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ABSTRACT

In any future standard for continuous system simulation lan-
guages, it is of primary importance that the data and program
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structures are made sufficiently general and flexible. In this paper,
the use of matrix structures in modeling and simulation, and the
impact of matrix environments on the design of simulation
languages and their experimental frames will be discussed.

1. INTRODUCTION

Presently several efforts are undertaken to replace the CSSL'672
standard for continuous simulation languages with a more
modern template. Since the publication of the CSSL report in
1967, several successful commercial packages adhering to the
standard have emerged, for example ACSL™ and CSSL-IV™.
Other languages (e.g. DSL/VS® and DARE-P®) differ syntactic-
ally from CS5U67, yet retain many of its concepts. This has given
the standard a quite remarkable life span of almost twenty years
in times of strong technological advancements, something
which must be attributed to the open endedness of the stan-
dard. The products derived from CSSL'67 are not forced to be
static, but have been enriched by assimilation of algorithms and
concepts from other fields.

Despite this evolution of CSSL languages, there is now an im-
minent need for a new standard. Most of the enhancements
made within the CSSL framework were of a functional rather
than structural nature, as any fundamental changes in the pro-
gram/model structures would require a drastic deviation from
the standard. Consequently, the work of present standardiza-
tion committees (e.g. in IMACS and SCS) concentrates on struc-
tural matters like the partition between model and experiment
sections, the inclusion of discrete elements and the design of
submodel facilities. In this contribution, we want to elaborate
on some concepts which should be carefully considered in
the development of any new simulation language standard:
matrix data structures and ideas from interactive matrix/con-
trol environments.
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2. MATRIX ENVIRONMENTS

The term matrix environment designates a class of programs
giving the user easy and interactive access to matrix manipula-
tion algorithms. The earliest of these programs, MATLAB®, was
based upon the two state of the art numerical packages
LINPACKS and EISPACK®2, Newer programs (e.g. CTRL-C™22
and PC-MATLAB™) are derivatives of MATLAB, but also in-
clude additional algorithms for control theory and systems
analysis (these programs are also called control environments).
Yet another generation of packages (e.g. MATRIXy>? and
IMPACT# 8. 1.20)  retains the simple functionality of the
previous programs, yet complements the matrix structure with
additional data structures to describe polynomial matrices, and
linear and nonlinear systems.

Common to all these packages is their ease of use. To illustrate
this, let us evaluate the stability of a linear system. For this pur-
pose, we can enter the system matrix, and compute its

eigenvalues: >a=1[1-2 0
1, 0, -2
'1/ _1/ 2 ] ;
[> EIG@)
ANSWER =

-0.6348 + 0.6916i

-0.6348 - 0.6916i

2.2695 + 0.0000i
We notice that one eigenvalue has a positive real part, indicating
that the system is unstable.

With the same ease, the matrix environment allows us to in-
teractively define small algorithms. For example, it is possible
to implement simple integration algorithms for small simula-
tions. The following example illustrates the use of MATLAB™
to simulate a small linear system, the Cedar Bog Lake?, using
forward Euler integration:

/I Simulation of Cedar Bog Lake

)

/I 1/ Define system order and final time

n = 5; tmax = 10;

/il Define state matrix

a=1[-4.03, 0, 0., 0., 0
0.48, -17.87, 0., 0., 0.
0., 4.85, 4.65, - 0., 0.
2.55, 612, 195, 0,0
1., 6.9, 2.7, 0., 0.1
/f I Define input vector
=[1; 0.; 0.; 0., 0.1

/I /I Define initial conditions
x0 =[ 0.83; 0.003; 0.0001; 0; O.]
/l 2 /] Eigenvalue computation

= EIG(),
/I Il lgnore unstable modes
FOR i=1:n
iF REAL(e(i)) >= 0, e(i) = -0.01; END, ...

END
/I /I Determine critical step size
dtk = NORM( 2*REAL(e) ./ ( € * CONJ(e) ),/INF)

/'3 /] Forward Euler, using small steps (dt=dtk/5)
dt = dtk/5
/Il nitial computations

x = x0; xst = [0;x0];
f—EYE()+dt*ag=d t*b;

= ROUND(tmax/dt); kk = ROUND(nn/50);
k~1,lek 0, kk = 1; END
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/I 4 )/ Simulation
FOR i=1: nn, ...
= dt*i; u = 95.9%(1 + 0.635*SIN({t-db));
x = f*x + g*u; EXEC(store.mtl’);
END
II'5 /I Printout
EXEC(printout.mtl’)

The code is fairly selfexplanatory. Cedar Bog Lake is a 5th order
linear continuous time single input/single output system of the
type:
dx/dt = A*x + b*u

that we wish to integrate from time 0 to time 10 using forward
Euler integration. For this purpose, we need to determine the
maximum step size (dtk) which will keep the integration
numerically stable. The appropriate algorithm is illustrated in
Figure 1.

Figure 1. Evaluation of critical step size for forward Euler integration.

We decided to use a step size that was five times smaller than
the maximum allowed step size. We then replaced the con-
tinuous time system plus the forward Euler integration scheme:

dx/dt = A*x + b*u
Xes1 = X + At¥*dx./dt

by the equivalent discrete time system:
Xerr = [ 1M+ At*A 1%x, + [ At*b J*ux
which denétes a set of difference equations of the form:
Xiss = F¥Xp + g*ux

These equations are then iteratively solved over nn steps, and
the results are stored once every kk steps for later printout.

Although this example is not very interesting from a simula-
tion point of view, it shows the flexibility of the MATLAB com-
mand language and the relative ease with which new algorithms
can be developed and tested. Note that only the first of the
five sections is needed in control environments with predefined
integration algorithms (such as CTRL-C or IMPACT). The same
problem could be coded in CTRL-C?2 as follows:
// Simulation of Cedar Bog Lake
i
i1 /] Define state matrix
a=1{-403, 0, 0., 0,0
0.48, -17.87, 0., 0., 0.
0., 4.85, 4.65 0., 0.
0., 0
0., 0

2.55, 6.2, 1.95,
1., 6.9, 2.7,
/' // Define input vector
= [ 1, 0.; 0.;
/I Il Define output matrix



c = EYE(5)

/I Il Define direct coupling vector
d = ZROW(5,1

/' /I Define initial conditions

x0 =[ 0.83; 0.003; 0.0001; 0; 0.]
/I ]l Define a time base
t=0:0.2:10;

/I Il Compute the input signal over the time base
u = 95.9%(ONES(t) + 0.635*SIN®);

/' 2 {1 Simulation using Adams integration
SIMU{1C)x0)
y = SiMUf(@a,b,c,d,u,t)

/I 3 Il Representation of output
PLOT(y)

Both of the preceding small examples illustrate the close con-
ceptual and algorithmic connection between matrix environ-
ments and simulation languages. We should therefore ask
ourselves the following questions:

e Several simulation languages (e.g. ACSL") allow the user to
compute the eigenvalues/eigenvectors of a system by auto-
matically linearizing the system from the Jacobian matrix
around any working point and returning the result in a matrix

form. Are there any other uses for matrices in general simula-

tion languages?

* In matrix environments, it is possible to perform rudimentary
simulations, and thereby utilize the interactive environment
as a flexible experimental frame. Would a similar interactive
environment also be useable in simulation languages?

3. MATRIX CONSTRUCTIONS AS A
MODELING INSTRUMENT

Most simulation languages allow for the declaration and use
of matrices within the model description. However, although
these matrices can be used at the discrepancy of the user, few
languages utilize them to enhance their modeling capabilities.
This is very unfortunate, as matrices can be used to simplify
the solution to several modeling problems.

Consider the table-lookup function. Although this is a good ex-
ample of a multi dimensional data structure, practically all
simulation languages force the user to enter the function values
as a linear list. A more readable approach, which also preempts
hard-to-find dimensional errors in the specification, would be
to use a somewhat modified matrix structure (internally
represented as a matrix):

FUNCA = [ 0.0 | 0.0
0.5 | 0.1
1.0 | 0.33
1.5 | 067
20 | 0.9
25 | 1.01;

This could easily be extended to two dimensions:

FUNC_2 = [ | 0.0, 05 1.0
‘comment +
20 | 0.0, 0.1, 09
25 | 01, 05, 1.3
3.0 | 06, 1.2, 2.11};

Although no longer displayable in one plane, three dimensional
tables could use a similar notation by concatenating two-dimen-
sional tables with the value of the third dimension in the free
upper left hand field.

Using the philosophy of IMPACT, we could alternatively define
domains for the independent variables, and a vector/matrix/ten-
sor for the dependent variable, which are then packed into a
new data structure of type table. Thus in IMPACT, we could
code the above example of a two dimensional table as follows:

x_dom = LINDOM(Z,3,0.5);
y_dom = LINDOM(©,1,0.5);
z_value = [ 0.0, 0.1, 0.9
a.1, 05, 1.3
0.6, 1.2, 2.1 1;
func_2 = TABLE(z__value,x__domy__dom);

This allows us to redefine the element operations on tables:
z = func_2(x,y)

here does not denote the matrix element with indices x and
y as this would be the case for regular matrices, but rather the
value of the two-dimensional function func__2 interpolated at
point (x,y).

Scientists working in systems theory and automatic control are
used to represent their linear systems in the time domain by
a set of matrices:

0

oo

WO -
- o

A

23 -4 1

Lo o[

which are used to describe the system

dx,/dt = X2

dx,/dt = X3
dxa/dt = 2%y - 3X; - 43 + U
Y1 = X

Y2 = 2%, + u

where u is some input signal, and y is the resulting output vec-
tor. On the other hand, simulationists traditionally describe
their, sometimes identical, systems through differential equa-
tions and integrational blocks. Using the matrix structures from
control theory as an extension to the traditional simulation
elements, we can enhance the readability of the simulation
program:

a=[0 1 0

0, 0, 1
: 2,3, 47,
b=1[ 0 0 11;
c=11 0 0

0, 2, 01;
d=[0 1 1];
u= ..
x = INTEG{@*x + b*u,x0);
y = c*x + d*u
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Matrix constructions can also be used to simplify more com-
plex modeling structures. Standard continuous simulation
languages are sometimes (abused to simulate systems described
by partial differential equations. A simple, one dimensional dif-
fusion problem can thereby be described by:

DIMENSION u(50), dudt(50), uic(50)
u = INTVC(dudt,uic) ’
PROCEDURAL (dudt=u)

dudt(l) = c*(uleft - 2.0*u(l) + u2))

DO 5 i=2,49

dudt(i) = c*(u(-1) - 2.0*uli) + u(i+1)
5.. CONTINUE

dudt(50)= c*(u(49) - 2.0*u(50) + uright)
END

However, using matrix manipulations and the predefined,
automatically scaled structures ONES (matrix with all ones), EYE
{(unity matrix), DIAG(v,k) (diagonal matrix with all elements of
the vector v on the Kth diagonal), and E(i) (the ith unity vec-
tor), the whole diffusion model can be reduced to:

INITIAL
n = 50
d ONES(n-1,1)
a DIAG(d,1) - 2*EYE(n) + DIAG(,1)

1

DERIVATIVE
u = INTEG(dudt,uic)
dudt = c*( a*u + E(T)*uleft + E(n)*uright)

In addition to describing systems in the time domain by
matrices, control engineers also often represent systems in the
frequency domain by transfer function matrices (matrices con-
taining rational functions). Correspondingly, most simulation
languages provide block functions for elements described in
the frequency domain. For example, the transfer function

1.0
Gls) = ———n
© 1 + b*s

is generally available as a function REALPL:
y = REALPL(bx,ic)

However, some contro!l environments allow the construction
of general transfer functions. For example, to define the transfer
function

2s + 3

s + 95> + 55 + 9

Gs) =
IMPACT#18.19.20 3llows the user to enter
g = [372)/[9°5°971]

or a little better readable:

s = ["1];

p = 2% + 3;

q = s**3 + 9%s**2 4 5*s + 9;
g = plg
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which is even only a special case, since IMPACT allows to define
transfer function matrices for the description of multivariable
systems. This notation could easily and profitably be incor-
porated into simulation languages as well.

We conclude that:

Matrix Constructions Can Considerably Enhance the
Readability, Security and/or Flexibility of a Simulation
Modeling Language.

According to Korn and Wait", simulation is experimentation
with models. Consequently, each simulation program should
consist of two separate parts:

* A coded description of the model which we call the model
representation inside the simulation program;

* A coded description of the experiment to be performed on
the model which we call the experiment representation in-
side the simulation program.

So far, we have only looked into the model representation. In
the next section of this paper, it will be analyzed how matrix
representations can aid the experiment description as well.

4. MATRIX CONSTRUCTIONS FOR
EXPERIMENT DESCRIPTIONS

Early simulation packages (e.g. CSMP?) were designed for
batch operation only. A “simulation job” normally consisted of
a deck of punched cards describing not only the model to be
simulated (in the form of differential and algebraic equations),
but also the experiment to be performed (the run length of the
simulation, the variables to be printed/plotted on output, etc.).
When performing complex experiments on a given model, this
environment is not flexible enough; the whole simulation (in-
cluding translating and linking) had to be repeated after every,
however small, change (for example for rescaling a plot or for
changing a single parameter value).

In more modern packages, a “run time monitor” allows the user
to interactively invoke simulations, change parameter values,
create numerical or graphical output, and so on. However, the
run time commands available are normally too primitive (ex-
ception: DESCTOP™); no structural language elements are
available (except for rudimentary macros), and therefore, no
procedural programming can be done on this interactive level.

Most simulation languages available as of today offer fairly
elaborate facilities for model descriptions, but rudimentary
techniques for experiment descriptions. The standard simula-
tion experiment is as follows: starting with a complete and con-
sistent set of initial conditions, the change of the various
variables of the model (state variables) over time is recorded.
This experiment is often referred to-as determining the trajec-
tory behavior of a model. Indeed, when the term “simulation”,
as this is often done, is used to denote a solution technique
rather than the ensemble of all modeling related activities,
“simulation” can simply be equated to the determination of tra-
jectory behavior. Most currently available simulation programs
offer little beside efficient means to compute trajectory
behavior.

Contrasting this rather limited interactive interface, the com-
mand interfaces of the matrix environments are considerably
more flexible. As we already have seen in the introductory ex-
amples, small programs (algorithms) can be interactively defined
and executed. Tests and decisions can be made reading the
commands either from the terminal (interactive use), from a
file (batch), or a combination of both (interactive execution
using predefined macros/procedures).



Unfortunately, few practical problems present themselves as
pure simulation problems. For example, it happens often that
the set of starting values is not specified at one point in time.
-Such problems are commonly referred to as boundary value
problems as opposed to the initial value problems discussed
previously. Boundary value problems are not naturally simula-
tion problems in a puristic sense (although they can be con-
verted to initial value problems by a technique called invariant
embedding). A more commonly used technique for this type
of problems, however, is the so-called shooting technique. It
works as follows: :

(1) Assume a set of initial values.
(2) Perform a simulation.

(3) Compute a performance index, e.g. as a weighted sum of
the squares of the differences between the expected boun-
dary values and the actually computed boundary values.

(4) If the value of the performance index is sufficiently small,
terminate the experiment, otherwise interpret the unknown
initial conditions as parameters, and solve a nonlinear pro-
gramming problem, looping through (2)...(4) while modi-
fying the parameter vector in order to minimize the per-
formance index.

As can be seen, this “experiment” contains a multitude of in-
dividual simulation runs.

A very similar type of simulation experiment results from
unknown model parameters which are to be estimated in order
to obtain an optimal match between the outcome of a simula-
tion experiment and a set of measurements taken from a real
plant to be modeled (parameter fitting experiment). For this pur-
pose, we could try to minimize the following performance
index:

!f n
Pl= J7{Z & -2)*} dt
(4] =
where the x; are the simulation trajectories, and the ¢; are the
measurement trajectories, assuming that n different trajectories

are available from measurements to estimate a number of
parameters, say n, parameters.

The modeling portion of this problem can be coded easily by
adding the derivative of the performance index to the set of
differential equations:

pi = INTEG((x - xcap) * (x - xcap), 0}

where the apostrophe () has been used to denote the transposi-
tion of the vector xx.,. Of course, this requires that the
measurement trajectory vector X.,, be imported into the simula-
tion, a feature not commonly provided by current simulation
languages.

The experiment portion of the problem requires the perfor-
mance index Pl to be minimized over the parameter vectorp,
assigning an initial value of 7 to all n, parameters. This could
be coded as follows:

FUNCTION perfindex(par);
BEGIN
p = par; SIMULATE; RETURN pi;
END perfindex;
start = ONES(np,1);

result = OPTIMIZE(IC=start,
FUNCTION=perfindex, ERROR=1.0E-3)

The OPTIMIZE function represents a precoded nonlinear pro-
gramming package containing a variety of different optimiza-
tion algorithms. For each function evaluation, OPTIMIZE calls
the user-coded function PERFINDEX which sets the simulation
parameter vector p equal to the optimization parameter vec-
tor par, then performs one simulation (execution of the simula-

“tion model), and returns the resulting performance index pi to

the optimization algorithm for further evaluation. result con-
tains the optimized parameter vector. Again, very few simula-
tion languages contain such a facility (exception: DARE
INTERACTIVE?). This is partly due to the fact that the CSSL'67
standard did not foresee the need to execute simulations as
subprograms, a feature that is e.g. provided in DARE-P3,
DARE-INTERACTIVE?, and DESCTOP™,

Another way to solve this problem might be to leave the com-
putation of the performance index entirely out of the model
description, and replace the function PERFINDEX by the follow-
ing code:
FUNCTION perfindex(par);
BEGIN
p = par
SIMULATE;
pi = NORM(x-xcap);
RETURN pi;
END error;

To elaborate on yet another example, assume that an electrical
network is to be simulated. The electrical components of the
network have tolerance values associated with them. It is to
be determined how the behavior of the network changes as
a function of these component tolerances. An algorithm for this
problem could be the following: :

(1) Consider those components that have tolerances associated
with them to be the parameters of the model. Set all
parameters to their minimal values.

(2) Perform a simulation.

(3) Repeat (2) by toggling all parameters between their minimal
and maximal values until all “worst case” combinations are
exhausted (assuming that the worst cases occur at the ends
of the tolerance intervals, an assumption that is not
necessarily justified in arbitrary nonlinear problems). Store
the results from all these simulations in a data base.

(4) Extract the data from that data base, and compute an
envelope of all possible trajectory behaviors for the pur-
pose of a graphical display.

As in the previous example, the experiment to be performed
consists of many different individual simulation runs. In this
case, there are exactly 2" runs to be performed where n denotes
the number of parameters.

Let us assume we have a single output system with 5 parameters.
We shall write the parameters with their associated tolerances
into a parameter tolerance matrix:

ptol = [ 8., 12.
2.5, 3.5
1., 1.5
7.2, 7.6
9.5, 15. I;

where each row contains the minimum and maximum values
of one parameter. The proposed experiment can be coded as
follows:
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n =5;
FOR i=1:2%*n,
p = ptol(l, :);
SIMULATE;
ystr(i) = y;
indx = n;
ii = ROUND(i/2);
WHILE i - 2*ii = 0,
indx = indx - 1;
i=ii;
ii = ROUNDI(i/2);
END,
ptol(indx,[1,2]) = ptoKindx,[2,1]);
END

ymax = MAX(ystr);
ymin = MIN(ystr);
PLOT([ymax ; ymin ])

We start by extracting the first column of ptol into the parameter
vector p. We then simulate our system. The resulting output
y is a variable of type trajectory. We store the output in ystr,
a variable of type trajectory vector. We then toggle the rows
of ptol one at a time until all combinations of parameter values
have ended up once in the first column of ptol. We meanwhile
have obtained a trajectory vector ystr of length 32.

The MAX function is a very powerful operator. When applied
to a regular nxm matrix, it returns a row vector of length m
containing the largest (i.e. most positive) elements of each col-
umn of the matrix. When applied to a vector, it returns the
largest element of that vector. Thus, the largest element of a
matrix can be computed by:

largest__element = MAX(MAX(matrix))

When applied to a trajectory matrix, the function returns a row
trajectory vector that contains the upper envelopes of all tra-
jectories in one trajectory column. When applied to a trajec-
tory vector, it returns a single trajectory containing the upper
envelope of all trajectories in the trajectory vector. Thus, the
upper envelope of all trajectories in a trajectory matrix can be
computed by:

trajec__envelope = MAX(MAX(trajec__matrix))

When applied to a single trajectory, MAX returns a scalar,
namely the largest (most positive) value of that trajectory, thus:

high = MAX(MAX(MAX(trajec__matrix)))

can be used for scaling purposes. The MIN function computes
smallest values and lower envelopes correspondingly.

Further cases where procedural experimental frames might be
used include statistical replication analysis, interactive specifica-
tion of input signals, and calculation and manipulation of steady
state and eigenvalue/eigenvector information. Also, it should
be possible to directly connect the simulation system to a con-
trol environment.

We summarize:

An Interactive Run Time Monitor Supporting Procedural
Language Constructs and Matrix Data Structures not only
Simplifies the Control over the Model, but also Opens
Up a Range of Interesting Experimental Possibilities.
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5. OVERLOADED OPERATIONS AS
MODELING TOOL

In this section, we will discuss how the “overloading” of
operators can make modeling environments simpler, and yet
more flexible. The term “overloading” derives from the com-
puter language Ada', where it describes the facility to code
several different functions/procedures using the same name. The
individual function/operation is characterized by the types of
its input parameters in the function call. This, for example,
enables the user to define a data structure “matrix” and a func-
tion “*’ operating on two matrices that contains a matrix
muftiplication algorithm. Thereafter, the Ada operator “*” is
overloaded to work on matrices as well as on scalars. The
aforementioned MAX function is an excellent example of a
heavily overloaded function.

As present simulation languages do not support overloading,
a user wishing to perform e.g. a matrix multiplication is left with
two choices: to program a multiplication algorithm within the
modeling environment or to call an external numerical routine
for the operation. In CSSL-IV*®, the only CSSL simulation
language including matrix manipulation algerithms, this call
would take the form:

“DECLARATION OF MATRICES”
DIMENSION A(4,4), B(4,4), RES(4,4)

“PERFORM MATRIX MULTIPLICATION"
RES = MMULTM(A,B,4,4)

However, this complicated construction is completely unneces-
sary. Since the model description is translated (normally into
FORTRAN), simpler constructions could be used. The translator
knows the dimensions of A, B and RES and thereby the
parameters of the call to MMULTM, making the dimension
declarations of the call redundant. it would be perfectly feasible
to leave it up to the translator to generate the required declara-
tive statements and the function call out of the user statement:

RES = A*B

This overloading of the multiplication operator also preempts
user errors in the parameter specification to the (somewhat
clumsy) function call.

Several current simulation languages provide an operator (often
called INTEG) for scalar integration, and another operator
(INTVC) for vector operations. With the same argument as for
the matrices, one of these operators is redundant (see the ex-
amples using INTEG in the previous sections). There exists no
good reason why the INTEG operator cannot be overloaded
to mean two different things depending on the data types of
the input parameters. If the underlying run time language does
not support the overloading concept, and thereby really must
make this distinction, it would be much better to let the
translator generate appropriate code for each case.

We know that, given two systems in transfer function form, the
cascading of these systems is described by a multiplication of
the transfer function matrices in reverse order. Generalizing this
concept, a reverse order multiplication of two systems {(using
now an arbitrary system representation) can be defined to mean
a cascading of the two systems, while the addition of two
systems can be defined to denote a paralle! connection of the
two systems. These rules can then be used to describe sub-
system interconnections whenever these dynamic subsystems
are described in a modular form. For example, let us assume
that 5; and S, are two modules with several inputs and outputs,



and that the outputs y; of the subsystem S; are connected to
the inputs u, of the subsystem S,. Accordingly, the
interconnection:

Uy Y1 Uz Y2
=) S N S22 =

can be described by the following program:
SYSTEM st (yl = ul)
END s1
SYSTEM s2 (y2 = u2)
END s2
s =52 *sl

kit

However, the “*” operator can be even further overloaded. We
will define the statement:

y2 = s2*sT*ul

to denote a simulation of the combined system (s2*s1) using
ul as input trajectory vector. Thereby, the ul trajectories are
imported into the simulation where the expression ul(3)(t)
denotes the interpolation of the trajectory u?; over the domain
value t (the current time). As can be seen, single trajectories
and one dimensional tables are almost the same thing, except
that the former generalize into trajectory vectors and matrices,
while the latter generalize into two and three dimensional
tables. The resulting output trajectory (vector) y2 is finally sam-
pled over the same domain as ul.

In contrast, the statement:
y2 = s2*(sl*ul)

involves two separate simulation runs, First, the subsystem si
is simulated using ul as an input trajectory vector. The result
of this operation is an auxillary trajectory vector sampled over
the same domain. This auxillary trajectory vector is then used
as the input to subsystem s2 which is simulated next. The result
of that simulation is finally the trajectory vector y2 which is once
more sampled over the same domain.

Numerically, the two results will of course be different, but con-
ceptually, the associative law of multiplication holds for this ex-
tended overloading operation.

Notice that the domain information, which is an intrinsic part
of the trajectory data structure, plays here the role of the time
base, i.e. the “communication interval” of the classical CSSL
language. Notice furthermore that there is no reason why the
domain values would have to be equidistantly spaced which
is yet another advantage in comparison with the classical CSSL
specification.

The notation, which was presented in this section of the paper,
has been borrowed from the IMPACT* ™ .20 [anguage.

In classical CSSL type languages, simulation is being viewed as
an activity in its own right. The simulation program reads an
input “card deck”, and produces results in the form of a listing
file and/or plot file. Simulations are main programs that can-
not form a part of a larger and encompassing task.

Some CSSL like languages, in particular DARE*® and
DESCTOP™ extend this concept. They allow simulations to be

executed as subprograms called by an encompassing task which
is called the logic block (i.e. the experiment description) of the
program. Results are stored in a (very primitive) data base for
graphical postprocessing. However, previous simulation results
cannot be reloaded into another simulation run, e.g. as input
trajectories (exception: DARE INTERACTIVE?).

Control environments. recognize the fact that flexibility is ob-
tained by treating simulation as a function that maps an input
data structure of type trajectory vector into an output data struc-
ture of the same type. This concept has been demonstrated
in this paper in the CTRL C*% function SIMU used in the
second version of the Cedar Bog Lake simulation.

IMPACT# 1920 gges yet another step beyond by interpreting
simulation as a binary operator that maps one data structure
of type system and one data structure of type trajectory vector
into a third data structure of type trajectory vector. This nota-
tion is completely general, and indeed, IMPACT contains
mechanisms to describe nonlinear systems as well as linear
systems. This facility will be demonstrated in the next section
of this paper.

We conclude:

In a Simulation Language with Predefined Matrix Data
Structures and Modular Program Elements, Standard
Operators Can Be Overloaded. This Enhances the
Readability and Simplifies the Language by Making
Duplicate Operators for each Structural Element
Redundant.

6. A COMPLETE EXAMPLE

When solving a finite time Riccati differential equation, one
common approach is to integrate the Riccati equation backward
in time from final time t; to initial time t, , because the “initial
condition” of the Riccati equation is stated as K(t=t) = 0, and
because the Riccati equation is numerically stable in backward
direction only. The solution K(t) is stored away during this
simulation, and then reused (in reversed order) during the
subsequent forward integration of the state equations with given
x(t=tg). Some of the available CSSLs allow to solve this problem
{mostly in a very indirect manner), others simply cannot be used
at all to tackle this problem.

How can one handle this problem in CTRL-C222 The first
simulation is non linear (and autonomous), the second is linear
(and input dependent) but time varying; thus, we cannot use
the SIMU function in either case. CTRL-C provides for a second
means of simulation though. In newer releases of CTRL-C, an
interface to the well known simulation language ACSL™ was
introduced. This interface allows to make use of the modeling
and simulation power of a full fledged simulation language,
while one is still able to control the experiment from within
the more flexible control environment. Several control en-
vironments follow this path, and it might indeed be a good
answer to our problem if the two languages that are combined
in such a manner are sufficiently compatible with each other,
and if the interface between them is not too slow. Unfortunately,
this is currently not yet the case with any of the control en-
vironments that use this route.

Let us illustrate the problems. We start by writing an ACSL pro-
gram that implements the matrix Riccati differential equation:

dK/dt = -Q + K*B*R'*B™*K - K*A - A*K ; K(t) = O
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Since ACSL does not provide for a powerful matrix environment,
we have to separate this compact matrix differential equation
into its component equations. (ACSL does provide for a vector-
integration function, and matrix operations such as multiplica-
tion and addition could be (user-)coded by use of ACSLs
MACRO-language. However, this is a slow, and inconvenient
replacement for the matrix manipulation power offered in
languages such as CTRL-C.) Furthermore, since ACSL does not
handle the case: t; < to, we must substitute t by:

o= t-tp -t
and integrate the substituted Riccati equation:

dK/dt* = Q - K*B*R'*B*K + K*A + A’*K K@©) =0
forward in time from t*=0 to t*=trto. Through the new inter-
face (A2CLIST), we export the resulting K; (t*) back into CTRL-C
where they take the form of ordinary CTRL-C vectors. Also in
CTRL-C, we have to manipulate the components of K(t) in-
dividually, as K(t) is a trajectory matrix, that is: a three dimen-
sional structure. However, CTRL-C handles only one dimen-
sional structures (vectors), and two dimensional structures
(matrices), but not three dimensional structures (tensors). Back
substitution can be achieved conveniently in CTRL-C by simply
reversing the order of the components of each of the vectors
as follows:

[n,m] = SIZE(kij)
nm = n*m
kij = kij(nm:1:1)

Now, we can set up the second simulation:
dx/dt = (A - KO*B)*™x ; x(to) = Xo

What we would like to do is to ship the reversed K; () back
through the interface (C2ALIST) into ACSL, and use them as
driving functions for the simulation. Unfortunately, ACSL is not
(yet!) powerful enough to allow us to do so. Contrary to the
much older CSMP-11| system, ACSL does not offer a dynamic
table load function (CALL TVLOAD). Thus, once the K;; (t) func-
tions have been sent back through the interface into ACSL, they
are no longer trajectories, but simply arrays, and we are forced
to write our own interpolation routine to find the appropriate
value of K for any given time t. After all, it turns out that the
combined CTRL-C/ACSL software is indeed capable of solving
the posed problem, but notin a very convenient manner. This
is basically due to the fact that ACSL is not (yet!) sufficiently
powerful for our task, and that the interface between the two
languages is still kind of awkward. Because of the weak coupl-
ing between the two software systems, it might indeed have
been easier to program the entire task out in ACSL alone,
although this would have meant to do without any of the matrix
manipulation power offered in CTRL-C.

How about IMPACT* 1,202 {n [MPACT, it was decided not to
rely on any existing simulation language, but rather to build
simulation capabilities into the control environment itself. This
is partly because of the fact that (as the above example shows)
the currently available simulation languages are really not very
well suited for our task, and partly due to our decision of
employing Ada as implementation language. As currently no
CSSL has been programmed in Ada, we would have had to rely
on the “pragma concept” (which is Ada’s way to establish links
to software coded in a different language). However, we tried
to limit the use of the pragma concept as much as possible as
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this feature does not belong to the standardized Ada kernel (and
thus, may be implementation dependent).

Until now, only the use of linear systems in {IMPACT was
demonstrated. However, non-linear systems can be coded as
special macros (called SYSTEM MACRO’s). The Riccati equa-
tion can be coded as follows:

SYSTEM ricc__eq(a,b,q,rb) RETURN k IS
k = ZERO();
BEGIN

k' = -q + k*b*rb*k - k*a - a' *k;
END ricc__eq

The back-apostrophe operator denotes the derivative, since the
forward-apostrophe operator has been reserved to denote
transposition.

The state equations can be coded as follows:

SYSTEM sys__eq(a,b,rb,x0) INPUT k RETURN x IS

x = x0;
BEGIN

x* = @ - rb*k)*x;
END sys__eq

The total experiment can be expressed in another macro (of
type FUNCTION MACRO):

FUNCTION fin__tim__ricc(a,b,q,r,xbeg,time__base) IS
BEGIN .

back__time = REVERSE(time__base);

rb = r\b;

k1 = ricc__eq(a,b,q,rb)*back__time;

k2 = REVERSE(k1);

x = sys__eq(a,b,rb,xbeg)*k2;

RETURN <x,k2>;
END fin__tim__ricc;

Notice the difference in the call of the two simulations. The
first system (ricc__eq) is autonomous. Therefore, simulation can
no longer be expressed as a multiplication of a system macro
with a (non existent) input-trajectory vector. Instead, the system
macro here is multiplied directly with the domain variable, that
is: the time base. The second system, on the other hand, is in-
put dependent. Therefore, the multiplication is done (as in the
case of the previously discussed linear systems) with the input
trajectory. FIN_TIM__RICC can now be called just like any
of the standard IMPACT functions (even nested). The result of
this operation are two variables, y and k, of the trajectory vec-
tor and trajectory matrix type, respectively.

x0 = [0;0}; a = [0,1;-2,-3]; b = [0;1];

q = [10,0;0,100]; r = 1;

forw__time = LINDOM(0,10,0.1, METHOD=>YADAMS,
: ABSERR=>0.001);

[y,k] = fin__tim__ricc(a,b,q,r,x0,forw__time);

PLOT(y)

As can be seen from the above example, the entire integration
information, in IMPACT, is packed into the domain variables
which makes sense as these variables anyway contain part of
the run-time information (namely the communication points,
and the final time). Moreover, this gives us a neat way to
separate clearly between the model description on the one



hand, and the experiment description on the other as suggested
by Zeigler®.

Obviously, this is a much more powerful tool for our demonstra-
tion task than even the combined ACSL/CTRL-C software. Un-
fortunately, contrary to CTRL-C, IMPACT has not yet been re-
leased. Roughly the first 75.000 lines of Ada code have mean-
while been coded and debugged. The IMPACT kernel has been
completed in 1987. This kernel implements all of IMPACT’s
language structures (including all of the macro types, the com-
plete query feature, and multiple sessions), but it does not con-
tain all of the foreseen control library functions, the advocated
simulation facility, and support of multiple windows.

7. CONCLUSIONS

By the development of new simulation standards, the possible
inclusion of matrix elements as standard building elements in
the modeling language should be seriously considered.
Moreover, the experimental frame of a modern simulation
language should be as flexible and versatile as the command
languages of matrix/control environments.
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