MODELING, IDENTIFICATION AND CONTROL, 1986, vOL. 6, NO. 4, 181-199

Evolution and perspectives of simulation languages
following the CSSL standard+

MAGNUS RIMVALL} and FRANCOIS CELLIERS§

Keywords: digital simulation, continuous simulation languages, CSSL’67, combined
continuous/discrete simulation, standardization.

Since its publication in 1967 the CSSL specification has served as a successful
standard for continuous simulation languages. However, recent advances in
modeling techniques, simulation methodologies and computer languages has
motivated the simulation community to spur several standardization committees.
In this paper the 1967 standard as well as several modern CSSL languages are
reviewed, some current trends and developments are discussed and the status of
present standardization efforts is presented. An outlook on some of the facilities
we can expect to find in future simulation packages (with or without
standardization) is given.

1. Introduction

During the early sixties several dozen software products were developed for the
digital simulation of continuous dynamic systems (see Clancy and Fineberg, 1965).
Many of these products were coded in assembler or contained non-standard lan-
guage elements making them non-portable. Moreover, as each product used its own
model description syntax without standardized building blocks, developed models
were not transportable from one simulation language to another and programmers
switching to a new simulation environment needed a very long familiarization
period. For these reasons, the Simulation Councils, Inc. (SCi) in 1965 decided to
form a standardization committee for continuous simulation languages. In 1967, as
result of this standardization effort, the specification of the Continuous Systems
Simulation Language (hereafter referred to as CSSL’67) was published by Augustin
et al. (1967).

On one hand, CSSL’67 was a synthesis of elements and concepts from hitherto
developed simulation products like MIMIC (Peterson and Sansom, 1965), DSL/90
(Syn and Linebarger, 1966) and MIDAS (Harnett, Sansom and Warshawsky, 1964).
On the other hand, the committee deliberately limited the scope of the standard in
order to increase its life-span and preserve software portability:

CSSL’67 defined a general modeling environment, which insured a fair portabil-
ity of models from one CSSL-product to another (standardized user interface).

CSSL’67 is an open-ended standard, new functions and operators may be added
to any CSSL language (extendable modeling interface).

Received 15 June 1985.

t This paper was presented at the International Seminar on Modern Methods in -
Dynamic Simulation of Industrial Processes, Trondheim, Norway, May 1985.

I Institute for Automatic Control, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland.

§ Department of Electrical and Computer Engineering, The University of Arizona,
Tucson, Arizona, U.S.A.

182 M. Rimuvall and F. Cellier

The committee refrained from formulating specifications on the run-time system.

This enabled the implementation of CSSL languages on most kinds of com-
puters using different implementation languages (open computer interface).

Because of the great divergence of simulation software, the need for a standard
was imminent in 1967 and soon after commercial products using the new standard
emerged on the market (e.g. ACSL and CSSL-1V). Thanks to the expertise and
farsightedness of the standardization team, CSSL’67 continued to serve as a tem-
plate and yardstick for the development and evaluation of simulation languages for
more than a decade. However, rapid technological developments in software engin-
eering, modeling techniques, numerical integration methods, etc. have during the
last years resulted in a divergence of the existing packages from CSSL’67. Currently
" several efforts to establish a new language standard are made (e.g. TC-3 of IMACS
and CSSL of SCi). Unfortunately, the situation today is radically different from
1967; more successful commercial products with their own ‘standards’ have estab-
lished themselves and the individual members of the now much larger simulation
community all want their particular needs to be fulfilled. All this makes the stan-
dardization work, plus any subsequent enforcement, much harder and so far no
acceptable new standard has emerged. Nevertheless, a consensus seems to exist on
some of the facilities to be included in the new standard. These features include
better modeling support (including hierarchical modeling with flexible submodel
interconnection), discontinuity handling and more versatile experimental frames.
Other fields where standards, at least at the moment, seem to be harder to obtain
are the inclusion of discrete elements (discrete events and discrete processes), facili-
ties for graphical model definition, simulation data bases as well as support for
parallel computing and real time simulation. Moreover, a standard ‘simulation
operating system’ (much like the proposed Ada language environment) could make
the user interfaces totally independent of the implementation machine.

2. Review of CSSL’67

This chapter will give the reader unfamiliar with CSSL’67 an introduction to the
standard and prepare him for the following chapters. For a more formal description
of CSSL’67, we refer to the standard itself (Augustin et al. 1967).

The CSSL’67 standard was designed for the simulation of continuous dynamic
systems described by ordinary differential equations. This gave CSSL’67 a general
scope compared to many other simulation systems, which were (and are) designed
for the simulation of special kinds of models and thereby using bond-diagrams
(Granda, 1983), elements of analog computers (Harnett et al. 1964), building-blocks
depicting electronic elements (e.g. SPICE-II) etc. Consequently, CSSL’67 was to
cover the simulation of technical as well as non-technical systems (e.g. mechanical,
electrical, biological, economical and political systems). However, the limitation to
continuous, lumped systems precluded its use for the simulation of systems
described by partial differential equations or models containing discrete elements
(see below).

2.1. Historic background

When reviewing CSSL’67 we must bear in mind that the simulation world of the
sixties was quite different from today. Most simulations were still performed on

Simulation languages following the CSSL standard 183

analog computers and the computing power of the existing digital computers was
very limited, making hybrid simulations strong alternatives to pure digital simula-
tions.

It is interesting to note how the advocates of digital simulations in the sixties
(including the fathers of CSSL’67) always explained how easy it was to transform
systems of analog building-blocks into their digital counterpart, whereas any com-
petitive hybrid simulation system of today must be able to automatically transform
digital programs (using languages similar to CSSL’67) to hardware-connections in
the analog computer!!!

In this perspective, it is remarkable how well the CSSL’67 standard has survived
the last two decades. This can only be attributed to the farsightedness of the
‘founding fathers’ and the extendability and open-endedness of the standard.

2.2. Introductory example

To illustrate the basic modeling capability of CSSL’67, we consider a small eco-
logical system consisting of plants and herbivores living in an encapsulated
environment. A simple model of this system would contain two differential equa-
tions:

dP)
E=K1.P—K2.P.P—K3.P.H

Z—Ij=B.K3.P,H—K4.H—K5.H.H

where P is the concentration of plants (Kcal/cubic m), and H the concentration of
herbivores in the system. K1 ... K5 and B are known constants, K1 and K2 indicate
the reproduction rate and crowding factor of the plants, K3 the grazing effect, and
K4 and K5 the death rate and crowding factor of the herbivores. We note that the
concentrations of the two species are interdependent over the term K3 . P . H. A
CSSL-program describing this model would be fairly simple:

COMMENT ECOLOGICAL SYSTEM
COMMENT
COMMENT PARAMETERS AND INITIAL CONDITIONS
COMMENT
DATA[K1 =11; K2 =1.BE-5;K3=1.E-3; K4 =09; K5 =1. E-4]
DATA [B = 0-02; PO = 10-0; HO = 100-0]
COMMENT
COMMENT DIFFERENTIAL EQUATIONS
COMMENT
P = INTEG[PD, P0]
H =INTEG[HD, HO]
PD = P*(K1-K2*P-K3*H)
HD = K*B*K3*P-K4-K5*H)
COMMENT
COMMENT INFORMATION FOR THE SIMULATION
COMMENT
TERMINATE [T > 30-0]
CINTERVAL [,0:6]
PRINT [T, P, H, ‘OVER’]
END

184 ‘ M. Rimvall and F. Cellier

COMMENT

COMMENT “RUN-TIME” CONTROL COMMANDS
COMMENT

GO;

PO = 100-0; HO = 10-0;

GO;

STOP;

COMMENT

COMMENT END OF COMPLETE CSSL’67 PROGRAM

We note how the differential equations are described using a very natural notation
and that the equations can be stated in any order (PD and HD are used before they
are defined); the system will sort all equations into correct order before execution.
Most parameters defined in the DATA statement remain constant during the simu-
lation, we only choose to change some of these values in the “run-time commands”
to obtain results from two different systems (different initial concentrations). As fore-
seen already in CSSL’67 (!), most modern CSSL languages allow the user to enter
these run-time commands interactively during the execution of the simulation. In
later chapters we will see how this can be considered as a first step towards a flexible
experimental frame.

2.3. Design goals for CSSL

The previous example very nicely illustrates the first of three major design goals
of the CSSL standardization committee:

To provide a simple and obvious programming tool for the novice user.

To give the sophisticated user a flexible tool with the power needed for the
modeling of larger and more complex systems.

In anticipation of future technological advances (e.g. in the fields of graphical
displays, interactive computer systems), the system must provide for a flexible
expansion,

To meet the first goal, CSSL’67 featured a comprehensive syntax for the descrip-
tion of differential equations, block-oriented representation, preprogrammed and
‘user-hidden’ sections for the integration and run-time control and intelligible error
messages. Furthermore, facilities like sorting and simple and standardized input/
output commands were included.

As a consequence of the second goal, the in 1967 widely used scheme of trans-
lating the model description into an established procedural language (in 1967
FORTRAN, PL/1 or ALGOL, today FORTRAN, PASCAL or Ada) was retained
(Fig. 1). This preprocessing enables the user to include code of the target language
(e.e. FORTRAN) in his model description and thereby greatly enhances the capabil-
ities of the simulation language without cluttering it with standard programming
elements. Moreover, this translation into a conventional computer language allows
the user as well as the language developer to add new operators (functions) to the
library, making the system functionally open-ended. The main drawback of this
scheme is that the full compilation/link sequence has to be performed each time a
change to the model is made. Other simulation languages trade this compilation
time against execution time by directly interpreting the model description (e.g.
SIMNON of Elmgvist, 1975 and 1977, or DESCTOP of Korn, 1985).

Simulation languages following the CSSL standard 185

CSSL-CODE

1 translation
FORTRAN

1 compilation

LIBRARY BINARY

\ 1 load/link

EXECUTABLE

Figure 1. Translation of model description.

The last of the three design goals, the open design of CSSL’67, was in the long
run probably the most important one. As we will see in later chapters, it enabled the
inclusion of many new features into CSSL languages. This prolonged the period
over which CSSL’67 could be used as a standard but also spurred the various CSSL
dialects now making a new standardization so hard.

24. Structural elements in CSSL’67

Long before terms such as ‘structured programming’ or °data structures’
became cliches attached to all software products, CSSL’67 defined language cle-
ments for the structuring as well as execution of the model. Starting from the hierar-
chically lowest level, these elements are:

Elements controlling the sorting. As we have seen in the introductory example,
the differential equations describing the dynamics of the system are sorted into the
correct order for sequential, rather than ‘real-world parallel’, processing. To enable
the inclusion of dynamic parts only sortable en bloc, NOSORT and PRO-
CEDURAL elements can be used:

PROCEDURAL [Y = T, T0]
COMMENT STEP-FUNCTION STARTING AT TIME T0
Y =00
IF (T > TO)Y = 10

END

To avoid repetitive code, macro definitions and macro instantiations should be
utilized:

MACRO TWOINT [OUT =IN, IC, ICD]
COMMENT ...
COMMENT Implements OUT = IN, OUT(T = 0) = IC, OUT(T = 0) = ICD
REDEFINE OUTD
OUTD = INTEG [IN, ICD]
OUT = INTEG [OUTD, IC]

186 M. Rimvall and F. Cellier

END

HPOS = TWOINT [HFORCE/MASS, 00, 0-0]
VPOS = TWOINT [-G/MASS, ALT, 0-0]

Here we define a second order differential operator as macro and use it twice for the
horizontal and vertical movement of a body.

The dynamic model can be divided into several derivative sections. These sec-
tions are particularly useful when the language permits the use of different integra-
tion steps/methods for each section, but can also be used for documentation
purposes.

In our introductory example a simulation run was completely described through
the differential equation and a condition for terminating the simulation. In more
complex simulations, the model has to be initialized before each run (setup) and/or
results must be evaluated after each run. For this purpose, CSSL’67 supports the
initial, dynamic and terminal regions:

PROGRAM

COMMENT EXAMPLE SHOWING THE CSSL’67 REGIONS

INITIAL
COMMENT ACTION TO BE TAKEN BEFORE EVERY RUN

END

DYNAMIC

COMMENT DESCRIPTION OF THE DYNAMICS OF THE SYSTEM

END)

TERMINAL
COMMENT ACTION TO BE PERFORMED AFTER EACH RUN
COMMENT A RETURN TO THE INITIAL SECTION FOR A NEW
COMMENT RUN IS POSSIBLE (E.G. FOR OPTIMIZATIONS)
END

END

A few CSSL’s allow complete model descriptions to be collected into segments,
allowing for the simulation over several independent variables (for example over
space in addition to time).

On the execution level the simulation models are invoked (run). The execution
can be described either by a program, by ‘run-time commands’ or by a com-
bination of both. Using the program approach, a main program would be written in
the target language and linked to the simulation package. From this main program
the simulation runs would be controlled. Using the run-time approach, commands
would be entered to the ‘run-time’ system interpreting the commands and control-
ling the simulation, thus allowing for interactive as well as batch versions of CSSL
languages.

Although CSSL languages are functionally open-ended, these structural elements
circumscribe the extendability and thereby the modeling power of any CSSL. It is
therefore not surprising that much of the work on new standards circle around
structural issues (in the model as well as execution description) rather than function-
al issues.

2.5. Functional elements of CSSL'67

The CSSL’67 standard recommends a minimal set of functions and operators to
be included in all languages. These operators include:

Simulation languages following the CSSL standard 187

Integrational operators. Minimal requirement: an open, a limited and a mode-
controlled integrator.

A derivative operator.
An implicit function for the iterative solving of algebraic loops.
A delay operator.

Non-linear functions like hysteresis, flip-flops, limiters, table-driven multidimen-
sional functions (interpolated).

Structures should be provided for defining dimensional structures (arrays), con-
stants and other auxiliary variables. Statements controlling the integration
(integration method, step size, error limits) and the execution (termination condi-
tion, communication interval, variables to be saved as output) must be available.

Once again it should be noted that CSSL’67 is intentionally restrictive in the
recommendations for functional elements, as not to hamper the open-endedness of
the system.

3. Current CSSL languages

In this chapter we will survey some of the most widely used simulation lan-
guages belonging to the CSSL family. Thereby, we will describe the structural com-
ponents of each language and list any extraordinary functional features (for an
overview of modern simulation languages, including ‘non-CSSL’s’, with a detailed
functional evaluation we refer to Cellier, 1983).

3.1. CSMP and DSL/VS

The simulation language DSL/90 (Syn and Linebarger, 1966) was released by
IBM in 1965 and was one of the languages from which CSSL’67 evolved. DSL/90
also served as basis for the IBM products CSMP (IBM 1967), CSMP-III (IBM
1972) and DSL/VS (IBM 1984). Although none of these products adhere to
CSSL’67, they all closely resemble the standard.

CSMP is a batch-oriented simulation language using FORTRAN as target lan-
guage. It features all the recommended CSSL’67 operators and is functionally very
similar to the original standard (or vice versal).

The basic structural elements of CSSL’67 can be found also in CSMP, with the
exception of the DYNAMIC section(s) and the segments. CSMP requires the user to
include the execution description in the model description file. This precludes any
changes in parameter values, required output or run-time control after the trans-
lation has been performed and thereby forces the user to either describe the whole
execution in advance or iteratively repeat the translation/execution sequence until
satisfactory results have been obtained.

There exist several CSMP dialects, the most modern version of which is CSMP-
IIL. Its major improvements over the original CSSL specification are in the area of
output representation. CSMP-III includes a rich set of graphics commands includ-
ing three-dimensional shade and contour plots, cross-plots (trajectories), and over-
plots (mergers of variables from several runs). CSMP-III also includes an array
integration statement which together with the three-dimensional graphing capabil-
ities allows to use CSMP-III for the solution of simple parabolic and hyperbolic

188 M. Rimvall and F. Cellier

partial differential equations in one space variable by use of the method-of-lines
approach.

DSL/VS is a modernized version of DSL/90 and thereby also very similar to
CSMP. It is batch-oriented and uses FORTRAN as target language. In addition to
the structural elements of CSMP, DSL supports DERIVATIVE and SAMPLE sec-
tions. The SAMPLE section is intended for the modeling of digital controllers in an
otherwise continuous system {sampled system), but it can also be used for the mod-
eling of any other isolated discrete action. However, as only one SAMPLE section is
allowed, more general combined continuous/discrete simulation is not possible in
DSL. «

Functionally DSL offers several unique and interesting features:

In addition to the standard integrational step-size and communication interval,
DSL supports a sampling rate for the SAMPLE section and separate intervals
for numeric and graphical output.

Some algorithms useful in the analysis of systems, like a root-locus algorithm
and a discrete FFT, have been included.

Two different optimization algorithms have been included in DSL, making mul-
tiparametric, unconstrained optimization possible. Thereby, the program
approach to execution control is used, forcing the user to include a small
FORTRAN main program.

During the simulation a rudimentary data-manager regulates the flow of
numerical results to one or several external files. After the simulation is com-
pleted, a graphical postprocessor (GRAFAEL) will be called with which the
saved data can be plotted. Apart from normal time histories, trajectories (x
versus y) can be obtained and results from different runs can be compared.
GRAFAEL supports a range of IBM graphical terminals/plotters and is very
flexible in the design and scaling of the plots (automatic or manual scaling,
coloring, labeling, tick-marks, line-marks ...). However, as the GRAFAEL com-
mands must be included in the combined model/execution description file, no
interactive refinements of the plots can be made.

CSMP and DSL/VS are powerful simulation language for the modeling of pure
continuous systems. In addition, DSL enables the simulation of sampled systems
and provides the user with a powerful plot-facility. However, both languages are
batch-oriented with a combined model and execution description and use a syntax
very similar to FORTRAN. They are therefore obsolete compared to systems sup-
porting an interactive experimental frame and free-form input.

3.2. ACSL and CSSL-IV

Both these commercial products very strongly adhere to the CSSL’67 standard,
making their basic structures very similar. Both packages are FORTRAN based and
run on a large number of different computers ranging from main frames to PC’s.

ACSL (Mitchell and Gauthier, Ass., 1981) as well as CSSL-IV (Nilsen 1984)
separate the model description from the experimental (execution) description.
Whereas the model description is translated and linked in the normal manner, the
commands for experimental control are entered interactively, this enables the moni-
toring and controlling of the simulation(s) using input commands and numerical or
graphical output. To illustrate this, we assume that we have written and compiled a

Simulation languages following the CSSL standard 189

model-description file of a DC-motor with a simple controller and that we want to
experimentally calculate the value of a controller-parameter P so that the error
function of the motor position is in some way ‘optimal’. Suppose we have already
translated and compiled the model description. We would then enter the following
commands to the run-time monitor:

‘Interactive run-time commands using the syntax of ACSL’

PREPARE T,ERROR § ‘Save a time-history of the variable error’
‘for interactive plots’

SET, P =01 § °Set initial value of parameter P’

START $ ‘Start one simulation run’

PLOT T,ERROR § ‘Produce graphical plot of error ’
‘time-history on the terminal’

SET, P =05 $ ‘Unsatisfactory result of controller,’

‘try new value for P’

‘Simulate anew’

‘Produce plot of error-behaviour with new P’

START
PLOT T,ERROR

@& P

STOP

Structurally, both ACSL and CSSL-IV support all CSSL’67 elements except for
the segments. The macro facility of the two languages has been extended to form a
limited programming language of its own. Using this ‘meta-language’, models of
similar but not necessarily equal sub-systems can be described by one macro.

Apart from the CSSL’67 structures, ACSL lets the user include DISCRETE sec-

tions describing actions to be taken at the discrete times during the simulation
(discrete events). The scheduling of these events can be made in three ways:

The section contains an INTERVAL statement, in which case the event is exe-
cuted in fixed intervals (corresponds to SAMPLE in DSL).

The section is executed whenever a dynamic variable crosses a certain boundary
(state event). This kind of events enables a numerically safe modeling of systems
with discontinuities and variable-structure systems.

The time the section is to be executed is precalculated and entered into a list of
future events (time events). Time events are useful to model asynchronous phe-
nomena like start-up and shut-down processes. Also, all simulation languages
for discrete systems (e.g. network and queuing modeling) are based upon a time-
event scheduler. Therefore, time-events are prerequisites for any combined
discrete/continuous simulation language.

With the linear analysis capabilities of ACSL it is possible to study several
properties of the simulated system. For example, the eigenvalues of the dynamic
system and the steady state of a non-linear system can be calculated. For their
flexible use, all analysis commands are incorporated into the interactive experimen-
tal frame.

CSSL-IV is probably the simulation language with the most functional elements
(over 200). Functions for matrix calculations based upon EISPACK (Smith et al.
1974; Garbow et al. 1977) and LINPACK (Dungorra et al. 1979), linear transfer
function operators, FFT’s, Bode and Root-Locus plots and a large number of non-
linear functions complement the standard integrational operators.

To enhance the user friendliness, the interactive experimental frame of CSSL-IV
includes a help-facility for on-line assistance.

190 M. Rimvall and F. Cellier

3.3. DARE

As in the case of CSMP, also DARE denotes an entire family of software
systems rather than one specific simulation language (Korn and Wait, 1978). The
best-known language in the DARE family is DARE-P which was the earliest avail-
able portable simulation language running on machines as small as PDP-11s.
DARE follows the CSSL standard less strictly than the previously described lan-
guages. Its major advantages are:

The LOGIC block as a replacement of the INITIAL/DYNAMIC/TERMINAL
regions. This concept allows to call the simulation as a subroutine which makes
DARE-P easier to connect to a general purpose optimization package. The
LOGIC block concept also represents the first step towards separation of model
description and experiment description. The model is described in the DERIV-
ATIVE block, whereas the experiment is described in the LOGIC block. Some
other DARE dialects (MICRODARE, DESIRE, DESCTOP) even interpret the
(BASIC-like) LOGIC block, whereas the DERIVATIVE block is compiled by an
ultra-fast compiler, making these software systems ‘direct executing’
(compilation and linkage of a system of 20 differential equations consumes less
than one second).

The graphics post-processor which is decoupled from the simulation language.
Results from the simulation are stored in a primitive simulation data base from
where they can be extracted by the post-processor. This concept indeed provides
for a much extended flexibility than even the generous graphics capabilities of
CSMP-III offer. Newer DARE dialects (DARE-INTERACTIVE) offer three-
dimensional graphics with hidden lines removed, envelope graphics, split-screen
graphics, and colours. Some of the DARE dialects (DARE-INTERACTIVE,
DESIRE, DESCTOP) also offer a self-scaling run-time display.

While some of the systems (DARE-P) are batch oriented, others (DARE-
INTERACTIVE, DESIRE, DESCTOP) are highly interactive.

DARE-INTERACTIVE also extends the CSSL specification with respect to the
type of run-time experiments offered as standard features by including automa-
ted sensitivity analysis and automated replication analysis.

34. SYSMOD

The SYSMOD language is the newest of those discussed within this paper
(Baker and Smart, 1982, 1983, 1984). The language has been developed over the last
four years by System Designers Ltd (SDL) on contracts from the Ministry of
Defence (MOD) United Kingdom and is intended to replace the CSSL’67 influenced
DSL77 language. During the research leading to the definition of the new language,
the researchers were involved in the current standardization discussions and
reviewed all of the available tools. In particular the language COSY, defined by
Cellier, Bongulielmi and Rimvall (1979 and 1981), had substantial influence on the
definition of the new language. SYSMOD is very soon to be released for Beta test at
an MOD research establishment and plans are being formulated for its launch as a
SDL product in the near future.

Structurally, SYSMOD has been heavily influenced by the emerging procedural
programming languages Ada and Pascal. It is strongly typed with facilities for user
defined simulation types and data structures absent from the existing CSSL’s. It

Simulation languages following the CSSL standard 191

retains, however, the segmentation of the model into the DISCRETE/DYNAMIC/
TERMINAL/INITIAL regions with revised semantic interpretation consistent with
the complete separation of the model from the experiment.

With SYSMOD, again in contrast to the other CSSL’s described in this section,
the scope of the descriptive modularization is extended. Models are composed of
many SUBMODELS linked to form the composite simulation. Experiments act
upon such linked composites and the SUBMODELS and EXPERIMENTS are
separately translatable allowing libraries of experiments and standard submodels to
be built.

Recognizing the need for more robust simulation environments to be engineered,
the SYSMOD team configured a so called ‘piecewise continuous’ run-time
environment for the language. These mechanisms constitute the continuous model-
ing partitioning of the language and allows the model descriptions with their
differential/algebraic equations to structurally change in an entirely general fashion.
An example is:

IF deflection > 22-0 TOL = 0-001
THEN
x"=42%x + 4
ELSE
SUBMODEL refined_velocity model(x « 4);

In the above example, a structural change is specified reflecting a need for a
switch to a more refined model based upon progress of the deflection variable. The
tolerance describes the degree to which the modeler ‘cares’ about the preciseness of
this structural change. To obtain this feature, the implementers had to implant
sorting in an entirely general fashion.

SYSMOD is a ‘combined language’. It can be used for both DISCRETE and
CONTINUOUS systems simulation as well as for combined applications. The DIS-
CRETE region of the model description gives the modeler the flexibility of either
event-oriented DISCRETE modeling or combined modeling. Truly discrete models
can be formed employing the QUEUE data type, the SCHEDULE, INSERT and
REMOVE primitives and a PASCAL like language supporting dynamic memory
allocation. The run-time environment is, in the absence of any STATE (continuous)
variables, able to progress directly from event to event within the simulation. Com-
bined modeling is supported by allowing access to continuous variables within the
DISCRETE region and enabling specifications of state events within the
DYNAMIC region employing the WHEN primitive. These facilities extend con-
siderably upon those of the previous CSSL’s mentioned in this section.

Emerging from the Ada language efforts has been the notion of the
‘environment’ in which models are engineered. Consequently, each of the programs
which comprise the SYSMOD implementation have been engineered into a routine
independent ‘environment’. Facilities already exists within the implementation to
make the administration of the files generated during SYSMOD generations at all
levels an automatic process. For instance editing a MODEL causes removal of all
simulation files originating from that model automatically. Other facilities check
when building composite models so that interfaces are compatible and build
descriptive files giving the user a comprehensive source of information for inter-
action with the model at run-time etc. The beginnings of the much needed simula-
tion environments are therefore already apparent within the present SYSMOD
implementation.

192 M. Rimvall and F. Cellier

The SYSMOD implementation has so far concentrated on the structural ele-
ments needed in any ‘complete’ simulation environment. Plans exist to include a
macro-processor, pre and post simulation processors, advanced experimentation
tools, fully extended DISCRETE language etc. When we include these plans,
SYSMOD is probably the most comprehensive simulation language on the market
today.

4. Elements of future simulation languages

In the last chapter we saw how CSSL languages over the years have been
extended with features not included in the original standard. Although many of
these features are general enough to warrant their inclusion into any new CSSL
standard, most of them are of functional rather than structural/conceptual nature.
In this chapter we will elaborate on some of these features and discuss some addi-
tional concepts in view of any future standard.

4.1. Combined discrete/continuous simulation

All physical systems are inherently continuous, yet by the simplification/
abstraction phase of the modeling we often replace these continuous processes by
cruder representations. For example, a diode is often represented by a piecemeal
linear function rather than the complicated exponential function (the model con-
tains a discontinuity function). Moreover, the opening of a valve is often modeled as
an instantaneous event rather than a fast dynamic process {the model contains a
discrete event). Neither of these simplified models can be correctly treated in a pure
continuous simulation environment, yet few CSSL languages include the necessary
discrete elements (see Oren, 1977).

All CSSL languages support a number of discontinuous functions like relay-
functions, limiters and hysteresis functions, yet few CSSL’s implement these nonlin-
ear functions in a manner guaranteeing a correct numerical treatment. As all
numerical integration algorithms make some kind of polynomial approximation of
the time-histories, a pure discontinuity can never be correctly approximated by a
straight forward integration (regardless of step-size). Instead, the proper method is
to halt the integration at the time the discontinuity is reached, switch to the new
section of the non-linear function and restart the integration. Thereby, the exact
time of the discontinuity (the state event) must be calculated by iterative inter-
polation. Several non-CSSL languages like GASP-V (Cellier and Blitz 1976) and
SYSMOD support such a correct treatment, in SYSMOD even without the user
knowing about it. ‘

Our second illustration, the opening valve (see above), exemplifies the kind of
action described in pure time- or state-events. These kind of events were explained
in the section on ACSL, which is the only CSSL language supporting these discrete
elements. Yet the need for discrete elements in mainly continuous simulations exist,
the success of combined non-CSSL languages like GASP-1V (Pritsker, 1974), SLAM
(Pritsker and Pegden, 1979) and GPSS-1IT (Schmidt, 1984a and 1984b) verifies this.

4.2. Experimental frames

Already CSSL’67 supported a certain separation of model description code and
execution (run-time) commands. Unfortunately, no clear-cut distinction between the
two parts was made and certain language elements are found in the wrong place

Simulation languages following the CSSL standard 193

(e.g. the integration control was placed in the model description whereas it really
belonged to the execution commands). More modern CSSL’s, for example ACSL
and CSSL-IV, make a distinct difference between the model description file and an
interactive experimental frame.

Most standardization approaches, for example the suggestions made within the
IMACS/TC3 and SCS/CSSL standardization committees {Crosbie and Cellier,
1980-1984), suggest that the model description should be completely separated from
the experiment description. Thereby, the model description is to contain all informa-
tion needed to describe the physical system (differential equations, discrete sections,
physical constants and so on) but should be free of all information related to the
experiment (integrational control, required output etc.). Likewise, the experimental
description should contain only information related to the experiment. Ideally, these
two parts should be totally independent, so that for example a standard experimen-
tal description for optimization might be used independently on different models (or
vice versa).

In a simulation system supporting a complete separation of the model descrip-
tion from the experimental frame, the commands of the experimental part must be
far more flexible than the ones existing in most present-day run-time systems (e.g. in
ACSL and CSSL-IV). Here the SYSMOD language and Korn’s DESCTOP (1985)
both include novel concepts, although they use different approaches:

The simpler experimental commands of DESCTOP are interactively interpreted
with the contention that these experimental commands are ‘CPU-frugal’ (at
least compared to the number-crunching numerical integration), making time
lost by the interpretation neglectable.

The highly structured experimental frame of SYSMOD is compiled and there-
after linked together with the model description(s). It can here be argued that a
complex experiment description (e.g. an optimization scheme) is far too intricate
to be interactively controlled anyway, and that a ‘program form’ increases the
portability and security of each experiment.

The highly interactive and astonishingly fiexible user interfaces of recently
emerging ‘matrix/control environments’ like Moler’s MATLAB (1980), CTRL-C
(Little et al. 1984) and IMPACT (Rimvall and Bombholt, 1985) have also initiated a
new discussion on the design of experimental frames. Rimvall and Cellier (1985)
have shown how a merging of a conventional simulation run-time system with data
and program structures of a matrix environment can result in a simple, yet
extremely powerful and fully interactive experimental frame.

Yet other suggestions for the structuring of the model/experiments have been
given, for example Zeigler’s (1981) proposal for three specifications: the model spe-
cification, the experimental frame specification and the execution control specifi-
cation. Thereby, the experimental frame should contain input and output variables,
integrational control and run-control (optimization), whereas the execution control
would allow for parameter assignments and state initialization. This approach
would allow a flexible experimental frame whilst keeping the interactive run-control
simple.

4.3. Subprocesses, modularity

As has been shown by Elmqvist (1978), a submodel or macro approach to model
structuring where subsystem inputs and outputs have to be predefined is not

194 M. Rimvall and F. Cellier

modular. A basic example will illustrate this: the simplest electrical component, the
resistor, can be modeled as
SUBSYSTEM RESISTOR(I = U,R)
I=U/R
END RESISTOR

This definition can then be used for example to calculate the current in parallel
connections:

ITOT = I1 + I2 + RESISTOR(U1,500)

On the other hand, the same definition is useless for the calculation of the voltage in
a serial connection:

UTOT = U1 + U2 + ??? RESISTOR(I3,R) ?7?

The consequence of this small example is clear: if we want to have one model for the
resistor, the physical laws only specify one of the two formulae

I=UR or U=R.I

whereas the environment of the submodel indicates which of the formulae should be
used. This requires a system where the equations are not only ‘vertically’ sorted
(ordering of complete equations) but also “horizontally’ (ordering within individual
equations).

Moreover, a more general notation for the subsystem declaration and intercon-
nection is needed. The syntax of such a general interconnection could be based upon
the similar yet independent pioneering work of Elmgvist (1978) and Runge (1977).
Both these authors suggest the introduction of general CUTS (interface clusters)
over which connections between subsystems are made, either by connecting com-
plete cuts with each other or by ‘wire’ each variable of a cut separately. The modu-
larity is obtained by two equally important features:

Normally, the directions of the variables declared in a cut {(voltage and current in
our trivial example) is not specified.

When several systems are connected, variables in the different cuts can be set
equal (across variables) or their sum can be set to zero (through variables).
Extending our trivial example to three resistors soldered together into a star
form. In the connection, the currents would be through variables and the volt-
ages would be across variables:

n+12+13=0
Ul=U2=U3

4.4. Simulation hardware

Due to the number-crunching nature of digital simulations and the impressive
size of most general simulation languages, until just a few years ago general simula-
tion programs were found almost solely on larger main frames. However, the advent
of modern computer hardware now allows for the implementation of software
systems which were unthinkable just a few years ago. In particular, the plunging
prices of computer memory and/or new operating systems supporting large address
spaces (virtual memory) have permitted the implementation of large simulation
packages on smaller machines and the increased processing power of modern pro-

Simulation languages following the CSSL standard 195

cessors have made such implementations interesting for the simulation of ‘real’
systems. In a first step, the mini computer (e.g. VAX) brought the simulation tools
onto fully interactive, user-friendly machines, taking away some of the black-box
character of the main frames. At this time, work stations which combine the flex-
ibility of personal equipment with the number-crunching power of previous main
frames are on the market. For example, PC-versions of ACSL and CSSL-IV which
run only about 10 times slower than on a VAX are now available. In a few years
more powerful workstations with the processing power approximately equivalent to
a standard VAX-780 unit will stand on (under) everyones desk. Moreover, such
modern workstations (e.g. the APOLLO DOMAIN) offer the user a quite different
operating environment; features like windowing, parallel sessions, menu presen-
tation and mouse selections will make the computer accessible to technicians having
ne formal computer-science education. It is most likely that the simulation
environment will follow this general trend. Possible (and very attractive) alternatives
to the model specification are described in Elmqvist (1982) and King and Gray
(1985), where a graphical editor is used to enter and manipulate the model. This
could then be combined with a menu-driven experimental frame for a complete
simulation system.

Despite this trend towards personal computing, large size simulations still
require number-crunching capabilities far exceeding the processing power of any
single CPU. The only solution to this is to use ‘more than one CPU”’, and Karplus
(1984) states three possible approaches:

Supercomputers (Cray, CDC 205 etc).
Multiprocessors (Carnegie—Mellon, ETH).
Peripheral array processors (slaves controlled by a ‘normal’ computer).

Presently, no CSSL language can directly be connected to any of these kind of
hardware systems. However, there already exist array processors designed for simu-
lation applications and special purpose multiprocessor systems for ultra-fast three-
dimensional operations (three-dimensional run-time display for aircraft simulators
etc., three-dimensional real-time data bases) are emerging. Three-dimensional archi-
tectures like the INTEL hypercube are to arrive in the next year or two and should
manifold the processing power of present workstations (Jefferson et al., 1985a and
1985b). Nevertheless, this is still the playground for hardware manufacturers, so we
software engineers have to wait and see. . . .

4.5. Simulation operating systems

Another difficulty with present CSSL’s stems from the fact that modern inter-
active software systems are much more intimately interlinked with the operating
software of the executing machine than older batch systems were. Why do editors,
for instance, have to be different for every particular piece of hardware? Presently,
several independent efforts to cope with this diversity are made:

The plans of the U.S. Department of Defense to replace all computer languages
used in their embedded systems with Ada is to be cnsued by an Ada
environment (KAPSE, APSE). This environment is nothing else but a stan-
dardized user-interface to the machine operating systems, with unified editors,
file handlers and process controllers.

196 M. Rimvall and F. Cellier

The spreading of modern workstations supporting windowing techniques might
lead to a de facto industry standard for the user interface, at least on a superficial
level.

A few simulation languages (e.g. some dialects of DARE and TESS from Prits-
ker, 1984) include their own file-handling and job scheduling. These languages
put themselves between the user and the computer operating systems, relieving
the user from most operating administration.

Another approach is taken by MIDGET (Rimvail and Cellier, 1984), a
‘simulation operating systems’. MIDGET can be seen as a very thick padding
between the user and the operating system, giving the simulationist a complete
operating environment with a set of menus adequate for the use of a particular
simulation language. As these different simulation environments are very similar
to each other, the user familiar with one of them (e.g. that of ACSL) should iff a
few minutes time be able to use the environment of e.g. GASP, SLAM or SDL.
MIDGET is presently implemented on a VAX under VMS, in principle
however, a system like MIDGET would be implementable on any interactive
system, giving the user a machine-independent as well as simulation-system inde-
pendent interface.

5. Current standardization efforts

During the seventies, the previously described systems emerged as fairly stable
pieces of software meeting the needs of a large number of applications. However, we
have seen how the advent of modern computer hardware changed the picture com-
pletely. Naturally, this called for additional features to be offered. As a consequence,
we saw many new simulation languages emerging on the market in the past two or
three years which deviate drastically from the CSSL standard. It has become quite
difficult for a new simulation user to choose the right tool from the jungle of avail-
able systems. For this reason, two standardization groups (IMACS/TC3 and SCS/
CSSL) try to come up with a new standard meeting the needs of the eighties and
nineties. However, the situation is more difficult today than 1967. Most of the
members of both standards committees are ‘tool makers’ by themselves, and have a
large amount of vested interest in having their own system become the new stan-
dard. It therefore seems practically impossible to come up with a frozen language
which would be accepted as a standard language. Instead, both committees try to
come up with a set of features which ought to be included in a modern simulation
system. A typical example of such a wish list can be found in Cellier (1983).

The trends in simulation environments are also interesting from a stan-
dardization point of view. It is to be expected that all computers (except for the
large main frames and super-computers) shall make use of the windowing technique
in just a few years from now and that standards like the emerging Ada environment
will be in general use. Thus, there is some hope for a de facto standardization of the
operating software. In the sequel, we may well also encounter a renaissance of the
standardization efforts on the language level.

6. Conclusions

Several parallels can be drawn between the simulation standard CSSL’67 and
the computer language FORTRAN:

Simulation languages following the CSSL standard 197

Both can rejoice over an extraordinary long lifetime in the fastest moving field:
the computer industry.

Neither product would be alive, if it has not been revitalized over the years (e.g.
FORTRAN 77 and ACSL/CSSL-IV).

Both products are momentarily plagued by an abundance of dialects. Each of
these dialects has its virtues and the temptation to leave the standard is often
irresistible.

Presently, standardization efforts are undertaken to prepare new standards for
the eighties. A big problem is that everybody wants to see his dialect as new
standard.

Competitive products are arriving from all sides to threaten the standards (e.g.
Ada, Pascal and SYSMOD, DESCTOP).

Will these two standards survive? Unfortunately, FORTRAN has a chance,
whereas the far better CSSL standard has less chance of survival. However, the strict
CSSL standard will most probably live on in the form of a list of features to be
included in future simulation languages. We can therefore expect several systems
using different dialects, but with comparable (and quite impressive) capabilities.

7. Acknowledgements

We would like warmly to thank Mr. N. Baker, SDL, United Kingdom, for
giving us the latest information on the SYSMOD language. We also express our
gratitude to Mr. E. Thaler and the KOMETH team, ETH, Switzerland, for whom
no computers are too far away from one another to form a communication link.

REFERENCES

AUGUSTIN, D. C,, Strauss, J. C.,, FINEBERG, M. S., JOHNSON, B. B., LINEBARGER, R. N, and
SansoM, F. J. (1967). The SCi continuous system simulation language (CSSL). Simula-
tion, 9, 281-303.

BakeRr, N. J. C,, and SMART, P. J. (1982). The SYSMOD language and run time facilities
definition, Techn. Note 6.82, Royal Aircraft Establishment, Farnborough, Hampshire,
United Kingdom.

BAkER, N. J. C,, and SMART, P. J. (1983). The SYSMOD simulation language. In W. Ameling
(Ed.), Proceedings ESC’83. (Springer Verlag, Berlin) 12723-2.

BAkER, N. J. C. and SMART, P. J. (1984). SYSMOD—An environment for modular simulation.
Proc. SCSC 1984. In W. Wade (Ed.). (North Holland, Amsterdam).

CELLIER, F. E, and BLiTZ, A. E. (1976). GASP-V: a universal simulation package, In Dekker,
L. (Ed.), Simulation of Systems, Proc. of the 8th AICA Congress. (North-Holland,
Amsterdam).

CELLIER, F. E., and BONGULIELMI, A. P. (1979). The COSY simulation language. In Dekker,
L., Savastano, G. and VanSteenkiste, G. C. (Eds.), Simulation of Systems, Proc. of the
9th IMACS Congress. (North-Holland, Amsterdam).

CELLIER, F. E,, RimvaLL, M. C,, and BONGULIELMI, A. P. (1981). Discrete Processes in COSY.
In Maceri, F. (Ed.), Proc. of the European Simulation Meeting held in Cosenza, Italy.
(April 1981). Also in Crosbie, R. E. and Cellier, F. E. (Eds.), TC3-IMACS, Simulation
Software, Committee Newsletter, No. 11. (July 1982).

CELLIER, F. E. (1983). Simulation software—today and tomorrow. In Burger, J. and Jarng, Y.
(Eds.). Proceedings IM ACS-Conference, Nantes, France. (North Holland, Amsterdam).

CLancy, J. J. and FINEBERG, M. F. (1965). Digital simulation languages, a critique and a
guide. AFIPS Conference Proceedings Vol. 27. Spartan Books, Washington D.C.

198 M. Rimvall and F. Cellier

CrosBIE, R. E., and CELLIER, F. E. (Eds.) (1980-84). Committee Newsletter on Simulation
Software no. 6-12. Technical Committee 3 (simulation sofiware) of IMACS.

DUNGORRA, J. J., BuncH, J. R., MOLER, C. B., and STEwART, G. W. (1979). LINPACK Users’
Guide. Society for Industrial and Applied Mathematics.

Ermaquist, H. (1975). SIMNON—An interactive simulation program for nonlinear systems—
user’s manual, Report TFRT-3091, Dept. of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

ELmquisT, H. (1977). SIMNON—An interactive simulation program for nonlinear systems, in
Hamza, M. H. (Ed.), Proc. of the International Symposium SIMULATION'77. (Acta
Press, Anaheim, Calgary and Zurich).

ELmovist, H. (1978). A structured model language for large continuous systems. PhD Thesis,
Dept. of Automatic Control, Lund Institute of Technology, Report: CODEN:
LUTFD2/TFRT-1015), 226 p.

ELmqvist, H. (1982). A graphical approach to documentation and implementation of control
systems. Proc. 3rd IFAC/IFIP Symposium on Software for Computer Control,
SOCOCOB82. Madrid, Spain.

GaArBOW, B. S., BoyLg, J. M., DONGARRA, J. J., MoLERr, C. M. (1977). Matrix Eigensystem
Routines, EISPACK Guide Extensions. Springer, Lecture Notes in Computer Science,
51, v

GRrANDA, J. J. (1983). Computer Aided Modeling Program (CAMP), a bond graph pre-
processor for computer aided design and simulation of physical systems using digital
simulation languages. Dissertation, University of California, Davis.

HARrRNETT, R. T., SansoMm, F. J., and WarsHAwsKY, L. M. (1964). MMIDAS, an analog
approach to digital computation. Simulation, 3, (1964), 3.

IBM (1967, 1972). System/360 Continuous System Modeling Program. User’s Manual,
Program Number 360A-CX-16X, Form GH20-0367-4.

IBM (1972). Continuous System Modeling Program III (CSMP I1I) Program Reference
Manual, Program Number 5734-XS9, Form SH19-7001-2, IBM Canada Ltd,
Program Product Center, 1150 Eglington Ave. East, Don Mills 402, Ontario.

IBM (1984). Dynamic Simulation Language/VS (DSL/VS). Language Reference Manual,
Program Number 5798-PXJ, Form SH20-6288-0, IBM Corporation, Dept. G12/Bldg.
141, 5600 Cottle Road, San Jose, CA 95193.

JerrERSON, D., and SowizraL, H. (1985a). Fast concurrent simulation using the time warp
mechanism. In Proc. Distributed Simulation, 24-26 January 1985, San Diego, California
(SCI-publications, La Jolla, Calif.)

JErrERSON, D., BECckMAN, B., HugHEs, D., Levy, E., Litwin, T., SPAGNUOLO, J., VAVRUS, J,,
WIBLAND, F., and ZIMMERMAN, B. (1985b). Implementation of time-warp on the
CALTECH hypercube. In Proc. Distributed Simulation, 24-26 January 1985, San
Diego, California (SCI-publications, La Jolla, Calif.)

KarpLUS, W. J. (1984). Selection criteria and performance evaluation methods for peripheral
array processors. Simulation, 43, 125-131.

KING, R. A, and GRray, J. O. (1985). A flexible data interpreter for Computer Aided Design &
simulation of dynamic systems. In Proc. 3rd IFAC Symposium on Computer Aided
Design in Control and Engineering Systems. Copenhagen, July 31-August 2, 1985.
(Pergamon Press, Oxford).

KorN, G. A. (1985). DESCTOP Reference Manual, Version V2.0. University of Arizona,
Tucson, AZ 85721.

KorN, G. A, and Warr, J. V. (1978). Digital continuous-system simulation. (Prentice Hall,
Englewood Cliffs, N.J.) 212 p.

LitTLE, J. N., EMANI-NQEINI, A., and BANGERT, S. N. (1984). CTRL-C and matrix
environments for the computer aided design of control systems, In Proc. 6th Interna-
tional Conference on Analysis and Optimization (INRI A), (Lecture notes in Control and
Information Sciences 63, Springer Verlag).

MiTcHELL and GAUTHIER, Assoc. (1981). ACSL: Advanced continuous simulation language—
User Guide/Reference Manual. P.O. Box 685, Concord, Mass.

MOLER, C. (1980). MATLAB, User’s Guide. Department of Computer Science, University of
New Mexico, Albuquerque, USA.

Simulation languages following the CSSL standard 199

NILSEN, R. N. (1984). The CSSL-1V Simulation Language, Reference Manual. Simulation Ser-
vices, 20926 Germain Street, Chatsworth, California.

ORreN, T. L. (1977). Software for simulation of combined continuous and discrete systems: A
state-of-the-art review. Simulation, 28, 33-45.

PeTERSON, H. E., and Sansom, F. J. (1965). MIMIC—A digital simulation program. SESCA
Internal Memo 65-12, Wright Patterson AFB.

PRITSKER, A. A. B. (1974). The GASP IV simulation language. (Wiley, New York).

PRITSKER, A. A. B, and PEGDEN, C. D. (1979). Introduction to simulation and SLAM. (Halsted
Press, New York and Systems Publishing Corp., West Lafayette).

PRITSKER & ASSOCIATES (1984). The TESS User’s Manual. P.O. Box 2413, West Lafayette, IN
47906, USA. 515 p.

RmvaLL, M., and CeLLIER, F. E. (1984). MIDGET, Ein flexibles, simulationstechnisches Ent-
wicklungssystem. In Breitenecker, F., and Kleinert, W. (Eds.) Proc. of the ASIM 84
Symposium, Vienna, Austria, September 25-27, 1984. Springer, Informatik Fach-
berichte.

RiMvALL, M., and BoMHOLT, L. (1985). A flexible man—machine interface for CACSD applica-
tions. In Proc. 3rd IFAC symposium on Computer Aided Design in Control and Engin-
eering Systems. Copenhagen, July 31-August 2, 1985. (Pergamon Press, Oxford).

RimvALL, M. and CELLIER, F. (1985). The matrix environment as enhancement to modeling
and simulation. In Proc. 11th IMACS world conference, Oslo, Norway. August 5-9,
1985.

RUNGE, T. F. (1977). A Universal Language for Continuous Network Simulation. PhD Thesis,
Dept. of Computer Science, University of Illinois at Urbana-Champaign, Report:
UTUCDCS-R-77-866, 153p.

ScumipT, B. (1984b). Der Simulator GPSS-FORTRAN Version 3. Springer Verlag, Fach-
berichte Simulationstechnik, 2.

ScumipT, B. (1984b). Modellbilding mit GPSS-FORTRAN Version 3. Springer Verlag, Fach-
berichte Simulationstechnik, 3.

SmitH, B. T. ef al. (1974). Matrix Eigensystem Routines, EISPACK Guide. Springer, Lecture
Notes in Computer Science, 6.

SYN, W. M., and LINEBARGER, R. N. (1966). DSL/90—A digital simulation program for con-
tinuous system modeling. AFIPS Conference Proceedings, 28. Spartan Books, Wash-
ington, D.C.

ZEIGLER, B. (1981). A Methodology for simulation Program Development. In Crosbie, R. E.
and Cellier, F. E. (Eds.), TC3-IMACS, Simulation Software, Committee Newsletter, No
10. (September 1981).

