THE MATRIX ENVIRONMENT AS ENHANCEMENT TO MODELING AND SIMULATION.

Magnus Rimvall
Institute for Automatic Control

Swiss Federal Institute
of Technology (ETH)
Zirich, Switzerland

Abstract

In any future standard for continuous simula-
tion languages, it is of primary importance that
the data and program structures are made general
and flexible enough., In this paper, the use of
matrix structures in modeling and simulation and
the impact of matrix on the design
of simulation languages and their experimental
frames will be discussed.

Introduction

Presently several efforts are undertaken to
replace the CSSL'67 standard for continuous simu-
lation languages with a more wmodern template.
Since the publication of the CSSL report in 1967
[2] several successful commercial packages adher-
ing to the standard have emerged, for example
ACSL [10]) and CSSL~IV {12]. Other languages (e.g.
DSL/VS (6) and DARE (15})) differ syntactically
from CSSL'67., yet retain many of its concepts.
This has given the standard a quite remarkable
life-span of almost twenty years in times of
strong technological advancements, something
which must be attributed to the open-endedness of
the standard. Therefore, the products derived
from CSSL'67 are not forced to be static, but
have been enriched by assimilation of algorithms
and concepts from other fields.

Despite this evolution of CSSL languages.
there is now an imminent need for a new standard.
Most of the hitherto developments within CSSL
were of functional rather than structural nature,
as any fundamental changes in the program/model
structures would violate the standard. Conse-

quently, the work of present standardization com-
mittees (e.g. in IMACS and SCi) concentrate on
structural matters 1like the partition between

model and experiment sections, the inclusion of
discrete elements and the design of submodels fa-
cilities. In this contribution, we want to elabo-
rate on some concepts which should be carefully
considered during any development of a new stan-
dard: matrix data structures and ideas from in-
teractive matrix/control environments.

Matrix environments

The term matrix environment designates a
class of programs giving the user easy and inter-
active access to matrix manipulation algorithms.
The first of these programs, MATLAB {11], was
based upon the state-of-the-art numerical pack-
ages LINPACK (3] and EISPACK {41 [14]). Other pro-
grams (e.g. CTRL-C [8) and MATLAB-PC [(9]) are de-
rivatives of MATLAB, but also include algorithms
for control theory and systems analysis (also
called control environments). Yet another genera-
tion of packages (e.g. MATRIXx [161 and IMPACT
{131), retains the simple functionality of the
previous programs, yet complements the matrix
structure with structures like polynomial matri-
ces, linear and nonlinear systems descriptions.

Francois Cellier

Dept. of Electrical and
Computer Engineering

The University of Arizona
U.S.A.

Tucson, Arizona,

Common to all these packages are their ease
of use, To 1illustrate this, let us calculate the
stability of a linear system. We then enter the
system matrix and calculate its eigenvalues:

>> A = < -1 -2 0
1 0 -2
-1 -1 2 >;
>> EIG(A)
ANSWER =

~0.6348 + 0.69164%
-0.6348 - 0.69161
2.2695 + 0.00001

We note that one eigenvalue has
part,

a positive real
indicating that the system is not stable,

With the same relative ease the matrix envi-
ronment allows us to interactively define small
algorithms. For example, it is possible to imple-
ment simple integration algorithms for small sim-
ulations. The following example illustrates the
use of MATLAB to simulate a small linear system
using the forward Euler algorithm:

//Simulation of Cedar Bog Lake

A atadatalatd

// 1 //8ystem order, final time

N = 5; TMAX = 10;

//State matrix

A= < -4.03 0. 0. 0. 0.
0.48 -17.87 0. 0. 0.
0. 4.85 -4.65 0. 0.
2.55 6.12 1.95 0. 0.
1 6.9 2.7 0. 0. >

//Input vector
B=<1;0;0;0; 0>
//Initial conditions
X0 = < 0.83 , 0.003 , 0.0001 , 0 . O >

// 2 //Eigenvalue computation

E = EIG (A), EEPS = EPS¥*ONES(E);

//Find eigenvalue determining crit. step size
F=NORM(((E.*CONJ(E))./(2*¥REAL(E)+EEPS)),*INF')

// 3 //Foreward .Euler, small steps (dt=dtk/5)
DTK = 1/F; DT = DTK/5

//Initial computations

X = X0'; XST = <0,X0>;

AM = EYE(A) + DT¥*A; BM = DT¥*B;

NN = ROUND(TMAX/DT); KK = ROUND(NN/50);

K = 1; IF KK=0, KK=1; END

// 4 //Simulation

FOR I=1:NN,T=DT¥I;U=95.9%(1+0.635*SIN(T-DT));...
X = AM*X + BM¥U; EXEC('STORE.MTL'); END

// 5 //Printout
EXEC('PRINTOUT.MTL?)

Although this example is not very interesting
from a simulation point of view, it shows the
flexibility of the MATLAB command language and
the relative ease with which new algorithms can
be developed and tested. Note that only the first
of the five sections is needed in environments
with predefined integration algorithms (like
CTRL-C or IMPACT).

Both of the preceding small examples illus-
trate the close conceptual and algorithmic con-
nection between matrix environments and simula~
tion languages. We should therefore ask ourselves
the following questions:

- Several simulation languages (e.g. ACSL) allow
the user to calculate the eigenvalues/vectors
of a system by automatically linearizing the
system from the Jacobian matrix around a
working-point and returning the result in ma-
trix form. Are there any other uses for matri-
ces in general simulation languages?

- It is in matrix environments possible to per-
form rudimentary simulations, and thereby uti-
lize the interactive environment as a flexible
experimental frame. Would a similar interac-
tive environment also be useable in simulation
languages?

Matrix constructions as a modeling instrument

Most simulation languages allow for the dec-
laration and use of matrices within the model de-
scription, However, although these matrices can
be used at the discrepancy of the user, few lan-
guages utilize them to enhance their modeling ca-
pabilities. This is very unfortunate, as matrices
can be used to simplify the solution to several
modeling problems.

Consider the normal table-driven function.
Although this 1is a good example of a multi-
dimensional structure, practically all simulation
languages force the user to enter the function-
values as a linear 1list. A more readable ap-
proach, which also preempts all hard-to-find di-
mensional errors in the specification, would be
to use a somewhat modified matrix-structure (in-
ternally represented as a matrix}:

FUNCA = [0.0 | 0.0
0.5 1 0.1
1.0 | 0.33
1.5 | 0.67
2.0 1 0.9
2.5 1 1.0 1;

FUNC_2 = [
fcomment

Although no 1longer displayable in one plane,
three-dimensional tables could use a similar no-
tation by concatenating two-dimensional tables
with the value of the third dimension in the free
upper left hand field.

Scientists working in systems theory and au-
tomatic control are used to represent their lin-
ear systems in the time domain by a set of matri-
ces:

A = 3., 2] and

0, 1

are used to describe the system

o
—
]

= 3%x_1 &+ 2%x_2

X_2 = X_2 + Uu
where u is some input signal.
simulationists traditionally describe their,
sometimes identical, systems through differential
equations and integrational blocks. Using the ma-
trix structures from control theory as an exten-
sion to the traditional simulation elements, we
enhance the readability and thereby also gain a
very nice overview of the (sub-)system intercon-
nections:

On the other hand,

DIMENSION X(2). X0(2), A(2.,2), B(2)
A=13,2
0, 1 1;
B=1I[0
1 1;
X = INTEG(A¥*X+B*y,X0)
U= ...
In addition to describing systems in the

time-domain by matrices, control scientists also
often represent systems in the frequency domain
by transfer function matrices (rational functions
containing polynomials). Correspondingly, most
simulation languages provide block functions for
elements described in the frequency domain., For

example, the transfer function
1.0
G(8) = ~—=roo
1 + b¥*s

is generally available as a function REALPL:
y = REALPL(D,x,1i¢)
However, some control environments allow the con-

struction of general transfer functions. For ex-
ample, to define the transfer function

S + 9s + 55 + 0

IMPACT [13] allows the user to enter
G = (1/09°5°9°11)

This notation could also be used in simulation

languages. giving a much more general approach to

frequency domain elements:

G
¥

(1/097°5797°11));
G¥x;

1w

(in which case the initial condition for x must
be specified in the INITIAL section). For multi-
dimensional systems, y and x would be vectors and
G a transfer-function matrix.

We conclude that MATRIX CONSTRUCTIONS CAN
CONSIDERABLY ENHANCE THE READABILITY, SECURITY
AND/OR FLEXIBILITY OF A SIMULATION MODELING LAN-
GUAGE.

Overloaded operations as modeling tool

In this chapter we will discuss how the
f"overloading" of operators can make modeling en-
vironments simpler yet more flexible. The term
"overloading" derives from the new computer lan-
guage Ada {1], where it describes the possibility
to write several functions/procedures having the
same name and differing only in their parameters,
This, for example, enables the user to define a
structure matrix and a function ®+" containing a
matrix multiplication algorithm. Thereafter the
Ada-operator "+" is overloaded to work on matri-
ces as well as scalars,

As present simulation languages do not sup-
port overloading, a user wishing to perform e.g.
a matrix multiplication is left with two choices:
to program a multiplication algorithm within the
modeling environment or to call an external nu-
merical routine for the operation. In CSSL-1IV,
the only CSSL simulation language including ma-

trix manipulation algorithms, this call would
take the form
"DECLARATION OF MATRICES™
DIMENSION A(H4,4), B(4.,4), RES(4.,4)

"PERFORM MATRIX MULTIPLICATION"
RES = MMULTM(A,B,4,4)

However, this complicated construction is com-
pletely unnecessary. As the model description is
translated (normally into FORTRAN). simpler con-
structions could be used. The translator knows
the dimensions of A, B and RES and thereby the
parameters of the call to MMULTM, making the di-
mension declarations of the call redundant:

RES = A%*B
This overloading of the multiplication operator
also preempts user errors in the parameter speci-
fication.

Modern simulation languages provide an opera-

tor (often called INTEG) for scalar integration
and another (INTVC) for vector operations. With
the same argument as by the matrices, one of

these operators is redundant (see the example us-
ing INTEG in the previous chapter}.

We know that given two systems in transfer-
function form, the cascading of these systems is
described by a multiplication of the transfer-
functions in reverse order. Generalizing this
rule, a reverse-order multiplication of two sys-
tems (using an arbitrary representation) corre-
sponds to a cascading of the systems and an addi-
tion of two systems describes a parallel connec-
tion. These rules can then be used to describe
subsystem interconnections whenever these dynamic
subsystems are described in modular form. For ex-
ample, let us assume that A and B are two modules
with one input and one ocutput each, and the out-
put of subsystem A (y1) is connected to the input
of subsystem B (x2). The following program then
describes the interconnection:

u x1 y1 x2 y2 z

SUBSYSTEM A (y1 x1)

END A

x2)

SUBSYSTEM B (y2
END B

zZ = B ® A %y

Matrix constructions can also be used to sim-
plify more complex modeling structures, Standard
continuous simulation languages are sometimes
(mis~)used to simulate systems described by par-
tial differential equations. A simple, one-
dimensional diffusion problem can thereby be de-
scribed by:

DIMENSION u(50), dudt(50), uic(50)
u = INTVC(dudt,uic)
PROCEDURAL (dudt=u)

DO 5 i=2,u49
dudt (i) = c¥*¥(u(i-1) - 2.0%u(i) + u(i+1))
5..CONTINUE
dudt(1) = c*(leftu - 2.0%u(1) + u(2))
dudt(50) = c¥*(u(49) - 2.0%u(50) + rightu)
END
However, using matrix manipulations and the pre-
defined, automatically scaled structures ONES
(matrix with all ones), EYE (unity matrix),
DIAG(V,K) (diagonal matrix with all elements of

the vector V on the K'th diagonal)
I'th unity vector).,
be reduced to:

and E(I) (the
the whole diffusion model can

INITIAL
n = 50
d = ONES(n-1,1)
a = DIAG(d,-1)

-~ 2¥EYE(n) + DIAG(d.1)

DERIVATIVE
u = INTEG(dudt,uic)
dudt = c¥(a¥u + E(1)¥leftu + E(n)¥rightu)

We conclude: IN A SIMULATION LANGUAGE WITH
PREDEFINED MATRIX DATA STRUCTURES AND MODULAR
PROGRAM ELEMENTS, STANDARD OPERATORS CAN BE OVER-
LOADED. THIS ENHANCES THE READABILITY AND SIMPLI-
FIES THE LANGUAGE BY MAKING DUPLICATE OPERATORS
FOR EACH STRUCTURAL ELEMENT REDUNDANT.

i thmi : t a

Early simulation packages (e.g. CSMP [51)
were designed for batch operations only. A "simu-
lation job"™ normally consisted of a deck of
punched cards describing not only the model to be

simulated (in form of differential/algebraic
equations) but also the experiment to be per-
formed (length of simulation, variables to be

printed/plotted and so on). When performing com-
plex experiments on a given model, this environ-
ment is not flexible enough; the whole simulation
{including translating and linking) had to be re-
peated after every, however small, change (for
example by each rescaling of the plots or after
changing of a single parameter value).

In more modern packages, a "run-time monitor"
allows the user to interactively invoke simula-
tions, change parameter values, create nfimerical
or graphical output, and so on., However, the run-
time commands available are normally too primi-
tive (exception: DESCTOP (71); no structural lan-
guage elements are available (excepi for rudimen-
tary macros) and, therefore, no procedural pro-
gramming can be done on this interactive level.

Contrasting this rather limited interactive
interface, the command interfaces of the matrix
environments are considerably more flexible. As
we already have seen in the introductory exam-
ples, small programs (algorithms) can be interac-
tively defined and executed. Tests and decisions
can be made reading the commands either from the
terminal (interactive use), from a file (batch)
or a combination of both (interactive execution
using predefined macros/procedures).

As a first example on the use of procedural
statements in an experimental frame for simula-
tion, let us consider the problem of performing a
sensitivity analysis on a non-linear system. As
result we want to see the envelope of all time-
histories when a parameter 1s changed over a
range of values, Using a mixture of IMPACT and
ACSL syntax, this could be described by:

range_of_a = LINDOM(10.,20.,0.5); -~ 21 points

PREPARE(result,RUNS=2ll)

FOR par IN range_of_a

LOOP

parameter_a =
SIMULATE;

END LOOP;

PLOT(result,FORM=envelope)

par;

In a conventional CSSL simulation language, this
envelope could have been obtained only if the us-
er had included the corresponding code in the
model description. However, often the need for a
sensitivity analysis like this rises only after
some test runs have implied a high sensitivity,
and then a reprogramming becomes necessary.

As another example of high-level run-time
control, let us consider a system where we try to
minimize an error parameter sys_error over the
parameter par_a using a golden section algorithm.
This small optimization problem is easily solved:

glob_lo =z 0.0; glob_hi = 100.0;

new_lo = glob_lo + .382%(glob_hi-glob_lo);
new_hi = glob_lo + .618¥%(glob_hi-glob_lo);
par_a = new_hi; SIMULATE; error_hi = sys_err;
par_a = new_lo; SIMULATE; error_lo = sys_err;

WHILE ABS(error_hi - error_lo) > 1.0e-3
LOOP
IF (error_hi < error_lo)

THEN
glob_lo = new_lo; new_lo = new_hi;
new_hi = glob_lo + .618%(glob_hi~glob_lo};
error_lo = error_hi;
par_a = new_hi; SIMULATE; error_hi = sys_err;
ELSE
glob_hi = new_hi; new_hi = new_lo;
new_lo = glob_lo + .382%(glob_hi-glob_lo);
error_hi = error_lo;
par_a = new_lo; SIMULATE; error_lo = sys_err;
END IF;
END LOOP;
par_a = (new_lo + new_hi) / 2.0

or the user can utilize any optimization algo-
rithm already incorporated into the package 1in
the standard fashion wused in other procedural
languages:

FUNCTION error(x);

BEGIN
par_a = x; simulate; RETURN sys_error;
END error;
start = 50;
result = NLP{START=start,FUNCTION=error, ...

ERROR=1.0e-3)

Further cases where a procedural experimental
frame can be used include statistical replication
. analysis, 1Interactive specification of input sig-
nals and calculation and manipulation of steady-
state and eigenvector/eigenvalue information. Al-
80, it should be possible to directly connect the
simulation system to a control environment.

We summarize: AN INTERACTIVE RUN-TIME MONITOR
SUPPORTING PROCEDURAL LANGUAGE CONSTRUCTIONS AND
MATRIX DATA STRUCTURES NOT ONLY SIMPLIFIES THE
CONTROL OVER THE MODEL BUT ALSO OPENS UP A RANGE
OF INTERESTING EXPERIMENTAL POSSIBILITIES.

Lonclusjions

By the development of new simulation stan-
dards, the possible inclusion of matrix elements
as standard building elements in the modeling
language should be seriously considered. More-
over, the experimental frame of a modern simula-
tion language should be as flexible and versatile
as the command languages of matrix/control envi-
ronments.,

References

ANSI/MIL-STD 1815 A, Reference manual for
the Ada programming language (January 1983).

{1

[2) Augustin, D.C., J.C. Strauss, M.S. Fineberg,
B.B. Johnson, R.N. Linebarger and F.J.
Sansom. The SCi Continuous System Simulation
Language (CSSL). Simulation, 9, (1967), p.
281-303,

{31 Dungorra, J.J,» J.R. Bunch, C.B. Moler, and
G.W. Stewart. LINPACK Users' Guide. Society
for Industrial and Applied Mathematics
(1979).

[4) Garbow, B.S., et _alja. Matrix Eigensystem
Routines, EISPACK Guide Extensions,
Springer, Lecture Notes in Computer Science,
51 (1977).

[51 IBM., Continuous System Modeling Program III
(CSMP III) Program Reference Manual., Program
Number 5734-XS9, Form SH19-7001-2, IBM
Canada Ltd., Program Product Centre,
1150 Eglington Ave. East, Don Mills 402,
Ontario., (1972).

[6] IBM. Dynamic Simulation Language/VS
(DSL/VS). Language Reference Manual’, Program
Number 5798-PXJ, Form SH20-6288-0, IBM Cor-
poration, Dept. G12/Bldg. 141,
5600 Cottle Road, San Jose, CA 95193,
(198%4).

{7] Korn, G,A. DESCTOP Reference Manual, Version
V2.0. University of Arizona, Tucson, AZ
85721. (1985).

{8] Little., J.N., et alia. CTRL-C and matrix en~

vironments for the computer aided design of

control systems, in Proc. 6'th International
Conference on Analysis and Optimization
(INRIA), (Lecture notes in Control and In-
formation Sciences 63, Springer Verlag,
1984) .

{91 Little, J.N. and C. Moler. PC-MATLAB User's
Guide., The MATH WORKS Ine. 124 Foxwocod Rd.

Portula Valley, CA 94025 (1985).
Mitchell and Gauthier, Assoc. ACSL: Advanced
Continuous Simulation Language - User Guide

{101

/ Reference Manual, P.O.Box 685, Concord,
Mass, (1981).

{11] Moler, C., MATLAB, User's Guide, Department
of Computer Science, University of New Mexi-
co, Albuquerque, USA, (1980).

{121 Nilsen, R.N. The CSSL-IV Simulation Lan-
guage, Reference Manual. Simulation Ser-
vices, 20926 Germain Street, Chatsworth,
California. (1984).

[13] Rimvall, M., Cellier, F.C., A Structural Ap-
proach to CACSD., In Jamshidi, M. and C.
Herget (Eds.), Advances in Computer-Aided
Control systems Engineering. North Holland
Press (1985).

[14] Smith, B.T. et alia. Matrix Eigensystem Rou-
tines, EISPACK Guide. Springer, Lecture
Notes in Computer Science, & (1974).

[15) Wait, J. V. and Clarke III, D., DARE P Us-
er's Manual, Dept. of Electrical Engineer-
ing, University of Arizona, Tucson. (Decem-
ber 19761.

{16) Walker, R. et alia, MATRIX , A Data Analy-
sis, System Identification, Control Design,

and Simulation Package, IEEE Control Systems
Magazine (December 1982).

