18

CONTINUOUS—SYSTEM SIMULATION BY USE OF DIGITAL COMPUTERS:

A STATE-OF-THE-ART SURVEY AND PROSPECTIVES FOR DEVELOPMENT.

Frangois E. Cellier, Institute for Automatic Control,
The Swiss Federal Institute of Technology Zurich,
Physikstr. 3, CH-8006 Ziirich, Switzerland

1) ABSTRACT

This paper briefly describes and surveys existing
methods and program packages for the simulation of
continuous systems described by ordinary differential
equations. The specific problems arising in selecting
the digital computer as a tool to perform simulation
studies are outlined. The major demands on and fea—
tures of simulation packages such as algorithms for
numerical integration, the sorting procedure, the
associated procedural language and the associated
macro language are discussed in detail, and a com—
parison of several commonly used simulation packages
is given in tabular form. General trends for the
development of new simulation packages as well as
some personal suggestions towards this, close the
paper.

'II) INTRODUCTION

Unlike analog computers the digital computer is from
its design not suited for being used as a tool for
the simulation of continuous systems. There are two
reasons for this:

1) Since digital computers are discrete by their
nature, integration is hard to perform on them.
It is necessary to define algorithms which allow
quasicontinuous operations. The suitability of
an algorithm highly depends on the problem to be
solved.For this reason a general purpose simulation
package should contain several integration algo-—
rithms, out of which one may choose the best sui-
ted algorithm in accordance with the specific
problem to be solved. Besides, it is desirable to
design a package in a way such that a user may
easily insert a self-coded integration routine
into the system without need for further knowledge
of the specific compiler.

2) Physical processes are basically parallel whereas
the digital computer can only execute one command
after the other in a strictly procedural way. To
enable the user to describe his problem in
a straightforward manner a sortimng algorithm is,
therefore, required to bring the structural state-—
ments describing the process into the requisite
sequence. Any simulation package showing these
attributes can thus be divided into two parts:

a) a preprocessor which "understands" and processes
the user—-supplied code by translating it from
a problem adequate form into a procedure ade-
quate form which can be handled by

b) an algorithmic part which is activated only
afterwards to perform the simulation.

Despite both of the above mentioned disadvantages the
digital computer is these days much more frequently
applied to simulation problems than analog- or hybrid
computers. For this three reasons may be quoted:

1) Most simulation users have a digital computer at
their disposal but only few have access to analog-—
or hybrid computers.

2) Once a simulation package exists coding of a spe-
cific problem by use of an existing simulation
package is even easier done on a digital than on
an analog or hybrid computer, especially if the
model contains any decisions or other logic besides
the pure state equations.

3) The scaling problem of analog computers [1] can
almost be omitted. ’

The procedure for performance of simulation on

a digital computer is outlined in Fig. 1. To carry
out the entire coding of the procedure described is
complicated and time consuming. However the more
difficult parts of it such as the integration algo-
rithm are taken care of by simulation packages if
used. Three types of simulation packages can be
distinguished:

1) general purpose procedural package
2) general purpose parallel package
3) special purpose simulation package

The functions taken care of by these packages are
indicated by dashed areas in Fig. 1. This figure has
been reproduced with some modifications from [2] with
the friendly permission of the editor.

The procedure of Fig. 1 can be summarized by the
following:

1) derivation of a model from a given physical system.
2) problem adequate formulation of the model.

3) procedure adequate formulation of the model.

4) integration of the model into a simulation pfogram.

Most of the effort goes into (1) and (4). A gemeral
purpose sequential simulation package such as GASP-IV
or FORSIM-V takes care of (4). A general purpose
parallel simulation package such as CSMP-III, CSSL-III,
MIMIC or DARE-P accomplishes the functioms (3) and (4).
If a problem can be formulated in a special purpose
simulation language (e.g. network analysis problems may
be solved by use of ECAP, LISA, ASTAP or SCEPTRE), the
function (2) is processed automatically as well to

a large extend.

Careful considerations are required to determine the
package best suited for the solution of a specific

‘problem. It is impossible to give a general solution

to this problem since it highly depends upon:

1) the availability of a certain package at a certain
installation.

2) the experience of the programmer.
3) the problem itself.

Highly specialized simulation packages are easy to

use. This greatly reduces the time needed for descri-
bing the problem to the computer in a proper way. This
ease in handling the package, however, is paid in terms
of higher execution time and lower flexibility. For

a skilled simulation analyst availability of a sorting
option may be more of a hindrance than of a help

problemoriented
(dictated from simulation as method)

19

procedure-oriented

(dictated from digital computer as simulator)

physical system
to be simulated

potential model
(topology)

e

- wm e]

problem—adequate

description of the
model (by means of
setting up diffe-
rential equations)

i
|
I
"
I

[= et mmen o e e e e e e = e w e e e e e -

L - e e -

design of a simu~
lation algorithm

|

coding of simulation
program with
I/0-organization

[general purpose |
)sequential simu-—

{lation package |
L(mo interpretation)]

program
debugging

testdata

correction
of program

program
correct?

!
!
!
[
|
I
!
A ’
!
!
!
!
!
!
!

b

L

modification
of the model

general purpose
parallel simu—

| lation package |
} (with interpre- |
L_tation)

-
description of the I

model (by means of
bringing the equa-
tions into execu~

table sequence)

procedure—adequate

f
I
f
i
I
J
!
!
!
'
!
|
|
I
]
i
!
]
I
f
I
!
!
]
I

-

TR A m s e e D e S Gt e W e e e b me mm e e e e e

r

execution of

b e o

—....____-__._—_J

— e e a— wm = —

r_special purpose

the simulation

Fig. 1

whereas the novice user may find it very helpful since
he may have great difficulty in arranging his state-
ments into the sequence required by the integration
algorithm. .

The following chapters will give a more detailed de-
scription of the above mentioned. The problem of
stochastic process simulation will not be discussed
although stochastic signals may be involved in con~
timuous system simulation, since the problem is simi-
lar to stochastic simulation of discrete systems where

it is treated by two other papers of this course [3,4].

ITI) NUMERICAL INTEGRATION

The integration algorithm is the "heart" of each pro-
gram for continuous system simulation and at the same

r-.—.-—.—-._..

simulation package |
I (e.g. network ama-y
L lysis program) 1

!
I
1
!
|
!
i
!
!
|
]
|
!
I

- dm m e em e -

-.—-—————_——_—_—_-—_._l

Steps from the physical system to the execution of a digital simulation program

time is the most difficult part to be coded. At most
installations, however, the engineer will find library
routines performing integration of ordinary differential
equations, so he need not be concerned with this problem.
Since the formulation of scientific integration algo-
rithms, these days, is normally done by mathematicians,
the author of this paper will not go into details of
such algorithms. He restricts himself to characterize
the most commonly used algorithms and to give some
considerations concerning the selection procedure. So
the integration routine will be treated as a black box
of the form shown in Fig. 2.

The integration algorithm has certain known attributes
and calls a user supplied subprogram in which the system
to be simulated is modeled by a set of state equations
plus possibly some additional logic.

o o de N

Fig. 2 Black box representing integration
algorithm for integration of ordi-
nary differential equations

It is necessary to classify the different types of
algorithms to illustrate their specific attributes.

One distinguishes between
a) explicit algorithms -
b) implicit algorithms

Explicit algorithms are memory-functions which means
that computation of the output vector x at time t

does not depend upon the input wvector é at time t

but is computed by use of information (x,%) which

has entirely been evaluated at past values of time.
Implicit integration algorithms belong to the history-
functions which means that the computation of E(t)
requires knowledge of g(t) in addition. Such algorithms
are implicit since they introduce algebraic loops

x(t)

x(e)

fl(é(t) ;x(e-At) ,k(t-At) ,x(t-248) ,...)
£, (x(e),0)

The first equation describes the integration algorithm,
the second describes the user supplied state equations.
Both equation sets define an algebraic loop since x(t)
is a direct funmction of X(t) and vis versa.

General purpose simulation packages always make use of
explicit integration since the better numerical sta-—
bility behaviour of implicit algorithms normally does
not justify the much higher computation time needed
for carring out an entire iteration for the latter

at each time step to solve the algebraic

loop. Frequently a combination of explicit and implicit
algorithm is used by taking an explicit method for
predicting the next value of x and improve the value
obtained by using an implicit method for correctiom.
These methods are called predictor-corrector—methods.

Predictor: E?(t)

I

fl(E(t-At) S X(E=8t),..0)

Fo) = 1,6 0,0
Corrector: x(t) = fBQgP(t),§(t-At),§(t—At),...)
(t) = £,(x(),0)

The combined algorithm is explicit and, therefore,
does not require any iteration. (Example: Adams-Bash-
forth-Predictor,Adams-Moulton—-Corrector Methods).

Linear Network Analysis Programs normally make use of
the trapezoidal rule (first order, implicit) since
iteration can be reduced to a matrix inversion in this -
special case. This gives better stability behaviour

(as implicit methods usually do) and at the same time
makes the sorting procedure superfluous which also is

a big advantage since complex networks often anyway
involve algebraic loops.

One also distinguishes between
a) one step methods

b) multistep methods

One step methods compute X at time t out of information
on X and X at one time step back (t-At) and possibly at
additional values between (t-At) and t. From this class

20

of methods the Runge-Kutta-Methods (lgtorder=EULER,
2 order=improved EULER and method of HEUN; coefficieneg
calculated up to 8. order) are best known.

Multistep methods make use of information which lieg
further back in time, but do not comsider amy informatigy,
at values of time different from t,t-At,t-2At,,..

From this class of methods the Adams—Bashforth and
Adams-Moulton methgds of various orders (ls order=tra-
pezoidial rule, 2"% rder=method of SIMPSON) are best
known. Also MILNE's method belongs to this class.

From what has been stated above it is evident that onpe
step methods are selfstarting, whereas multistep methods
need to be started by performing the first k steps

(k & number of time steps back needed for evaluation of x)
using a one step method or by defining an iteration pro-
cedure to obtain the back information required. Multi~
step methods are very useful in case of systems under
investigation which do not involve any switching actions
since these methods normally require less computational
time for a given accuracy. In case of switching actions
forming part of the system, one step methods should be
used by adjusting the step size in a way that no switching
activity takes place in the middle of a step. Multistep
methods would have to be restarted at each instant of
time a discrete eveunt takes place. This is necessary
since all integration algorithms are defined only for
continuous systems. In case of systems involving switching
activities multistep methods are, therefore, not
recommended.

Special methods have to be used for the treatment of
stiff systems (Z systems with widespread time constants).
The best known algorithm to integrate stiff systems has
been reported by C. William Gear [51].

A crucial problem is the selection of optimal step size
and order. The step size should in most cases be opti-
mized automatically to obtain minimal computation time
for a given accuracy. Various algorithms have been repor~
ted on how to compute the optimal step size as a function
of time by approximation of the integratigﬁ error. If,
for example, a Runge-Kutta algorithm of 4 order is
used, 4 evaluations of the state equations are required
to compute x(t). An approximation of the lecal integra-
tion error can be obtained for the price of only one
additional evaluation of the state equatioms. So the
computational time is increased by 25 %Z. This increase

is normally justified since the loss in computation time
if too small a step size is used will mostly be much
higher than 25 7. Besides, the optimal step size for

a specific simulation is not necessarily constant but
may vary with time. On the other hand the EULER -~ algo-
rithm requires only one evaluation of the state equations
whereas an approximation of the integration error requires
two more evaluations. In this case the computational time
is increased by 200 % which for most applicatioms will
not pay out. Summarizing: low order methods should
rather be used with fixed step size whereas higher

order methods under all circumstances should be used
together with an algorithm to compute the optimal step

" size.

The optimal order of the algorithm to be chosen depends
very much upon the accuracy required. Low accuracy
suggests application of low order algorithms, whereas
high accuracy demands the choice of higher order methods.
If the step size has to be reduced frequently due to
switching activities taking place, low order algorithms
also are preferable, In case of dynamic nonlinear pro~
gramming problems where each evaluation of the perfor~
mance index of the optimization procedure involves

a whole simulation run the required accuracy for the
simulation itself should be chosen to be a fumction of
the gradient of the performance index. As long as the
solution of the nonlinear programming problem is still

far away from its optimum the accuracy requirements
of the simulation runs are.low.‘They become more
stringent the more the optimum is approached. This

is illustrated in Fig. 3. For ?uch prob}ems,therefore,
also the order of the integration algorithm should be

computed automatically.

1LPI (performance index)

p (parameter)

>

The performance index of a nonlinear
programming problem as a function of
a parameter. Errors in the computa-
tion of the gradient are more strin-
gent the more the optimum is approached

Fig. 3

1V) THE SORTING PROCEDURE AND THE STRUCTURING OF MO-

DELS. THE ASSOCIATED PROCEDURAL LANGUAGE.

Most of the modern simulation languages are parallel
languages which means that they enable the user to
enter his structural statements in any sequence
regardless of the relationships between them. This
feature can be obtained by dividing the simulation
:package into two parts, an interpretative part which
"understands' the structural statements and sorts them
to the required sequencé and an algorithmic part which
performs the numerical integration. A package showing
this feature allows even unexperienced simulation users
to describe their models in a straightforward manner
and to simulate complex processes successfully in a
short period of time. The structural statements are to
be described in a way such that each simulation para-
meter appears once and only once at the left side of
the equal sign and the sorting algorithm will sort the
equations in such a way that all simulation parameters
appearing on the right side of any equation have been
computed in a statement placed above. The only excep—
tion to this rule are memory functions which can be
computed without knowledge of the input parameters in
advance. If this procedure cannot be carried out
successfully, algebralic loops are in the system which
require special treatment [6]. V

For a broad class of problems the above described pro-
cedure is optimal. Nevertheless, as soon as any additio-—
nal logic and especially branching activities are nee-
ded for proper description of the model the sorting
procedure becomes meaningless, since in such a case the
model itself is not entirely parallel. The consequence

of this is that the user of a parallel simulation package
should, however, be given the possibility to describe
parts of his model in a procedural way. He must have

the possibility to split up his model into different
sections, sort-sections in which he can describe parallel
stru?tured system behaviour and which are processed by
the interpretative package and nosort-sections in which
he can describe branching activities and other logical
de?181ons in an associated procedural language and

which are skipped by the interpretative package.

To preserve full flexibility of a parallel language
g?e user should have the possibility to intervene
1rectly between the interpretative package and the

21

algorithmic package. This is only possible in a comfor-—
table way if the interpretative package does not trans—
late the user supplied parallel code directly into
assembly language but into a procedural high-level
language (e.g. FORTRAN-IV, ALGOL, PASCAL, PL/I). It is,
therefore, advisable to code the interpretative package
as a preprocessor (e.g. CSMP-III, CSSL-III, DARE-P) and
not as a compiler (e.g. MIMIC). A second advantage of
using a preprocessor is that the probability for

a compiler to a user-oriented language (e.g. FORTRAN)

to work faultless is much higher than for a compiler to
a problem-oriented language (e.g. MIMIC) since the latter
is much less frequently used. Being a versatile user of
digital computers the author of this paper lost long ago
his believe in the infallibility of compiler programs
and , therefore, considers this point to be most impor—
tant. On the other hand thé user has a good chance of
being able to correct crimes committed by missbehaving
preprocessors. The procedural language into which the
preprocessor translates the user supplied parallel code
is called intermediate language. Lt is highly recommen—
ded to use a package which preprocesses the user supplied
code into one of the commonly used procedural languages
(e.g. FORTRAN) (intermediate language) using the same
procedural language as associated procedural language
and allowing full programmability in and full compati-
bility with this language. ’

Since simulation is often embedded in another encompas-—
sing problem (e.g. parameter identification) the user
should have the possibility to split up his program into
segments.. Segmenting here means the facility to call an
entire simulation program, making use of all of the
features mentioned above, as a subprogram.

V) OPEN ENDED OPERATOR SET AND MODULAR PROGRAMMING. THE

ASSOCIATED MACRO LANGUAGE.

Since the sequence of physical models does not corres-—
pond to the sequence of statements in a procedural simu-—
lation model, it is only possible to describe physical
models by simulation modules if these modules are coded
as macros [6]. The first activity of the preprocessor
must be to replace all calls to macros by the macros'
definitions before the sorting algorithm is activated.
It is not sufficient to code the module as a subprogram
since the entire definition body has to be integrated
into the program and not only the address where the
module is stored as in the case of a subprogram. There~
fore, modular programming can only be performed by use
of an associated macro language.

VI) THE SYSTEM LIBRARIES.

The simulation package should provide the user with

a run—time library consisting of currently used

system subprograms (e.g. hysteresis function) and

with a symbolic library of system macros (e.g. lead-lag
compensator) to simplify the coding of models. These

two libraries may be called the third part of the simu-
lation package. The composed package has now the
structure given in Fig. 4. The upper part of the figure
is problem~oriented (high-level, parallel), the medium
part of it is user—oriented (high~level, sequential)

and the under part is machine—oriented (low-level,
sequential). At the left side the user supplied parts

of the simulation program are given, whereas on the right
side the system part of the simulation program (= the
simulation package) is figured. Dashed areas characterize
the functions handled by the three parts of the
simulation package: the preprocessor, the execution
package .an the system libraries. The two boxes "compiler”
and "link/load" have directly nothing to do with the
simulation package.

22

user supplied system
>le. 5
L it >
| piusiianigfiny “"‘] . - - - = -7
T ranassor? — - —— ——— — \
TEprocessor
I N [;-g?am—‘— | PZRTREEL | Esystem libraries | ! 1
] | | —_—— - ——
program spe— a | | system supplied]
[::::j cific macros macrohandler l ¥ symbolic library ’ problem
oriented
| | ' { (parallel)
general purpose l
user supplied l I i
macros (£ symbo— i |
lic library)] ‘
| linterpretative P '
| }package i l ‘ +
user
ram speci- Lo} -4] i oriented
[::::] poe P (procedural)
fic subprograms l '
i !
compiler l ' Y
I - I
[system supplied
T run—-time library |
Lo — — — ——
general purpose M .
user supplied link/load { | algorithmic | | macnine
subprograms I package | orianted
(2 run—time library)
'_si—mul—ation | !
l execution 3 |

L

Fig. 4 Diagram showing the architecture of a simulation program

VII) COMPARISON BETWEEN SOME OF THE CURRENTLY USED

SIMULATION LANGUAGES.

In the previous chapters the different types of simu—
lation languages have been characterized and their
most important attributes have been explained. Im the
following six of the most commonly used packages are
briefly described and compared in a tabular form
(Tab. 1).

MIMIC [7', 8]

MIMIC is a general purpose parallel simulation language
using a compiler which directly tramslates the user
supplied parallel code into machine oriented procedu-
ral code. No associated procedural language is available
but, however, some additional logic can be coded by use
of logical control variables (LCV). Any structural-’
statement can be preceded by a LCV. If this is the

case the statement is only executed at times t for
which the LCV has the value "true'. There exist diffe-
rent versions of MIMIC running on different computers.
For a long time MIMIC has been the only general pur-
pose parallel simulation language running on CDC-instal-
lations and, therefore, has been widely used and accep—
ted although it is neither very flexible nor very com—
venient. During 1974 the new simulation package DARE-P
has been reported which can also be used on CDC-instal-
lations. Since DARE-P is in almost every aspect superior
to MIMIC, it is expected to replace ‘it in the near
future.

csmp-1IT 9]

The CSMP-III language together with its predecessor

CSMP/S-360 are these days the most frequently used
simulation packages. CSMP, like MIMIC, is a general
purpose parallel simulation package. It uses a pre—
processor which translates the user supplied parallel
code into a FORTRAN-IV subroutine (UPDATE). FORTRAN is,
therefore, used as intermediate language and at the
same time as associated procedural language. The opera-
tor set is open ended (associated macro language) and
the possibilities for structuring are genmerous. The
CSMP simulation runs may not be called as subprograms
(no segmentation), but [6] describes how library rou-
tines for the solution of nonlinear programming problems
may, nevertheless, be used for optimization problems.
The user can choose the integration algorithm out of

a big variety of algorithms; however, discrete events
may not be handled conveniently by any of them [10].

A very extensive run—-time library enables the user to
model complex systems easily. The CSMP language is

an IBM-product and, therefore, in general restricted to
such installations.

cssL-11r [11]

The CSSL-III language is similar to CSMP-IIL. It also
uses a preprocessor which translates the user supplied
parallel code into a FORTRAN-IV main program which

makes the FORTRAN translation even easier to under-
stand than in the case of CSMP-III. The associated
macro language of CSSL-IIT is an interpretative language
and, thus, much more comfortable and general than in
the case of CSMP-III whose macro language is more of

a macro handler than of a real "language". CSSL-III
gives the user the possibility of segmenting his pro-
gram. So this package is the most sophisticated package
of all of them. CSSL-III runs only on CDC-installatioms.-

J—
languages MIMIC | CSMP-IIT | CSSL-III |DARE-P | GASP-IV! | FORSIM-V!
[7,81 £9l [11] [121 133 [14]
features
INTEGRATION
selection of routines x2 X x x x
dummy routine X x
STRUCTURING
%x | sort — option X x X x
% | associated procedural language % x %
nosort — option x x3 x x
* proceduresL+ x % %
initial and terminal section x5 x % «6 % £
subprograms x7 X X X X X
% | associated intermediate language x x %
segmentation X x X X
MODULARITY ,
* associated macro language x x «8
% | interpretative macro language’ i %
SYSTEM LIBRARIES
* symbolic library X X
run—time library X b4 X X %10 x
INPUT/QUTPUT FACILITIES
numerical output X X X X X X
graphical output X x X X X x
crossplots X x!1 X b4
3-dimensional graphical output X
parameter handling X X x X x x
ERROR DETECTING AIDS
diagnostics X X X X X X
DEBUG -~ facility x X X X
ADDITIONAL
partial differential equations X
discrete events X
Tab. 1 Comparison of six different simulation packages for the simulation of continuous

systems described by ordinary differential equatioms.

23

—

10

11

GASP-IV and FORSIM-V are both procedural languages. All features marked by an asterisk (*) in column 1 are not
applicable to these languages.

The original MIMIC does not allow any selection of integration routines. A new version developed at the Swiss
Federal Institute of Technology Zurich, Switzerland offers 12 different integration routines to the user [8].

Not genmerally possible, but the sorting region (DERIVATIVE) is embedded into a non-sorting region (DYNAMIC).

A procedure is treated as a single statement of the encompassing parallel region. It will be rearranged as one
block whereas the statements forming the procedure maintain their sequence.

By use of logical control variables (LCV).

Initial and terminal section are combined to the so called logic block from which the dynamic section
(% derivative block) is called by the CALL RUN - statement.

MIMIC allows —— dependent on the actual version being used —— three to five user supplied FORTRAN-functions
(TR1 ¢+ TR5) with a maximum of six non-subscribed parameters each. No general compatibility.

A macro handler similar to the one of CSMP-III will be available soon from the Swiss Federal Institute of
Technology Zurich, Switzerland. It does not exist in the original version of DARE-P [15].

An interpretative macro language interprets certain commands on the macro level. A macro loop, for example, will

generate the included statements as many times as the loop is carried out.

The GASP-IV package has extensive and versatile run-time library routines for discrete simulation whereas the
routines for continuous simulation are rather limited.

Only available in combination with a CALCOMP - plotter. Since CSMP-III gives full compatibility with FORTRAN-IV
2 subroutine to accomplish crossplots may, however, easily be implemented.

CSSL-ITI has, for all that, not been implemented so far
at many installations, since the potential user has to
pay a very high amount of money to obtain it, whereas
DARE-P is available at a nominal cost. Besides, the
‘interpretative macro language is very expensive in terms
of computational time and, therefore, extensive use of
this feature is not recommended.

DARE-P [12]

DARE-P is a general purpose parallel simulation Tan-
guage, developed at the University of Arizona,

Tucson AR, U.S.A.. DARE-P is entirely written in
ANSI-FORTRAN-IV and, therefore, almost system inde-
pendent. Adjustments, however, have to be made for

the linking of the integration algorithms to the
program, if other than CDC-6000-series installations
are used. DARE-P is not as flexible as CSMP-III or
CSSL-ITI and its documentation is at the actual stage
rather poor, but it is, however, in almost every aspect
superior to MIMIC and -~ since available at a nominal
cost —~— even comparable to CSSL-III. The author highly
recommends this package to users with a CDC-installa—
tion.

Gasp-1v [13]

GASP-1IV is a genmeral purpose procedural simulation
package, consisting of a FORTRAN-IV subroutine package.
GASP-IV allows simulation of combined continuous and
discrete systems. The user has to code the main program
and a number of subroutines dependent on the problem
to be solved. GASP-IV has been developed at the

Purdue University, Lafayette Ind., U.S.A.. This package
is unfit for the novice user, because he has to think
of many things which are taken care of by parallel
simulation languages. On the other hand the package is
highly recommended to skilled users since its archi-
tecture and documentation are excellent. Concerning

the treatment of continuous system simulation the
package is somewhat poor since it offers only one inte—
gration algorithm and since its run—time library is
rather limited. GASP-IV may be obtained from

Pritsker Associates Inc., Lafayette Ind., U.S.A. at

a mominal price. The package is entirely written in
ANSTI-FORTRAN-IV and, therefore, almost machine inde-
pendent. Adjustments may be necessary to obtain an
optimal random number generator. Independent on
whether the GASP-IV package is available to a potential
user of a simulation package or not the author recommends
the bock [13] to everybody who wants to acquire pro-—
found knowledge on simulation techniques.

FORSIM-V [14]

The FORSIM-V package is a general purpose procedural
simulation language allowing simulation of continuous
systems described by mixed ordimary and partial
differential equations. FORSIM-V is a FORTRAN-IV
written program to which the user has to add a sub~-
routine (UPDATE) containing the structural statements
of his model. Since FORSIM~V is not entirely
ANSI-FORTRAN-IV coded, some modifications are required
for use on other that CDC-6000-series installations.
Various integration algorithms are at the user's dis-
posal for integrating his system over time and various
algorithms may be used for derivating his system over
space. FORSIM-V has been developed by the Atomic
Energy of Canada Ltd., Chalk River, Ontario, Canada
and is available from there at a nominal cost.

The author does not claim this survey on existing
packages to be complete. There exist other packages
like DYNAMO-II [161, a package developed for system
dynamics and still used by many economists and biolo-
gists, SL-I [17]1, a package running only on Xerox
installations, SLANG [18] and PROSE [191, two packages
developed at TRW, Corp.. These packages are surveyed

2
in [20]. The author, however, considers them to be
of minor importance partly due to restrictions ip
their applicability and partly due to restrictiopg
in general availability. Many more packages have beey
developed at various places which have not been useq
except for their original installation.

VIII) PROSPECTIVES FOR DEVELOPMENT

First attempts towards digital simulation of continugyg
systems were reported in the late fifties. Until 1943
over 20 program packages had become available. By then
the SCi Simulation Software Committee collected the
different idees brought up at the different places.

As a result this committee propagated the S$Ci Con-
tinuous System Simulation Language (CSSL). This report
has been published in Simulation, December 1967 [21],
It contains merely idees from MIMIC -- together with
DYNAMO the only two "survivors' of the generation
before 1967 —-,and from DSL/90 [22] -- the predecessor
of CSMP. Since, in 1967 still many engineers faced
with simulation problems had not much of experience ip
utilizing digital computers, CSSL tries by every pos-
sible means to help the potential user describe his
problem to the computer in a straightforward manner
keeping him as far away as possible from problems of
numerical mathematics, while providing the skilled
user with various possibilities of structuring his
model to guarantee high flexibility. Almost all of
the languages reported later on (like CSMP-III, CSSL-III
or DARE-P) base very much upon the suggestions given
by the SCi Simulation Software Committee in the report
mentioned above.

On the other hand the situation changed quite a bit
since 1967 in the following ways.

1) More and more of young engineers and even a remar-
kable number of biologists, economists etc. become
very well acquainted with digital computation by the
time they leave university. For these users parallel
languages often are more of a hindramce than of
a help. For such users the optimal solution is
coding their problems in a procedural language like
FORTRAN-IV by using a package of system provided
routines for integration of state equations, for
easy handling of Input/Output, for file handling etc.
For this reason some of the brand mew simulation
languages like GASP-IV (reported: November 1973) or
FORSIM-V (reported: November 1974) are procedural
packages.

According to the authors opinion an optimal package
of this class of simulation packages, however, does
not exist yet. A few suggestions toward this goal
include the use of GASP-IV as a basis for the deve-
lopment of a more optimal package while

a) modifying the subroutine GASP in such a way that
the user can choose integration and iteration
algorithm according to his specific problem

b) adding the subroutines PARSET and PARFIN and some
secondary subroutines of the FORSIM-V package
for handling of partial derivatives (which requi-
res reorganization of the common blocks of the
GASP~IV package) and

¢) adding a good run—time library like the ome of
CSMP for simplification of describing complex
models.

The author feels that such a package would be wel-
comed by a large number of simulation users.

2) There has been a remarkable development of computer
techniques since 1967. For this reason the user of
simulation techniques today can be offered much
higher comfort than the SCi Software Committee could
propagate at that time. None of the packages charac~

terized above is, for example, really suited for
computer aided design. Procedural packages may be
used together with an optimization package for

parameter identification problems. Parallel packages,

normally, should not be used for this purpose, even
if they provide the user with the possibility for

segmenting, since single simulation runs for complex
models in most cases cost more than sfr. 10.-- which

makes optimization illusory. They may be used for
the layout of systems if there exists a limited
number of possibilities for realization of a system
out of which the best has to be chosen.

A program package suited for computer aided design
must have the following two attributes.

a) The package must be interactive to provide the
user with the possibility of changing the model
structure dynamically to obtain an optimal solu—
tion easily and in a short period of time.

b) The package must run on a process computer to
keep the costs of the simulation in reasonable
limits.

Significant efforts toward this goal have been made

at the University of Arizona with the package

DARE-I [23], an interactive simulation package with

graphical display running on a PDP-9 process com—

puter. An overview over the different packages of
the DARE family is given in [24]. Efforts in this
direction are also being made at the Swiss Federal

Institute of Technology Zurich, Switzerland where

an interactive simulation package is under develop-

ment for utilization on PDP-1l process computers.

This package is written in the macro language of

the PDP-11 which guarantees expediency in execution.

Many efforts, however, are still needed before

satisfactory results can be obtained to the solution

of this problem.

IX) FINAL REMARKS

This paper has surveyed methods and program packages
for the simulation of continuous systems described by
ordinary differential equations. Section 8 dealt with
the author’s opinion of desirable developments of the
field during the near future. It is hoped that some
of the suggestions given there would stimulate simu-
lation experts to impel the field's development. In
that case this paper would be of use to the novice
user of simulation techniques as well as to the spe-—
cialist.

X) REFERENCES
[13 M.H.Hamza: Introduction to Analog Computation.

Proc. SIMULATION'75

[2] A.Schone: Simulation technischer Systeme, Bd. 1
Carl Hanser Verlag Minchen 1974

[3] J.Kohlas: Random Number Generation. Proc.
SIMULATION'75

[4] J.P.C.Kleijnen: Statistical Design and Analysis of

Simulation Experiments. Proc. SIMULATION'75

[5] C.W.Gear: Numerical Initial Value Problems in
Ordinary Differential Equations. Prentice Hall
Series in Automatic Computation 1971.

[6] F.E.Cellier, B.A.Ferroni: Modular, Digital Simu-
lation of Electro/Hydraulic Drives using GSMP.
Proc. 1974, SCSC (Summer Computer Simulation Con-
ference) AFIPS Press 1974

[7] MIMIC Digital Simulation Language. Ref. Manual
Control Data, Corp. Sunnyvale California 1968

%3

£ad

[101

111

[12]

[131

£14]

[15]

[163

[173

r18l

[19]

[20]

[213

[22]

[23]

[24]

25

J.Halin: MIMIC—Manual des Institutes fiir Reaktor-—
technik der Eidgendssischen Technischen Hochschule
Zirich. Swiss Federal Institute of Technology.Zurich
Ziirich, 1973

IBM Continuous System Modeling Program III (CSMP-1II)
Program Reference Manual, Form SH19~7001-0
IBM White Plains, New York 1971

F.E.Cellier, D.F.Rufer: Algorithm suited for the
Solution of Initial Value Problems Occuring in
Engineering. Proc. SIMULATION'7S

CDC Continuous System Simulation Language I1II
(CSSL-ITI) User'g Guide, Form 17304400 Rev. A
Control Data, Corp. Supnyvale, California 1971

J.J.Lucas, J.V.Wait: DARE-Y Usetr's Manual

CSRL Report 255 University of Arizona, College of
Engineering, Dept. of .Electrical Engineering,
Computer Science Research Laboratory, Tucson, AR.
U.S.A. 1974

A.A.B.Pritsker: The GASP-IV Simulation Language.
John Wiley New York, London, Sidney, Toronto 1974

M.B.Carver: FORSIM A FORTRAN Package for the Auto-
mated Solution of Coupled Partial and/or Ordinary
Differential Equation Systems. User's Manual.
Atomic Energy of Canada, Ltd. Chalk River Nuclear
Laboratories, Chalk River, Ontario, Canada 1974

A.Blitz, F.E.Cellier: Modular Simmlation: by Use
of DARE-P. To be published.

A.L.Pugh: DYNAMO-II. User's Manual
M.I.T. Press Cambridge Mass: U.S.A. 1970

SL-I Reference Manual Xerox Data Systems
El Secundo, California 1970

J.M.Thames: SLANG a Problem Solving Language for
Continuous—Mode] Simulation and Optimizationm.
Proc. of the 24 ACM National Conference

San Francisco 1969

J.M.Thames: PROSE a Problem Level Programming
System. Solveware Associates San Pedro, Califor-
nia 1973

R.N.Nilsen, W.J.Karplus: Continuous System Simu—
lation Languages A State—-of-the—Art Survey
Annales de 1'Association Internationale pour le
Calcul:z Analogique, ¥2 11974 (January)

The SCi Continuous System Simulation Language
(CSSL) Simulation Vol. 9 No. 6 1967 (December)

W.M.Syn, R.N.Linebarger: DSL/90 A Digital Simu—
lation Program for Continuous System Modeling
AFIPS Conference Proceedings vol 28 1966 SJcC

‘G.A.Xorn: Project DARE Differential-Analyzer
Replacement by On-Line Digital Simulation
Proc. AFIPS/FJCC 1969 AFIPS Press, Montvale,
New Jersey 1969

G.A.Korn: New Techniques for Continuous-System
Simulation Automatic Control Theory and Appli-
cations Acta Press, Calgary, Canada vol. 2 No. 1
1974 (January)

