Progress in Modelling and Simulation.
(Academic Press, London and New York,
1982).

Elmgvist, H., SIMNON - An - Interactive
Simulation Program for Nonlinear Systems -
User's Manual, Report TFRT-3091, Dept. of
Automatic Control, Lund Institute of
Technology, Lund, Sweden. (April 1975).

Elmgvist, H., SIMNON - An Interactive
Simulation Program for Nonlinear Systems,

in Hamza, M. H. (ed.), Proc. of the
International Symposium SIMULATION'T7.
(Acta Press, Anaheim, Calgary and Zurich,
1977) .

Elmqvist, H., DYMOLA -~ A Structured Model
Language for Large Continuous Systems -
User's Manual, in Crosbie, R. E. and
Cellier, F. E. (eds.), TC3-IMACS,

Simulation Software, Committee Newsletter,
No 10. (September 1981).

Gear, C. W., Stiff Software: What Do We
Have and What Do We Need?, in Aiken R. C.
(ed.), Proc. of the International Con-
ference on Stiff Computation, Dept. of
Chemical Engineering, University of Utah,
Salt Lake City. (April 1982).

Halin, H. J., et alia, The ETH Multi-
processor Project: Parallel Simulation of
Continuous Systems, Simulation, Vol 35,
No 4. (October 1980).

Helsgaun, K., DISCO - A SIMULA-based
Language for Continuous Combined and
Discrete Simulation, Simulation, Vol 35,

No 1. (July 1980).

[21]

[22]

(23]

[24]

[25]

[261

[271]

[28]

[29]

[30]

[31]

[32]

Hindmarsh, A. C., Stiff System Problems and
Solutions at LLNL, in Aiken R. C. (ed.),
Proc. of the International Conference on
stiff Computation, Dept. of Chemical
Engineering, University of Utah, Salt Lake
City. (April 1982).

IBM, Continuous System Modeling Program III
(CSMP III) Program Reference Manual,
Program Number 5734-XS9, Form SH19-7001-2,
IBM Canada Ltd., Program Product Centre,
1150 Eglington Ave. East, Don Mills 402,
Ontario. (September 1972).

Joss J., Algorithmisches Differentieren,
Ph.D. Thesis, ETH Zurich, Diss. ETH 5757.
(1976).

Karplus W. J., Software for Distributed

System Simulation, in Cellier, F. E. (ed.),

Progress in Modelling and Simulation.
(Academic Press, London and New York,
1982).

Kiviat P. J., Villanueva, R. and
Markowitz, H. M., The SIMSCRIPT II Pro-

gramming Language. (Prentice-Hall, 1968).

Kleijnen, J. P. C., Experimentation with
Models: Statistical Design and Analysis
Techniques, in Cellier, F. E. (ed.),
Progress in Modelling and Simulation.
(Academic Press, London and New York,
1982).

Korn, G. A. and
Continuous-System
(Prentice-~Hall, 1978).

Wait, J. V., Digital
Simulation.

Mitchell and Gauthier, Assoc., ACSL: Ad-
vanced Continuous Simulation Language -~
User Guide / Reference Manual, P.0.Box 685,
Concord, Mass. (1981).

Mitchell, E. E. L., Advanced Continuous
Simulation Language (ACSL): An Update, in
Ames, W. F. (ed.), System Simulation and
Scientific Computation, Proc. of the 10th
IMACS Congress, Dept. of Computer Science,
Rutgers University, New Brunswick, New
Jersey. (August 1982).

Nilsen, R. N., The CSSL-IV Simulation Lan-
guage, User Manual. Simulation Services,
20926 Germain Street, Chatsworth,
California.

Oren, T. I. and Zeigler, B. P., Concepts
for Advanced Simulation Methodologies,
Simulation, Vol 32, No 3. (March 1979).

Oren, T. I., Computer-Aided
Systems, in Cellier, F. E. (ed.),
in Modelling and Simulation.
Press, London and New York, 1982).

Modelling
Progress
(Academic

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[h0]

[41]

[42]

[431]

Simulation Software: Today and Tomorrow 19

Petzold, L. R., An Efficient HNumerical
Method for Highly Oscillatory Ordinary
Differential Equations, Dept. of Computer
Science, University of Illinois at
Urbana-Champaign, Form UIUCDCS-R-T78-933.
(August 1978).

Petzold, L. R., A Description of DASSL: A
Differential/Algebraic System Solver, in
Ames, W. F. (ed.), System Simulation and
Scientific Computation, Proc. of the 10th
IMACS Congress, Dept. of Computer Science,
Rutgers University, New Brunswick, New
Jersey. (August 1982).

Pritsker, A. A. B., The GASP IV Simulation
Language. (Wiley, New York, 1974).

Pritsker, A. A. B., Modeling and Analysis
Using Q~GERT Networks. (Halsted Press, New

York, 1977).

Pritsker, A. A. B. and Pegden, C. D.,
Introduction to Simulation and SLAM.
(Halsted Press, New York and Systems

Publishing Corp., West Lafayette, 1979).

Rimvall M. C. and Cellier, F. E., The
GASP-VI Simulation Package for
Process-Oriented Combined Continuous and

Discrete System Simulation, in Ames, W. F.
(ed.), System Simulation and Scientific
Computation, Proc. of the 10th IMACS
Congress, Dept. of Computer Science,
Rutgers University, New Brunswick, New
Jersey. (August 1982).

Roth M. G. and Runge T. F., Simulation of
Continuous Networks with MODEL, Dept. of
Computer Science, University of Illinois at
Urbana-Champaign, Form UIUCDCS~R-78-921.
(December 1978).

Russell, E. C., Building Simulation Models
with SIMSCRIPT II.5. C.A.C.I., 12011 San
Vicente Boulevard, Los Angeles, California.

Schiesser, W. E., LEANS - III Introductory
Programming Manual, Computing Center,
Lehigh University, Bethlehem, Penna.
(September 1971).

Schiesser, W. E., Some Characteristiecs of
ODE Problems Generated by the Numerical
Method of Lines, in Aiken R. C. (ed.),
Proc. of the International Conference on
Stiff Computation, Dept. of Chemical
Engineering, University of Utah, Salt Lake
City. (April 1982).

Schmidt B.,

GPSS-FORTRAN Version II

Einfuehrung in die Simulation diskreter
Systeme mit Hilfe eines FORTRAN-
Programmpaketes. (Springer, Berlin,
Heidelberg and New York, 1977).

[u4u]

[45]

[46]

[a71

[48]

[49]

[50]

Schriber T. J., Simulation Using GPSS.
(Wiley, New York, 1974).

Sierenberg R. and de Gans, 0., PROSIM
Textbook, Dept. of Applied Mathematics,
Delft Technical University, Delft, The
Netherlands. (1982).

Standridge, C. R., Using the Simulation
Data Language (SDL), Simulation, Vol 37,
No 3. (September 1981).

Standridge, C. R., The Simulation Data

Language (SDL): Applications and Examples,
Simulation, Vol 37, No 4. (October 1981).

Standridge, C. R. and Pritsker, A. A. B.,
Using Data Base Capabilities in Simulation,
in Cellier, F. E. (ed.), Progress in
Modelling and Simulation. (Academic Press,
London and New York, 1982).

Wait, J. V. and Clarke III, D., DARE P
User's Manual, Dept. of Electrical
Engineering, University of Arizona, Tucson.
(December 1976).

Zellner, M. G., DSS - Distributed System
Simulator, Computing Center, Lehigh
University, Bethlehem, Penna. (May 1970).

