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INTRODUCTION

Complexity is a major problem in modern simulation software.
Users always want more features, thus making both the im-
plementation and the mastering of software constantly more

difficult. Language designers have estimated that a good com--

puter language should have less than 100 keywords. If it has
more, the compiler becomes large and clumsy; the limited ac-
ceptance of PL/I illustrates the fate of languages with large,
clumsy compilers. The user’s manual for a language should be
less than 100 pages long to allow the average user to master
all its features. Clearly, these are serious limitations for simula-
tion software, since the number of required keywords is dic-
tated by the complexity of the underlying tasks rather than by
the wishes of the language designer.

How can we overcome this problem? | believe one of the keys
lies in separating data management from the language itself.
A simulation system should have a data base management
system (DBMS) adapted to the specific needs of simulation.
Standridge'?* has described such a DBMS. Programs that per-
form different parts of a system analysis may then be im-
plemented independently; they can communicate through the
data base. This approach has many advantages; let me begin
with some that are unique to simulation:
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Ability to combine outputs from several runs (sometimes
called an overplot). Many simulation languages, such as
CSMP-II1, offer this feature. However, it becomes natural
when all results are saved in a data base. A separate
postprocessor can then readily retrieve and display data,
regardless of which specific run created it. The postpro-
cessor communicates with the simulation program only
through the data base.

Ability to combine simulated and experimental results. All
that is necessary is a real-time data acquisition program
that stores its results in the data base. Although this com-
bination would greatly simplify model validation, it does
not exist in any current simulation language of which |
am aware.

Dynamic loading of tables. The simulationist need not
enter tabular data directly into the simulation program
(e.g., using a CSMP FUNCTION statement). Instead, the
tables are simply stored in the data base. This data may
be user-generated, generated by other simulation runs,
or even generated by real measurements. For example,
this feature would greatly simplify the solution of the finite-
time Riccati differential equation. This equation must be
computed backward in time, while the system equations
must then be computed forward using the backward
solution.

Statistical analysis of noisy data. One often would like to
analyze stochastic results statistically. It is natural to store
them in the data base and let an independent statistical
analysis program (e.g., SAS or SPSS) perform the analysis.
The simulation analyst then need not duplicate the func-
tions of well-established packages.

Range analysis. With stochastic models, one often wishes
to display the range of the results. Managers generally
prefer this representation, since it allows them to see
trends and confidence limits that are difficult to express.
Again, a postprocessor can perform this kind of analysis
through the data base without involving the simulation
language at all.

Actual storage of models, parameter values, experimental
frames, and other information related to the simulation
project. Modeling projects, like other projects, have their



own internal data base; this may include partial models,
models with different levels of detail or different orienta-
tions, validation tests, and base cases. Usually the analyst
keeps this information in a file cabinet or in a stack of
old runs. Logically, nowadays, like personnel files or ac-
counting records, it belongs in a data base system. Oren
and Zeigler have discussed the automation of model
management.*

Another advantage of this approach is that the independent
modules can have separate manuals. A manager may then, for
example, study only the postprocessor's manual, since he or
she will use the computer only to display data produced by
other people’s programs. The approach also allows a natural
division of tasks, rather than requiring people to write programs
that must communicate with each other directly.

SIMULATION ENVIRONMENT

Although one can hardly lament the decline of batch process-
ing, it did have some advantages. The user only had to learn
the simulation language and the mechanics of entering input
into the batch and obtaining output from it. Some installations
even generated control cards automatically.

Interactive processing is often more difficult initially for the
novice, since that person must learn about file manipulation
(creating a file of the right type, naming it, copying it, etc.) and
data manipulation (using a line or screen editor). Unfortunately,
the introduction of a DBMS can make things even more com-
plicated. Instead of just stating which printed results are wanted,
the beginner must now specify what should go in the data base
and in what form. Simulation thus no longer consists of a single
well-defined task. Instead, we have a number of different pro-
grams (operating system, editor, simulation language, data base
management system, statistical analysis package, graphics
package, etc.) that form a simulation environment.

We can reduce the complexity of what the beginner sees.
Modern operating systems allow special operating en-
vironments, such as a UNIX environment within a machine run-
ning some other system. Of course, these special environments
involve extra overhead and are inefficient far large tasks, but
that limitation does not matter to the beginner. We could use
this approach to implement a special-purpose SIMULATION
OPERATING SYSTEM. | suggest this term for new systems rather
than simulation language or simulation package.

Let me describe a simple example. | have implemented a com-
mand procedure that simplified the running of ACSL (Advanc-
ed Continuous Simulation Language) on a DEC VAX 11/780.
The procedure, consisting of roughly 200 lines of code, com-
piles, links, and executes ACSL. A typical command statement
is

@ACSL PILOT LIST FORT GIGt

This statement compiles the pilot ejection study (file
PILOT.CSL), producing listings of both the ACSL program (op-
tion LIST) and its FORTRAN precompilation (option FORT). The
program is linked to the graphics driver for the GIGI terminal
from which it is operated. The program is then executed; after-
ward, the procedure asks the user whether hard copies of the
plots and printed results are wanted. The command procedure
also has help files and an interrogative mode in which it asks
the user for parameters.

This command procedure is useful but does not solve all the
beginners problems in" using ACSL. Students still must learn

how to call up the editor, copy problems, etc. We have,
however, coded another command procedure (roughly 400
lines of code) that simplifies these problems by providing menu-
based interaction. This command procedure is acting as a
LOGIN file on the students’ account. After signing in to the VAX,
the students get the following menu displayed:

Current ACSL Problem: NONE

Possible action: (A) Run ACSL problem
(C) Clean up files

D) Delete ACSL problem

E) Edit ACSL problem file

F ) Edit ACSL data file
) Display general HELP information
) Start/stop HELP menu
L) List of existing ACSL problems
) Display the message of the day
) Print Non-ACSL files (after error)
) Make old version current again
) Purge old versions
) Show disk quota
) Read file from other problem
) Select ACSL problem
) Display status of queues
) Display VAX-specific information
) Write file to other problem
) Exit from ACSL account
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The user may, for example, press L to obtain a directory, S to
select a program for execution, and E to edit a program. In this
way, our students are able to master the simulation operating
system without difficulties after a very short demonstration.

I am currently implementing a similar operating system for
discrete-event simulation, using Pritsker and Associates’ SLAM
™ simulation language,® together with the SDL™ data base
management system, the AID™ statistical analysis package,
and the SIMCHART™ graphical postprocessor. The advan-
tages of this combination would be difficult to appreciate if the
user had to approach the programs independently. The simula-
tion operating system makes the combination useful and
manageable.

In conclusion, | advocate a separation of simulation functions
into independent modules that communicate through a data
base management system. This separation increases the flex-
ibility of the overall system, while keeping the modules sim-
ple enough forthe user to manage and the system developer
to implement efficiently.
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