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ABSTRACT

The aim of this paper is to give some indications on
how future simulation languages should be structured
to guarantee a high degree of software robustness.
For this purpose, we concentrated on the particular
aspect of classifying languages into several groups
out of which we recommend the group of the LL(1)
languages for the construction of simulation soft-
ware,

A general purpose parser program is preszented which
allows to check whether a particular language de=-
finition falls into the class of the LL(1) lan-
guages, and which can be considered as a very power=-
ful tool for the development of new languages. This
parser program has already been used during the de=-
sign phase of the new simulation language COSY for
COmbined (continuous and discrete) SYstem simula=-
tion.

In a final chapter we present another program which
may be used to generate syntax diagrams out of an
EBNF description of a grammar on any plotting de=~
vice,

I) INTRODUCTION:

Comparing simulation languages to general purpose
programuing languages, one shall notice that the
number of keywords (terminal symbols) of simulation
languages 1is markedly larger than in the case of
languages like PASCAL or FORTRAN. On the other hand,

"complex" simulation programs will, in general, be

shorter and show a simpler program- and data struce
ture as compared to "complex" general purpose pro-
grams, The reason for this raises from the fact
that, since the language is constructed for a parti-
cular application (namely simulation), it can pro=
vide for particular constructs which allow to ex=-
rus3 “complex®™ situations by means of language ele-
wents which have a "simple® syntactical structure
out a very "complex" semantic meaning behind. As a
esult of this, either

a) the simulation compiler will have to expand the
text drastically to reduce the high level source
code constructions to constructions offered in
the general purpose target language (be it any
kigh level language like FORTRAN or be it even
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Assembly), or

b) the simulation run-time system will have to pro-
vide many quite complex procedures to deal with
these language elements.

In both cases, it will not be easy to prove that the
involved procedures are real algorithms, that is,
that they shall run into a halt condition after exe-
cuting a finite number of elementary steps for any
combination of inputs, especially since they must be
able to "digest" also incorrect input.

Many simulation systems exist and are widely used
(without citing examples!) from which it is known
that they (hopefully) handle correct programs cor-
rectly, whereas they run either into error modes or
into infinite loops as soon as they are asked to
fdigest" only slightly incorrect input streams. Even
worse, they often simply produce incorrect output
without notifying the (credulous) user that some-
thing is wrong with his problem specification.

The average users of simulation languages are ap-
plication oriented rather than computer oriented.
Their knowledge of the machine and their capabili-
ties of solving emerging troubles (e.g. by means of
reading a computer DUMP) is very restricted. It is,
therefore, important that these users are supplied
with extensive and "verbous" error diagnostics. Such
error diagnostics are, of course, not obtained for
free. They are, however, feasible for two reasons:

a) Even a "small® simulation program involving only
a couple of statements will require much more
CPU-time for 4its execution than the average
general purpose program of similar size. Accor-
dingly, we can afford to let the simulation com-
piler execute somewhat slower by allowing better
error analysis to be done than e.g. in the case
of a FORTRAN compiler which is supposed to com-
pile also small student programs efficlently.

b) Even a %small® simulation program involves im-
plicitely very complex activities (like nume-
rical integration of a stiff set of differential
equations). These must be executed, and, con-
sequently, the simulation run-time system re-
quires much more core memory than the run-time
code generated out of the average '"small"
FORTRAN program. Since it does not make sense to
require the simulation compiler to occupy less
core memory than the simulation run-time system,
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the restrictions concerning the tolerable size
of a simulation compiler are also much less
stringent than in the case of a general purpose
compiler.

Most of the existing simulation systems do definite-
ly not meet the requirements resulting from the
above discussion. This results mainly from the fact
that simulation systems have, in most cases, been
coded by simulation users, that is, by people wich
are merely amateurs in information science. Their
knowledge of the theories of information science
hopetully reaches to (and most probably ends with)
the capability of reading and understanding a BNF
description of a language which they learnt while
being confronted with the famous, and at its time
very innovative, but nevertheless very incorrect
[12] CSSL-specifications [15]. There exist, of
course, exceptions from this general rulel

The aim of this position paper is:

a) to show what restrictions are necessary in the
definition of simulation languages to allow for
proper error testing and compiler construction,
and

b) to present a general purpose parser program
which allows to check whether a proposed lan-
guage belongs to this desired class of lan-
guages, and if not, to give indications on how
the language definition must be modified to meet
these requirements. This program is a very
powerful tool to assist in the design phase of a
new hypothetical programming language. It has
already been used for the design of COSY [5].
This tool is not restricted to simulation lan-
guages, but gets even more useful as the degree
of complexity of the language to be analysed
(= number of keywords) increases.

II) SOME BASIC DEFINITIONS FROM THE
THEORY OF LANGUAGES:

If we wish to specify what attributes a simulation
language should have, we must be able to charac=-
terize languages, and give a classification. More,
if we want to use a program to determine whether a
particular language belongs to a particular class of
languages, this characterization must be very
formal. For this purpose, we need to give some de-
finitions first. An excellent collection of defini-
tions of terms in connection with formal languages
can be found in [1]. We shall restrict ourselves to
those definitions which we need in our discussion.

panguage:

4 language over an alphabet T is a set of strings
over this alphabet. The alphabet of the language is
the set of "atoms"™ of the language, that is, the set
consisting of the keywords (terminal symbols) of
that language with the inclusion of identifiers,
numbers, comments and strings.

This definition is, however, too vague to be direct-
ly applicable.

A language consists of syntax and semantics. In
general, the syntax is identified with the conven=-
tions of notation of sentences in the language. The
semantics are associated with the meaning of these
sentences. In practice, however, these two quanti-
ties are not sharply distinguishable even in the
case of formal languages. The precise border between
them is an attribute of the gompiler involved rather
than of the language itself. Each compiler consists
of the following three steps:

a) Lexical analysis (scanning):

This part of the compiler reads character after
character from the input stream. Character means
here any member of the character set of the ma=
chine. Symbols are then composed as strings of
characters by the scanner to form the terminals,
that is, the elements of the alphabet T of the
language. A symbol (member of T) is said to be
completed when the scanner detects a separator
in the input stream. The set of separators I is
a subset of the alphabet T of the language (y<T)
which must be explicitly known to the scanner.
In our parser description, we shall give the
precise definition of separators as we use it in
our analysis. If the order (~ number of ele-
ments) of any separator 04€Z (denoted as Ioii)
is larger than one, the scanner must use some
backtracing algorithm to determine separators in
the processing of the input stream.

b) Syntactical analysis (parsing);

This part of the compiler treats the members of
the set T as ™atoms", and checks whether speci-
fied sentences belong to the language or not.
During the scanning procedure, all combinations
of characters which cannot belong to T have al-
ready been rejected. Thus, the syntactical ana-
lyser will have to analyse only programs which
belong to the closure set T* of set T. The clo=
sure of a set is defined as the set whose mem-
bers are any strings of members of the original
set including the empty string e. The duty of
the parsing algorithm is to determine whether a
particular program belongs to the subset L of
the closure T# (LcT*) which forms the language.
Since the order of the set T*# and even of the
set L is usually infinite, L cannot be specified
by noting down all correct programs (which are
the members of the set L). One uses instead a
grammar which we shall define below.

o) Semantic analysis (translating):

This part of the compiler maps sentences speci-
fied in the source language into sentences
specified in the target language. It is obvious
that it 1s to a certain degree left up to us to
decide how much work i1s to be accomplished by
the parser, and how much is detained to the
translator step.

Grammar:

A grammar is a formal description of the rules which
distinguish those members of T#* belonging to L from
those which do not belong to L. Since this cannot be
done by enumeration, we use a set of productions (P)
describing the rules how to form correct sentences
of the language. This description is often done re=-



cursively which 1s even necessary if we want to de=
scribe an infinite number of members of L by =&
finite number of productions.

Example:
UNSIGNED_INTEGER = DIGIT | UNSIGNED_INTEGER DIGIT .

reading: An unsigned integer is eilther a digit or
an unsigned integer followed by a digit.

For the specification of productions, we use a ver=-
sion of BNF which has been accepted as a standard by
TC3 of IMACS. A formal definition is given in
Appendix I.

The single production specified above describes (by
recursion) the countable but infinite number of un=
signed integers. In reality, the range of allowable
integers is finite for any machine, but the required
range test to determine whether a particular integer
belongs to the allowable set is usually detained to
the semantic analysis.

Would the allowed range be e.g. from 0 to 999, we
gould alternatively rewrite the production as:

UNSIGNED_INTEGER = DIGIT [ DIGIT [ DIGIT ] ] .

in which case the range test would belong to the
syntactical rather than to the semantical descrip-
tion of the compiler.

The identifiers UNSIGNED_INTEGER and DIGIT do not
belong to the alphabet of the language. They are
auxiliary variables to denote productions. They form
another set which we call the set of the nonterminal
symbols (N).

To parse a particular program, we need a start
symbol (s) which is a member of N to get the parsing
algorithm started.

Thus, the grammar G can be formally described as a
Y-tuple:

G = (N, T, 8 P) .

For reasons of simplicity, we shall usually omit the
explicit mentioning of the sets N and T, and replace
this by the simple rule that terminal symbols are
enclosed in apostrophy ('), whereas nonterminals are
not.

In the original BNF notation, the opposite conven-
tion has been used (nonterminals were embraced by
pairs of the meta~-symbols '<' and '>'.,) This is,
however, bothersome since, in this case, we cannot
distinguish between the meta-symbols of the BNF no~
tation and the terminal symbols which automatically
uxciudes all meta-symbols from the allowable set of
kaywords of the language. For this (and only for
this) reason, assignments in the original BNF nota-
tion used the meta~symbol f::=' in the hope that no
reasonable language would want to make use of this
-~ rather exotic -~ combination of special charace
ters as or within a keyword (1). In our redefini-
tion, the set of meta-symbols must be disjoint from
the set N which is, however, uncritical since the
members of N denote auxiliary variables which can
take any name,

For the starting symbol s, one can often find one of
the following two determination rules:

a) 8 1s the nonterminal which is defined by the
first production of the production set (which
implies an ordering relationship among the mem-
bers of P), or

b) s is the only nonterminal which is defined but
never referenced (which inhibits the definition
of additional productions for documentation rea-=
sons).

We have chosen another definition:

c¢c) s is the only symbol which belongs to both N
and T. Each program belonging to L starts
with s, and s does not appear anywhere else in
the program.

We normally utilize the symbol PROGRAM for that pur=-
pose which is common use in many languages of today.
Since our aim is to obtain a vehicle for the defini-
tion of new languages rather than to analyse exis-
ting languages (which are often anyway hard to
identify with any senseful characterizable class of
languages), this definition seems appealing.

Context-free grammar (CFG):

CFG's denote grammars in which each nonterminal is
explicitely defined, that is, its definition does
not depend on the environment in which it is used.

Context=free language (CFL):

A CFL is a language for which it 1s possible to de-
rive a CFG. Note: Given a context-sensitive grammar
(CSG) for a language, 1t cannot be concluded that
the language is also a context-sensitive language
(CSL). It may be, that a CFG exists for the same
language, making it a CFL.

Deterministic grammar (DG):

The set of DG's is a true subset of the set of CFG's
for which it is possible to identify each member
of L by applying the rules as expressed by the proe
ductions in a unique manner (the program has then a
unique syntax tree).

Deterministic language (DL):
A DL is a language for which it is possible to write
down a DG.

rammar:

LL(1) grammars are a true subset of the DG's for
which it is possible to obtain a parsing algorithm
which is able to determine the syntax tree by scan-
ning the input file from left to right while looking
only one symbol ahead.

LL(1) language:
A LL{1) language is a DL for which it is possible to
give a LL(1) grammar,

LL(1) parser;
A LL(1) parser is an algorithm which determines the
syntax tree of a LL(1) grammar in the above way.

These definitions are useful since

&) with each subset it is possible to derive simp-
ler and faster parsing algorithms, and
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b) the "documentability™ of a language increases
with each subset. CSL's are extremely difficult
to describe whereas DL's with a LL(1) grammar
are easily documented by explaining the syntac~
tical rules by means of syntax diagrams [13]
which are equivalent to a BNF notation, but
which are much easier readable for human beings.
Such a documentation is very important in the
case of simulation languages since such lan-
guages usually involve a large number of produc-
tions to be explained.

The question must be raised what price we have to
pay for restricting ourselves to LL(1) languages. It
is obvious that, since there exist languages which
are not of type LL{(1), we reduce our freedom in how
to design our new simulation language, However, even
LL{1) languages are very powerful and allow struc=-
tures to be defined which are by far more complex
than needed by simulation languages. Moreover, most
of the required restrictions are restrictions of the
way in which the grammar is expressed rather than
restrictions of the language itself, Most modern
formal languages (like PASCAL, ALGOL, SIMULA-6T),
and even CSSL-type languages (like CSMP) are close
to LL(1) parsibility. There exists just one simula-
tion language concept used in many current simula-
tion software systems which is not easily LL(1) ex-
pressible, namely the MACRO facility.

Currently, there 1s a project golng on concerning
the development of a translator from CSMP-III to
CosY [3, 5]. For this purpose, we have derived a
formal description of CSMP-III., This is, of course,
achieved by use of the general purpose parser pro=-
gram. As a side effect of this project, we obtained
a formal description of CSMP-III in EBNF notation
and by use of syntax diagrams. Furthermore, we ob=-
tained an analysis of the LL{1) parsibility of
CSMP-III,

In another report, we may
a) present the formal description of CSMP,

b) discuss incompatibilities of the CSMP language
with the concept of LL(1) languages, and

¢) give some suggestions on how these incom-
patibilities could be overcome by as slight
modifications of the language as possible. of
course, this modified version of CSMP would not
be LL(1) parsible either since we have not in
mind to suggest modifications of the underlying
FORTRAN as well. FORTRAN 1is not at all LL(1)
parsible which can be easily seen from the two
correct(1) FORTRAN statements:

i) DO 10 I=1,21

ii) DO 10 I=1.21
out of which (i) is a DO-loop specification
statement, whereas (ii) is an assignment state-
ment assigning a value of 1.21 to the variable
DO10I.

Since LL(1) grammars allow efficient parsing algoe

question for all CFG's) [1].

rithms to be coded and extensive error analysis to
be carried out, we shall restrict our view to this
class of languages, and suggest to SWISSL to recom-
mend that future simulation languages should be of
this type whenever feasible.

Recursions;

We have already seen that recursions are in a way
inavoidable if a finite set of productions is to de-
scribe an infinite set of programs of a language. We
can, however, often reduce recursions to
"repetitions® using the curly braces
(cf. Appendix I).

Unfortunately, LL(1) parsers are unable to handle
left-recursions. We, therefore, must forbid them.
For this reason, the syntax expressed for
UNSIGNED_INTEGER is illegal. It can, however, easily
be rewritten as:

UNSIGNED_INTEGER = { DIGIT } .

This additional rule does not imply a restriction in
generality. It can be shown that any left-recursion
can be reduced by means of a simple algorithm de-
seribed in [1] (->Greibach Normal Form).

Ambiguities:

DL's are never ambiguous. It is, however, often not
easy to decide whether an explicitely given grammar
is ambiguous or not. As a matter of fact, it has
even been shown that the question whether a parti-
cular CFG is ambiguous is not decidable (that is, it
is 1impossible to write an algorithm answering this
However, using LL(1)
parsers, 1t is possible to decide whether a grammar
is of type LL(1). This is not contradictory to the
above statement since LL(1) grammars are a true
subset of the set of CFG's, and since the proof con-
cerning indecidability has only been given for all
CFG's but not for subsets of them (there exist un-
ambiguous CFG's which are not even deterministic),
To test for LL(1) parsibility, the following two
rules must be applied to all branching points (b.p.)
of the syntax diagrams:

RULE 1; The starting symbols of all parallel bran-
ches must be disjoint. This set is called
FIRST(b.p.).

RULE 2: If FIRST(b.p.) contains the empty symbol
(e), also FIRST(b.p.') must be disjoint
from FIRST(b.p.) where b.p.' denotes the
branching point to which the empty path
leads, If the empty path leads to the end
of the production, FIRST(b.p.') is iden=~
tical with FOLLOW(p) where FOLLOW(p) de-
notes the set of symbols which may follow
the production p immediately.

If these two rules hold for all b.p., the grammar of
the CFL 1s of type LL(1), and thus deterministiec,
and thus unambiguous.



Example:

IF_CLAUSE = 'IF' E 'THEN' S [ 'ELSE' 8] .
S = IF_CLAUSE | OTHER_STATEMENT .

» TF-CLAUSE

M Ar-LLRUOE
OTHER-STATEMENT

bp.

D, THEN > S ] -— ELSE .'

RULE 2 does

IF-CLRAUSE

This grammar looks okay, but it is not.
not hold for the b.p. preceding the ELSE.

Proof: (a) FIRST(b.p.) = (ELSE,t).

{b) The empty path branches to the exit.
Therefore: FIRST(b.p.') =
FOLLOW(IF_CLAUSE) = FOLLOW(S).

{e¢) S appears in IF_CLAUSE beshind THEN. The
symbols following S immediately contain
ELSE and €., Thus, ELSE belongs to the
set FOLLOW(S), and RULE 2 does not hold
since FOLLOW(S) is not disjoint from
FIRST(b.p.).

q.e.d,

Indeed, this specifies an ambiguity which is well
known and which can easily be seen when trying to
understand the "correct™ sentence:

IF e1 THEN IF e2 THEN s1 ELSE s2 ,

from which it is not clear to which IF_CLAUSE the
ELSE must be bound. An algorithm testing the above
two rules shall tell us that there exists a conflict
of FIRST's at b.p. involving symbol ELSE.

In [1] a "solution® to this problem is given, The
two productions stated above are replaced by a set
of four productions of the form:

S1 IF_CLAUSE1 | OTHER STATEMENT ,
S2 IF_CLAUSE2 | OTHER_STATEMENT .
IF_CLAUSE1 = 'IF' E 'THEN' S1 |

'IF' E 'THEN' S2 'ELSE' 81 .
IF_CLAUSE2 = 'IF' E 'THEN' S2 'ELSE' S2 .

This grammar is a DG which binds the ELSE always to
the closest IF_CLAUSE. Unfortunately, this DG is pot
of type LL(1). In production 3 there exist two
parallel branches starting with the same symbol IF,
Grouping leads to:

IF_CLAUSE1 = 'IF* E *THEN® ( S1 { S2 'ELSE' 381 ) .

However, this does not solve the problem either
since the two nonterminals S1 and S2 have all
starting symbols in common. The proper solution
would be to modify the language to:

S = IF_CLAUSE | OTHER_STATEMENT .
IF_CLAUSE = ?IF' E 'THEN® ¢BEGIN' S 'END®
[ 'ELSE' S ] .

which is a grammar of type LL(1). This solution
shall also read better since we do not need an addi=
tional explanation to state how the ambiguous sen-
tence is to be understood since:

a) IF el THEN BEGIN IF e2 THEN s1 ELSE s2 END
b) IF ei THEN BEGIN IF e2 THEN s?1 END ELSE s2
are both clear.

The algorithm which checks for ambiguities has,
thus, helped to get rid of an ambiguity which is
otherwise difficult to detect.

A recursive parser would be able to "solve" the
above type of ambiguity also directly by the simple
rule that it does not leave the level of recursion
except if the symbol read from the input stream is
not in the group of the FIRST's. Thus, a recursive
parser would automatically bind the ELSE to the
nearest IF_CLAUSE, as this is a common rule in
several modern languages (e.g. PASCAL). This
mechanism is better explained in the description of
our parser program. It is, nevertheless, useful to
have an algorithm which detects such ambiguities
since they require at least a speclal explanation if
we agree to allow them at all,

III) ROBUSTNESS:

The aim of this discussion is to show that restrice
ting ourselves to LL(1) grammars can help us to ob=
tain more robust simulation systems. The term
"robustness" has, however, more of a slogan than of
a well defined term., It is, therefore, necessary to
give an explanation on how we are going to use it. A
simulation system has three distinct parts which can
all be "robust™ in different sences:

a) The simulation language can be robust with re-
spect to
1) modeling
2) programming

b) The simulation compiler can be robust with re-
spect to
1) programming
2) maintainability
3) implementability (portability)

¢) The simulation run-time system can be robust
with respect to
1) procedures
2) algorithms,

The robustness of simulation run-time systems has
been discussed in [6]. It is, moreover, not neces=-
sary to repeat those results here since the use of
LL(1) grammars has very little to do with these as-
pects of robustness. They are mentioned here only
for reasons of completeness.
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I1I.1) ROBUSTNESS QF SIMULATION LANGUAGES:

Aspect of Modeling:
The use of LL(1) grammars can help to improve the
modeling capabilities of a language in two ways:

a) No ambiguities;
The fact that LL(1) languages are guaranteed not
ambiguous will certainly improve the safety of
modeling.

b) Documentability:

As previously stated, syntax diagrams can help
to explain the syntactical rules of a language.
The semantic meaning of each production will
usually be assigned to the syntactic explanation
in an informal manner. LL(1) grammars are
especially well suited to be described in this
way. Since nonterminals can be freely used in
the definition of productions, i1t is even pos-
sible to achieve a hierarchical documentation by
these means. In this way, it is, for instance,
possible to explain first the basic structures
of the language without going into details as
for the programming of the single blocks. In
further chapters of the documentation volume,
these blocks can then be described in depth.
Several simulation languages have already been
documented by use of syntax diagrams (e.g. COSY
[31, SCALE-F [8]). This aspect, therefore, can
improve both the documentability of the software
from the point of view of the software engineer
who develops the language, in that it can be as-
sured that the documentation is complete and
easily wupdatable, as well as the under=-
standability of the documentation from a user's
point of view. SYSMOD [2] goes even one step
further, in that its documentation volume is
written such that the text editor can extract
from it automatically all productions making up
the grammar of SYSMOD. In this way, the input to
our parser program 1is generated automatically
from the user's manual. Syntax diagrams can
thereafter be produced automatically which again
form part of the usert's manual. All modifica-
tions of the language therefore start by a modi-
fication of its manual which is a very nice
feature,

Aspect of Programming:

It 1s extremely important that errors in the source
code of a simulation program are detected as early
as possible by the simulation compiler, and that a
precise diagnostic of the error is reported to the
user. LL(1) languages shall allow such an error pro=-
cessing to a very high extent as we shall show 4in:

+<L.2) ROBUSTNESS OF SIMULATION COMPILERS:

Aspect of Programming:

LL(1) grammars are especially well suited to obtain
robust simulation compilers in the sense that such a
compiler can properly digest any input stream be it
as incorrect as it wants. This is true for several
reasons:

a) LL(1) parsibility:

Since the syntax tree for any correct program of
the language can be obtained by parsing the
input from left to right while looking only one
symbol ahead, it is evident that a misplaced
symbol must be detected at once. It can never
happen that a syntactically incorrect program is
accepted by the compiler resulting in an incor-
rect output which may be accepted as correct by
the credulous user,

b) Rec f rrors;

Once an error has been detected by the parser,
the compiler must try to "recover" as quickly as
possible to become able to recognize further
errors in the input stream. This error resyn-
chronization cannot be done in a fully sys-
tematic way. The language designer must assume
something about the probability of expected
errors. However, LL(1) grammars allow to make
this procedure somewhat more systematic since
the language designer can augment his language
definition by additional error paths which de=-
note what actions the compiler has to take when
particular types of errors occur. These error
paths can already be introduced into the grammar
before the compiler is written and allow to ex-
periment with different kinds of error handling
before the first 1line of the compiler is
actually coded,

¢) Cleanness of programming:
Compilers which are constructed on the basis of
LL(1) parsers have an almost linear top-down
structure. It is, therefore, possible to code
such compilers in a way which guarantees that no
input c¢an "hang up" the compller and which
guarantees that the compiler is not entering in-
finite loops for any input, be it as malign as
it wants. In other words: It is (at least
theoretically) possible to guarantee that the
compiler is an algorithm.

Aspect of Maintainability:

It is unavoidable that a complex program like a com-
pller has some "bugs" in it which are not detected
until somebody stumbles upon them by chance. At that
time, it is well likely that the programmer of the
compiler has left the place already, and is no
longer accessible, In such a situation, it is ex-
tremely important that somebody else is able to read
and understand the compiler to be able to remove the
bug. It is then very cumbersome if the software en-
gineer is forced to read and understand the compiler
as a whole. In most cases, it is not too difficult
to identify and isolate the bug within the compiler,
A local patch, however, bears the risk of unexpected
side effects creating new bugs which are often worse
than the removed onet! For this purpose, it is im-
portant that the compiler has as much as possible a
linear top-down structure since side effects result
mostly from GOTO-statements pointing backward from
below to beyond the patch position. If the effect of
such a GOTO-statement is not taken into account, the
patch creates often troubles which are difficult to
explain and to correct. Since LL(1) grammars allow
compilers to be written in an almost direct top-down



structure, the robustness of such a compiler with
respect to its maintainability is markedly better
than in the case of other grammars being used. It
is, of course, furthermore very important to code
the compiler in an appropriate language. FORTRAN is
an atrocious language for this task. PASCAL proved
very satisfactory as long as the language definition
is not too large (PASCAL is very difficult to over=-
lay), and as long as the language to be compiled
does not involve too much file handling. Another
good candidate for coding compilers for simulation
languages 1is SIMULA-67 which, being a simulation
language 1in itself, has even nicer features as a
general purpose language than as a simulation lan-
guage. Another good candidate might be ADA.

Aspect of Implementabilit orfabili :

It is neatly shown in [14] that coding a compiler
for a LL(1) language.is relatively straight forward.
By use of PASCAL, this task can be achieved by
utilizing standard features of PASCAL almost exclu~
sively., Although FORTRAN programs are in general
better portable (and thus implementable on another
machine) than programs coded in any other language,
this does not really hold for compiler programs
~ince the string handling is not easily coded in
s .mewhat like "standard" FORTRAN in that for in-
seance the number of characters which can be packed
jnto a word is extremely system dependent. There
exist FORTRAN-coded compilers for simulation lan-
guages which can be truely called "portable® (e.g.
DARE-P [11]), but coding such a compiler is really
an art, and we do not know of any FORTRAN~-coded com-
piler for any simulation language which guarantees
for detection of all syntactical errors. For this
reason, a carefully coded compiler on a PASCAL-,
SIMULA-67 or ADA-basis shall most probably be
superior with respect to portability. ADA seems
really to be the best way to go in the future, as
its strict formalization together with its environ-
ment definition shall grant a new and previously un=-
attainable degree of portability.

IV) A GENERAL PURPOSE PARSER PROGRAM:

IV.1) INTRODUCTION:

The general purpose parser program which will be de-
scribed hereafter has been developed on the basis of
an idea expressed in [14]. It allows those who want
to develop new languages to check both correctness
and usefulness of the language under construction in
a simple and efficient way. The parser can properly
"digest" any CFG. While processing the input stream,
the parser goes through the following three steps:

a) It reads in the syntactic definition of the lan-
suage being expressed by use of the EBNF nota-
tion (as specified in Appendix I).

b) It checks whether the processed grammar belongs
to the subclass of the LL(1) grammars. It checks
especially if the grammar is free of left recur-
sions and ambiguities.

¢) It processes any number of sentences specified
in the previously defined language and checks
whether they belong to the language or not (if

all the tests executed previously under (b) were
positivel).

It is, thus, possible to test any language defini-
tion, be it as complex as it wants, automatically,
to decide whether it belongs to the class of the
LL{1) grammars (and is thus LL(1) parsible) which is
a very difficult and tedious task to perform by
hand.

As an additional advantage of using the parser pro-
gram, we consider its ability to parse -~ already
during the design phase of the language ~-- even very
large sample programs (sentences) for their correct-
ness. With the aid of the parser, it is, therefore,
possible to determine how easily problems can be
specified in the hypothetical new language, before
the first line of the compiler is coded,

The parser can also help in the documentation of the
language since 1t can generate a good deal of in-
formation concerning the mnewly defined language
which is directly usable when writing the user's
manual for it. This output furthermore includes in-
formation which can help to improve the language de=
finition, and it also includes information which 1s
useful for the generation of the compiler for that
language.

Beside of the basic rules of LL(1) grammars, the
parser will require the observation of two addi-
tional rules:

a) From none of the branching points there may
emerge more than one empty path.

b) If an empty path emerges from a branching point,
it must be specified as the last alternative.

These two additional rules may first seem to be fur-
ther restricting the set of definable languages.
This is, however, not the case. It does restrict not
the expressable grammars but only their way of nota=-
tion. Any LL{1) grammar can be brought into a form
acceptable by the parser program.

Proof:

In the EBNF notation as described in Appendix I,
empty paths cannot be noted down directly. They
are codable only by use of the square brackets
(option) or by use of the curly braces (repeti=-
tion). These two cases shall be discussed
separately.

Empty paths resulting from options:

In a syntax diagram, empty paths resulting from
options appear as alternatives to non-empty
paths. Due to the rules of LL(1) parsibility, it
is obvious that all such empty paths which
branch to a point within the syntax diagram can
be eliminated by simply duplicating the struc-
ture which can be reached via the empty path.
This is illustrated in the feollowing syntax dia~
gram (INNER_OPTION):
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REPETITION = ( { A} B) | C .
INNER-OPTION

REPETITION
— {8 }—
e e e S
which is reducible to: %1:}*

INNER-OPTION The way how the parser processes such a struc-

ture can be made better understandable by auge

oA —»{B | - menting the syntax diagram for this production
‘L j> by some tests as they are performed by the
={B parser program,
For this reason, we can restrict our view to the REFITITION

"true" empty paths which are those alternatives
branching to the end of the production, Since
each production has only one end, there can
never exist several such empty paths leaving
from the same b.p..

s & firat(n)

q.e.d,

The following example shall illustrate the re-

8 € first(C) [
duction technique: g
(Ceztor )
EXAMPLE = [ [ A]l1BJC.
with: € € (AuBuC); From this modified syntax diagram it is evident
FIRST(A) n FIRST(B) = ¢ ; that the parser does not look at FIRST(B) before
FIRST(A) n FIRST(C) = & . it is sure that the symbol read from the input

file does not belong to FIRST(A). FIRST(A) and
FIRST(B) even need not be disjoint in this case.
EXAMPLE However, those members of FIRST(B) which also
belong to FIRST(A) will never be addressable,
and are thus redundant.

» B o T}
g =5 "L
1¥ ]\_4::}_—I' According to this discussion, there exists al~

ways a priority scheme for empty paths resulting
from repetitions which allows to process the
syntactical structure without need for any back-
tracing. This priority scheme 1s directly

Applying the reduction algorithm leads to: visible from the syntax diagrams drawn by the
program discussed in the next chapter. All paths
EXAMPLE = ( ( AB) | [ B])C. may only be followed in their "correct" direc-

tion even if there exists nothing but a connec-
ting line between "two" b.p..

EXAMPLE :
This shall be illustrated by the following pro-
Nem! oE} duction:
= A | 1B | o }—>
REP_AND OPT = { A} [ B] .
.J‘g‘l |
= REP-AND-0PT
mpt aths resulti rom repetitions:

Another way of creating empty paths is by use of ‘

repetitions. Such empty paths are not easily re- > | >
ducible. We shall show that the parser c¢an pro- | !

cess multiple empty paths resulting from repeti- »{ B ]

tions. So, there exists no urgent need for re- :

ducibility. Given the following production:

On a first look, it seems that there emerge two-



empty paths from the same b.p.. However, since
the first empty path results from a repetition,
one can split the b.p. into two. While proces-
sing a sentence using this rule, the parser will
repeat A as many times as possible before it
starts looking at B. Only at this moment, the
second empty path may become active if the sym-
bol read from the input file does not belong to
FIRST(B) either.

Complications may result if both ways of genera-
ting empty paths appear in a combination. This
can be illustrated by the following production
(PROD) : N

PROD = { A $[B]}C.

PROD

"iJ "l_[:_JL Ll

This production could e.g. be used to denote a
list whose elements are optionally separated by
ty? (B=','), and which is terminated by ';!
(C=t';'). The syntax diagram is, however, incor-
rect since -- according to our rules -- the
parser remains in the repetition as long as pos-
sible. Since the empty path is a member of the
possible alternatives for starting the repeti-
tion, the parser can never proceed to C. Even
such a situation is, however, properly codable
by use of a simple transformation:

PROD = { { A$B} }lC.

PROD

[*“IHI‘“]
- o[+ »[C}

(S

The two additional rules are necessary since the
algorithm inherent in the parser program has no
built in backtracing capabilities. It checks for al-
ternatives until it finds a match or until it finds
an empty path. As soon as an empty path has been
found, it follows this path to its ending node, and
checks for further matches there. As a direct conse-
quence, alternatives which follow an empty path can
never be accessed.

Another consequence of this algorithm ~-- together
with its capability of being used recursively -~ is
that ambiguities as those treated in the previous
chapter are automatically resolved by the parser in
a unique and well defined manner, The parser
searches for matches at one level of recursion at a
time. Only when no match could be found, the parser
decreases the level of recursion,.

As an example let us consider once more the set of

productions:

IF_CLAUSE = YIF* E *THEN* S [ 'ELSE' S 1] .
S = IF_CLAUSE | OTHER_STATEMENT .

The sentence:
IF e1 THEN IF e2 THEN s1 ELSE s2

is treated by the parser in the following manner:

LEVEL]

As can be seen from this diagram, the ELSE binds to
the nearest IF_CLAUSE.

Iv.2) CONCEPTS OF REALIZATION:

During the realization of the general purpose parser
program, the following considerations have been
especially taken into account:

- The parser should be as general as possible.

~ The parser should be as %"safe"™ as possible (no
"hang up's" when confronted with incorrect
input).

~ The parser should be easily usable and flexible.

- The parser should be able to process sample pro-
grams in as much as possible the same way as a
compiler would do.

- The parser should be as portable as possible.

It must be admitted that these demands are meant as
goals which are to be reached as completely as pose
sible, but which are never fully achievable, The
following presentation of the parser program shows
what solutions have been found to approach these
goals,

IV.3) PREDEFINED SYMBOLS:

The description elements COMMENT, IDENTIFIER,
STRING, and UNSIGNED_INTEGER which are used in al=-
most any language definition have been predefined.
They may be used in any language definition by
treating them as terminals, By these means, the lan-
guage definition can be shortened, and a notable re-
duction of computing time results. This predefini-
tion does not reduce the generality of the parser
since these productions may be user redefined which
then automatically overwrites the predefinition.

IV.4) CONTROL OPTIONS:

There exist a large number of control options by the
help of which the user can control execution of the
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parsing program. A complete syntax diagram for these
control options is given in Appendix IV. They may be
classified into the following groups:

~ Listoption:
This block of options allows to control amount
and appearance of the output produced by the
parser program,

- Setoption:
This block of options allows to control what
tests are performed by the parser (out of those
tests which are not indispensable for the proper
functioning of the parser program, tests which
mainly check for LL(1) parsibility of the gram-
mar).

- Singlestep:
This block allows to define whether the parser
is supposed to operate symbol by symbol
(default) or character by character. The single
step mode executes somewhat slower, but it en=-
ables the user to specify the syntactic rules of
how identifiers are composed.

- Uppercase;
This block allows to convert lower case letters
to upper case letters. Many languages (and line
printers!) do not make use of the full ASCII
character set. By use of this options, the user
can specify his wish to let lower- and upper
case letters be undistinguishable,

- Metasymbols:
This block of options allows to redefine the
meta-symbols of the EBNF notation, This is use-
ful since some of the default symbols (e.g. the
vertical line to denote alternatives) may not be
printable on the available line printer,

- Redefinition:
This block allows to redefine the names of the
predefined productions to make the standard
names available for other purposes without over-
writing the predefinition.

- Maxvalue:
This block allows to reformat the output (e.g.
page length) and to respecify the tolerated
length of nonterminals.

- Syndia;
This block of options allows to determine and
reformat the plot output to be produced by the
syntax diagram drawing program.

ZV¥.5) HANDLING OF SYNTAX FRRORS:

There exist two different mechanisms of error detec-
tion and handling 1in the program which must be dis-
tinguished.

While processing the language definition block, the
parser program knows the "language" in which spe-
cifications are written (being the EBNF notation).
The parser can, thus, resynchronize after error de-
tection, This means that the parser program aots

here 1like a special purpose compiler for the
meta-language EBNF,

While processing sample programs (sentences) written
in the previously defined language, a resynchroniza-
tion after error detection cannot be automatically
performed since the structure of the language is not
known in advance but has been built up dynamically
during the language definition phase. For this rea-
son, the parsing mechanism stops after the first
error being detected, and the input text is skipped
up to the beginning of the next sample program. In
the future, it is planned to augment the EBNF nota-
tion by a mechanism to enable the user to specify
actions to be taken in case of an error being detec-
ted. This will allow to simulate the error handling
behaviour of a special purpose compiler for that
language to a very high extent.

IV.6) PROCESSING SYNTAX DEFINITIONS:

The tests which are performed by the parser on a
syntactic definition of a language can be divided
into two different categories.

The first category contains those meachanisms which
are indispensable for a secure handling of the syn
tax by the parsing algorithm. These tests are,
therefore, compulsory. They include:

= Multiple definition of nonterminal symbols (con-
sistency test). .

- ‘Missing definition of nonterminals (completeness
test).

« Ambiguities resulting from the intermixed use of
predefined productions (by treating them as ter-
minals) with a redefinition of those symbols.

« Ambiguities resulting from unfavorable choices
of COMMENT and STRING delimiters. (Problems
could occur if e.g. the end delimiter of COMMENT
is identical with the opening delimiter of
string, ete..)

- Existence of left recursions,
These tests are performed by the parser under all
ciroumstances, and the program terminates hereafter

when one of the tests fails.

The second category contains the additional tests
concerning LL(1) parsibility. These tests contain:

= Looking for b.p. at which several alternatives
start with the same terminal symbol.

« Looking for b.p. with several parallel empty
paths.

= Looking for empty paths which are not defined as
the last alternative.

- Test whether conflicting FIRST's are disjoint.

This second category of tests is performed only if



the user has specified (through the control options)
that he wants the FIRST's, the FOLLOW's, and the
INTERSECTION's of the productions to be evaluated.

The tests are performed on several hierarchical
levels to minimize the number of consequence errors
to be ""detected". By these means, the parser per=
forms all tests on one hierarchical level at a time,
If any of them fails, the program terminates, and
all further tests are suppressed.

Error messages are never suppressed (independently
of the specifications given in the list options).
Error messages tend to be "verbous® to guarantes
easy interpretation and correction.

IV.7) SEPARATORS:
Let us give first a definition for this term:

Separators are characters or strings of
characters which enable the scanner to com-
pose characters to symbols for the syntac-
tical analysis. The separators form a subset
of the set of terminals (T). They must be
explicitely known to the scanner.

The set of separators is built up dynamically. It
will be different for different languages, and it is
even different during the different phases of the
parsing procedure. The scanner is adaptive in that
it uses the currently active set of separators for
the construction of symbols.

During the different operational phases, the fol-
lowing sets of separators are established:

gontrol option phase:
Only the SPACE is a separator.

Syntax definition phase;
Separators are the
meta-symbols,

SPACE and all EBNF

Parsing phase;
Separators are the SPACE and all those key-
words of the language starting with a spe~
cial character (neither digit nor letter)
which does not appear as well within any
other keyword starting with an alphanumeric,

These separator l1lists are generated automatically by
the parser, and they are printed upon request.

If several separators start with the same special
character, the rule of the longest match determines
the detection of separators.

This rule creates two minor problems which can, how-
evar, be solved without restrictions:

a) The choice of the SPACE as general separator ime-
plies that keywords may not contain SPACE's.
Such keywords can, however, be subdivided into
parts not containing any SPACE's which solves
the problem,

Example:
GOTO_KEYWORD = °*GOTO® | °GO TO® .

can be written as:
GOTO_KEYWORD = 'GOTO' | ( 'GO' 'TO' ) .

b) Strings may not contain string delimiters since
this introduces ambiguous meanings. During the
syntax definition phase, the problem can be
solved in analogy to the previous problem:

Example:
ILLEGAL_XEYWORD = ?THAT'S* .
LEGAL_KEYWORD = YTHAT' t*t'f !S' |

During the parsing phase, there cannot be given
any standard solution. This problem must be
solved on the basis of the definition of the new
language.

The adaptive nature of the scanner allows to simue
late the behaviour of a special purpose compiler to
a8 high extent since the scanner uses the same list
of separators as a compiler for that language would
do, Sample programs can, therefore, be coded in pre=-
cisely the same manner as if the compiler would al-
ready be in existance.

IV.8) PROGRAMMING CONCEPTS:

In the development of the parser program, the fole
lowing three considerations have been assigned a
high priority:

~ Robustness (no infinite loops or error modes)
=~ Generality
« Maintainability

These considerations reduce the efficiency of the
program to some extent. However, since the parser
program 1s meant to be used during the design of a
new language only, and since it will not be used by
large numbers of people, efficiency seemed to be of
minor importance as compared to the points mentioned
above,

The most important contribution to improve the
robustness of the parser program are the tests which
have been previously discussed. In reality, there
exist even further tests to handle also very rare
errors correctly.

The generality of the program has been improved by
the fact that dimensioned arrays have only been used
for data whose dimensions were known in advance and
which (according to our judgement) would never re-
quire any modification. These arrays can, further-
more, be easily respecified during the implementa=
tion of the parser program., In all other cases, the
program uses dynamically generated list structures.

The maintainability has been improved by concentra-
ting all constants in the main program, by dividing
the program into a large number of relatively small
procedures, and by placing all procedures which per-
form system dependent activities at the beginning of
the program together with an extensive description
of the system dependencies.



Det, Grammars for 3imulation Languages (cont.)

IV.9) PORTABILITY:

To obtain a high degree of portability of the parser
program, we used a subset of PASCAL for its realiza-
tion which is (as to our knowledge) almost system
independent.

The basic version was coded for CDC 6000 series ine
stallations (or CYBER) running under SCOPE 3.4 and
using the local ETH character set (1). This version
contains, however, a special comment mechanism which
allows to carry out the required (minor) modifica=-
tions for implementation on other machines by use of
a small auxiliary program. Currently, implementa-
tions exist for IBM 370 series dinstallations (or
IBM 3033) using either the Australian PASCAL com=
piler or the new IBM compiler, for VAX installa-
tions, for DEC-10 installations, for UNIVAC com-
puters, and for PRIME (which are those computers at
our disposal). Installation on a PDP 11/45 running
under RT-11 and using the OMSI-PASCAL compiler has
also been tried, but the restricted addressable re=-
gion of a 16 bit machine excludes this implementa-
tion from use for larger language definitions,

IV.10) DESCRIPTION OF INPUT DATA:

The entire text which is to be processed by the par-
ser consists of one file which is divided into
single text blocks by use of an "end-of-text™ marker
(default: '$$4$$$'). The sequence of text blocks is
illustrated by the following syntax diagram:

INPUTFILE

[—( SENTENCE. b-j
SYNTAX-DEF INITION}

All blocks allow free-form input. Within the three
block types, the following syntactic rules hold:

Control options:
The rules which are to be obeyed in this block
are described in Appendix IIIX.

Syntax definition:
The syntactic rules are those of the EBNF notaw
tion (ef, Appendix I).

arsin hase (sentence):

The syntactic rules are those described in the
syntax definition specified in the previous
block.

IV.11) DESCRIPTION OF OUTPUT DATA;

The general purpose parser has two different output
files. One is the so called MESSAGE file which con=

tains a brief description of the execution flow of
the program (version and date possibly followed by a
reason for abortion). Our CDC implementation directs
this MESSAGE file to the "day file" of the job. The
second file 4is the QUTPUT file into which all
further output 1is generated as described below.

1) OPTION ECHO:

If the user has specified a control option block,
the specified options are echoed during their pro=-
cessing (with line numbers). The option block is
searched for syntactic errors which are reported to
the user by self explanatory error messages., The
place where the error has been detected is marked,
and it is also marked up to which place the text had
to be skipped for error resynchronization.

2) SEPARATORS FOQR SYNTAX DEFINITION:
The list of all separators which are active during
the syntax definition phase are reported to the

‘user. Out of those, the opening and closing delimi-

ters for comments and

marked.

terminals are specially

3) SYNTAX DEFINITION ECHO:

While the syntax definition is processed, a line
numbered echo of the specifications is printed., Two
kind of error messages can appear in this part of
the analysis, One kind concerns multiple definitions
of nonterminals. The other kind concerns EBNF syntax
errors. The error message indicates the type of
error being detected, The place where the error has
been found, and the place up to which the text had
to be skipped, are both marked.

4) CROSSREFERENCES OF NONTERMINALS:

This list appears in alphabetical order. For each
nonterminal, the list contains the numbers of those
lines in which the symbol has been referenced. The
reference denoting the definition of the nonterminal
is marked by an asterisk (*). Nonterminals which
have been defined but never referenced are specially
marked. An error message is printed for nonterminals
being referenced but not defined,

Following this crossreference table, error messages
are printed which denote collisions between nonter-
minals and predefined productions.

5) CROSSREFERENCES OF TERMINALS:

This contains an alphabetically ordered list of all
keywords of the language together with a reference
to the numbers of those lines in which they have
been met.

6) QUTPUT OF DETECTED LEFT RECURSIONS:

If a left recursion has been detected, the name of
the corresponding production is printed together
with the sequential path through which the recursion
has been defined.

7) ERROR MESSAGES CONCERNING EMPTY PATHS:
These error messages specify that -- while evalua-

ting the FIRST's, FOLLOW's and INTERSECTIONS ==
parallel empty paths or empty paths which are not
specified as last alternative have been detected.



8) SEQUENTIAL LIST OF FIRST'S:

This list reports 1in alphabetical order the struce
ture of the set of FIRST's for each production. Each
subset is specified separately. Furthermore, the se~
quence in which the parser looks at these subsets,
and the number of empty paths met are indicated.
Nonterminals are marked by '>>', empty paths are in~
dicated as '<3>!t,

9) ALPHABETICAL LIST OF FIRST'S:

This 1list does not contain any information which
could not be extracted from the previous list as
well, However, the information appears compressed.
This list is, therefore, easier readable, and it is
sufficient for most applications, This list which
contains an alphabetically ordered set of all
FIRST's of a production is of importance for the
construction of the special purpose compiler for the
language (START and STOP set).

If a production has an empty path which goes through
the whole production (empty through path), this is
indicated by adding the symbol '<>' to the set of
the FIRST's.

If several parallel paths of a production start with
the same symbol, an error message is printed with an
zndication of the multiple used syumbols.

Note that the FIRST's are currently only printed for
each production, although they are internally
evaluated for each b.p..

10) SEQUENTIAL LIST OF FOLLOW'S:

This list has the same structure as output type (8).
Nonterminals marked by '->' indicate that, at this
place, the sequential FIRST set of the nonterminal
should be added. This is done automatically by the
parser itself, if the keyword FULL 1s added to the
option FOLLOWSYM SEQUENTIAL.

The representations of type (8) and (10) are very
useful for the analysis of INTERSECTIONs between
FIRST's and FOLLOW's.

11) ALPHABETICAL LIST OF FOLLOW'S: :

This list has the same structure as output type (9).
It also helps in the construction of a special purw
pose compiler.

12) INTERSECT :

This 1list contains a summary of conflicts with

FIRST's at b.p. and FOLLOW'S of productions, This
output block would e.g. report the conflict cone
cerning the ambiguous meaning of the ELSE construct
which has been previously discussed.

13) SEPARATORS FOR PARSING PHASE:

This output block contains the set of the separators
which are active during the parsing of sample pro-
grams. Out of these, the COMMENT- and STRING de=-
+imiters are specially marked.

14) ECHO OF SAMPLE PROGRAMS:

While the parser processes sample programs coded in
the previously defined language, it echoes the input
stream by adding line numbers, Syntax errors being
detected are immediately indicated, and the rest of
the sample program 1s skipped to the next
"end-of-text" marker.

15) CROSSREFERENCES OF IDENTIFIERS:

The alphabetically ordered set of the IDENTIFIER's
which are collected during the processing of the
sample program are listed together with references
to the lines in which these IDENTIFIER's have been
met. These IDENTIFIER's are the variables of the
sample program.

16) MAICHING OF DELIMITERS:

If the number of opening and closing COMMENT- or
STRING delimiters does not match, this is reported
as an error message to the user as the last of the
output blocks.

Remarks:

~ The output blocks of type 1 (if options have
been specified), and 14 as well as all error
messages are printed under all circumstances.

= The output blocks of type 2, 3, 4, 5, 13, and 15
can be suppressed by use of the LISTOPTION spe-
cification block.

- The output blocks of type 8, 9, 10, 11, and 12
are printed only if the appropriate SETOPTION
specifications have been set by the user. An ex-
ception from this rule is output type 9 in that
it is possible to ask for evaluation of the in-
volved tests without requiring the list to be
printed.

- By default, all output types are printed except
for blocks 8, 9, 10, 11, and 12.

An example of a complete language analysis for the
language PL/0 [14) is given in Appendix IV.

V) GENERATION OF SYNTAX DIAGRAMS:

The EBNF notation is very useful for the automated
processing of a language definition by a computer
program since it is easily codable by use of
standard computer input file specifications. How=
ever, for human beings, this notation tends to be
somewhat unreadable, especially because it is not
easy to find appropriate matches of parantheses.
Human beings, in general, prefer a graphical repre-
sentation by use of syntax diagrams. For this rea-
son, TC3 of IMACS has accepted both the EBNF nota-
tion and its corresponding syntax diagram descrip-
tion as standard language description vehicles, A
formal definition for syntax diagram descriptions is
given in Appendix II.

Since both representations are equivalent, it is
useful to have a computer program which is able to
read in the EBNF specification of a language and
produce on a plotting device appropriate syntax dia-
grams out of it.

This has been realized by using a syntax diagram
plotting program [4] and a small conversion program
which converts our EBNF notation to the form of
input specification as it is expected by the syntax
diagram plotting program.

Syntex diagrams can be generated for any
(x,y) plotting device or for the line printer.
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The syntax diagram plotting program produces an
input file to a hypothetical high level plotter. A
separate plot program interprets this plot file and
emulates the hypothetical plotter on the actually
available plotting device. Quite obviously, this
program has to be system dependent, and needs to be
adapted to the available plotter. However, even here
a high degree of portability is maintained by re-
stricting the required system dependencies to three
procedures to open and close a plot file, and to
draw a straight line between two points (pen either
up or down). Even the fonts are generated software~
wise to minimize the system dependencies (at the
cost of a somewhat reduced efficiency.

V1) PERSPECTIVES FOR DEVELOPMENT:

As we stated in the introduction to chapter III, the
general purpose parser program is a valuable tool to
ald in the design of new formal languages. It is
foreseen to enhance this tool in the future by ad=
ding:

a) mechanisms for specification of specially marked
error paths which augment the syntax definition
of the language, and which will -- if specified
-~ allow to resynchronize after error detection
also during the parsing phase of the program.

b) mechanisms for specification of the
static semantics (type attributes, range tests)
of the language to enable the parser program to
perform precisely the same kind of error hand-
ling as a special purpose compiler for that lan-
guage would do.

By adding these two mechanisms, the general purpose
parser can simulate almost all activities of a spe~
cial purpose parser for the defined language. Error
resynchronization shall be possible to perform in
precisely the same manner, as would be performed by
a special purpose parser.

The next step will be to modify the general purpose
parser to let it become a meta~-parser, This
meta-parser will be able to generate (upon request)
a special purpose (non table driven) parser for the
specified grammar. This special purpose parser shall
then be able to parse sample programs in precisely
the same way as the general purpose parser would do,
but it will, of course, be much more economical to
use. This special parser is the first step in coding
a special purpose compiler for the new language.

Lateron we might study the possibilities to add to
“n3 language definition also a specification of the
synamic semantics (that is a description of the tar-
get language with mapping). Our hope is to be able
to finally obtain a meta-compiler which can generate
the special purpose compiler for any new language of
type LL(1) out of some formal description. Some re-
search projects on this topic have already been car=
ried out, Most promising seems to be the method of
attributive grammars which has been suggested by
Knuth [10]. Some newer publications on this topie
are [7, 9]. Unfortunately, many of the recent rele-

vant publications in this field are written in
German, and are, thus, not widely accessible.
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APPENDIX I: FORMAL DEFINITION OF THE
EXTENDED BACKUS-NAUR-FORM (EBNF)

A) The Alphabet:
The following keywords are used in EBNF:

TERMINAL SYMBOLS VERSION 3-MAY-83 15:29:49,
S RErRE NS IRERSARECSERTCICSESSSSSSSSRTTISSERNSS

SYMBOL CROSSREFERENCES

22 23
32 32
20
34
20
34
12
12
ND_SYNTAX_DEFINITION 9
21
21
22
14
24

— NN o
-

-
~

R L el I Y

fsgignment:
rroductions are assigned to nonterminals by use of
the symbol '=°7,

Concatenation:

There is no special keyword required for concatena=-
tion of symbols. Symbols which are supposed to fol-
low each other are separated by SPACE's.

Alternatives are separated by a vertical line '|'.

Srouping:

Groups of symbols may be defined by enclosing thenm
into pairs of parentheses '(' and ')'. Groups have a
higher priority than concatenation or alternatives.

Qption:

A& symbol or a sequence of symbols may optionally be
present (but need not to be present) in the sample
program if the syntactical construct in the language
definition which is assoclated with it is surrounded
by a pair of square brackets '[f and *]°Y.

Repetition:

A symbol or a sequence of symbols may appear
one or several times in the sample program if the
syntactical construct in the language definition
which is assoclated with it is embraced by a pair of
curly braces '{! and '}'.

A repetition loop can have two different parts which
are separated by the exit symbol '$'. The meaning of
the structure { A $§ B} is defined as:

{ A$B) = A ] ABA | ABABA | ... .

If B i3 the empty symbol (g), B must be omitted. In
this case, also the exit symbol '$' can be omitted
which then denotes a repetition (as defined above)
which can also be interpreted as a

The transitive closure (A+) of a set (A) is equiva-
lent to the closure (A%*) of that set with the excep-
tion that the empty string (c) does not belong to
1t. Therefore:

A% = A+ g o

If the symbol A of the structure { A $ B} is the
empty string, we simply omit it, whereas the exit
symbol ‘$' must be specified in this case. The
meaning of the construct {$ B } is oonsequently that
of an optional repetition or of a closure,

{$ B} :=3B%,
Strings:

Terminal symbols are placed between two string de~
limiters °*'' and **'' to make them distinguishable
from nonterminals which are not marked. This rule
replaces an explicite specification of the sets N
and T.

Comments:

Comments can be freely intermixed with statements of
the EBNF notation, as long as they do not split up
any symbols. Comments are placed between pairs of
(%Y anpd '#), Comments may be specified hierar-
chically (which differs from their definition in
PASCAL which looks formally the same).
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B) Ihe Set of Nonterminals;

The following nonterminals are used for the EBNF de~
finition:

NON-TERMINAL SYMBOLS VERSION 3-MAY-83 15:29:49.

EE=szNTTSECEESZZSZESESSSTEISScosRmSSssIES sxszacx

SYMBOL CROSSREFERENCES

CHARACTER 28 32 34 36

COMMENT 34F LK

DIGIT @%% UNDEFINED %## 36 <L

EXPRESSION 12 14% 20 21 22
23 24

FACTOR 16 18%

IDENTIFIER 26 28%

LETTER ##% UNDEFINED ### 28 36

NON_TERMINAL_SYMBOL 11 18 26%

PRODUCTION 8 114
SPECIAL_CHARACTER  ###% UNDEFINED ### 36 <<«
STRING 30 328
SYNTAX_DEFINITION g% <LK«
TERM 14 168
JERMINAL_SYMBOL 19 30%

The nonterminals: CHARACTER, EXPRESSION, FACTOR,
IDENTIFIER, NON_TERMINAL_SYMBOL, PRODUCTION, STRING,
TERMINAL_SYMBOL, and TERM shall be explained sub-
sequently in the discussion of productions.

COMMENT determines a production which has been added
for documentation only. It is not referenced at all.
Since comments can be freely intermixed with proces-
sed text, it is impossible to include the descrip-
tion of comments into the EBNF notation.

DIGIT is a nonterminal which requires no further ex-
planation. It denotes the set of the digits 1i..9
and 0.

LETTER is a nonterminal which requires no further

explanation either, It denotes the set of the
letters A..Z.

SPECIAL-CHARACTER denotes the set of all those
characters which do not belong to DIGIT or LETTER.
C) IHE STARTING SYMBOL:

The nonterminal SYNTAX DEFINITION is used as star-
ting symbol for the generation of syntax trees,

D) PRODUCTIONS:

“he following productions describe the asyatactic
rules of the EBNF notation:

SYINTAX DEFINITION VERSION

3-MAY-83 15:29:49.

1 (QIIll.ll!llll!IlIllIIII!Illlll!llll.ﬁ‘.'.lll'l)
2 (# *)
3 (% EBNF DEFINITION IN EBNF #)
y (» *)
5 (ﬁl.llllllﬂ'ﬂCililllﬂII!‘Il!!!!lﬁﬂ..li.lllll.ll)
6
7
8
9

SYNTAX_DEFINITION = { PRODUCTION }
'END_SYNTAX _DEFINITION' .

10

11 PRODUCTION = NON_TERMINAL_SYMBOL
12 '=t EXPRESSION '.' .
13

14 EXPRESSION = { TERM § '!'} .

15

16 TERM = { FACTOR } .

17

18 FACTOR = NON_TERMINAL_SYMBOL

19 TERMINAL_SYMBOL

T
20 } ¢ *(* EXPRESSION ')' )
]
|

21 ( *[" EXPRESSION ']')

22 ¢ *{* ( ( '$* EXPRESSION }

23 } ( EXPRESSION [ '$*

24 EXPRESSION 1 ) ) *}v ) .
25

26 NON_TERMINAL_SYMBOL = IDENTIFIER .

27

28 IDENTIFIER = LETTER { $ CHARACTER } .

30 TERMINAL_SYMBOL = STRING .

32 STRING = °'% { CHARACTER } 't* .

34 COMMENT = *(#' { $ CHARACTER } '#)¢

36 CHARACTER = LETTER | DIGIT | SPECIAL_CHARACTER .
38 $344%

Each syntax definition is embraced by the start
symbol SYNTAX _DEFINITION and the "end-of-text"
marker END_SYNTAX_DEFINITION. Inbetween, there may
be specified as many productions as needed to de-
scribe the language to be defined.

Each production assigns an expression to a non-
terminal., (Note: This is the standard notation rule
for all CFG's.)

An expression consists of one or several alternative
terms,

A term is a sequence of one or several factors,

A factor 1is either a nonterminal symbol or a ter=
minal symbol or a group or an option or a repetition
with or without exit.

Nonterminals are identifiers, They all start with a
letter, and may be continued by up to 39 characters
(this number can be respecified in the implementa-
tion of the parser program), Nonterminals may,
therefore, also contain special characters. Excluded



from use are only those characters which are used as
the first character of any separator. (The under-
score symbol which is not used by most languages di-
rectly, 1s often used in this report to denote com~
pounds.) In the production for IDENTIFIER, the non-
terminal CHARACTER must, therefore;, be interpreted
somewhat restrictive., Since the meta-symbols can be
redefined in the control options block of the parser
program, there is no way to include this restriction
into the EBNF notation of EBNF. This rule must,
therefore, be specified in the description of the
static semantics of the language EBNF,

Terminal symbols are strings of characters, They may
start with any character, and they may take
eventually any form with the exception that the
SPACE may not appear in a terminal, and that the
string delimiters (') may not appear within ter=-
minals. The string delimiter may, however, be used
as a terminal for itself ('''), The length of ter-
minals is currently also restricted to
40 characters,

For better illustration, the representation of the

syntax of the EBNF notation by use of syntax dia-
grams 1is added.

SYNTAX-DEFINITION

— [PROBUCTION] CERE-SYNIPX-DEF INTTION)

PRODUCT 10N
EXPRESSION
+[TERR}
TERM
( +{FACTOA ]

FRCTOR

+{ NON~ TERMINAL-SYMBOL F—

+[ EXPRESSION

7 EXPRESSION |

{EAPRESSION -

| V.

NON-TERMINAL~-SYMBOL

[DENTJIFJER

IDENTIFIER

(---—-{EEEEEEIEEJ~—---)

+{ LETTER }—

TERMINAL-SYHBOL

—[STRING}
STRING
(D~ - [ [ CHARACIER } J YD)
COMMENT
< ™= J
O, (] ¥
CHARACTER
[ }-

L LETTER.) I
}; —+{DIGIT } _J
- SPECIRC=CHARACTER }-——

APPENDIX II: FORMAL DEFINITION OF SYNTAX DIAGRAMS

Since a description of a grammar by use of syntax
diagrams is isomorphic to the description by use of
an EBNF notation, it is sufficient to give here the
mapping between an EBNF representation, and the re-
presentation by use of syntax diagrams.

S8 (] :
Each production is represented by a separate syntax
diagram which is labeled by the name of the nonter=
minal to which the production is assigned.

CLoncatenation:
A concatenation of factors is represented by a
series connection of the diagrams of those factors.

Alternatives:
Alternatives are represented by a parallel connec-
tion of involved terms.

Option:

An option can be thought of as to be an alternative
between a non-empty and an empty path. The empty
path 1s depicted as a connecting line.

BYPASS

Note: Empty paths are not necessarily drawn as the
"last alternative" as we demanded. This is, however,

Just a particularity of the syntax diagram drawing
program, and not of the underlying EBNF notation
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which is used by the parser program, and which is
used as input to the syntax diagram plotting program
as well.

Repetition;:

A repetition 1is represented by a feedback loop in
the diagram. The construct { A } is depicted as:

REPETITIONS

The construct {$ A } is depicted as:

REPETITION®

™)

The general construct { A $ B } can be viewed as:

REPETITION

S —

e nals an onter: als:

The two sets are distinguished by the shape of the
box by which they are represented. Nonterminals ap-
pear as a square box, whereas boxes for terminals
have rounded corners.

DuMMY
-—{ NON-TERMINAL-SYMBOL TERMINAL ~SYMBOL

APPENDIX III: CONTROL OPTIONS OF THE
GENERAL PURPOSE PARSER

This appendix describes the syntactical jules for
the specification of control options for the general
purpose parser. A syntax diagram has been used for
rzoresentation.

OPTIONS-DEFINITION

N

—»{ME TASYFBOL

L

HETAOPT

(SETOPTION)
HRXVALUED

LISTOPTION L1STOPT

SETOPT
{ MAXVALUEGPT }

(REDEFINITIDND REOEFOET
GG, SYNDIAQPT
NGLESTEF

N QFFEACASE
METROPT
rfﬂ‘ ]
I, (D)~ —»{ SYMBOL }

SEYOPT

MRAXVRALUEORT

LISTOPT




AEDEFOPT

0

L A

~(IDENTD-

UINTEGER

UNSIGNED-INTEGER

+{BIGIT}

APPENDIX IV: EXAMPLE OF A CORRECT PARSER

OUTPUT ~- THE PL/0 LANGUAGE

[ [ +{ OPENSYMBDL ]

SYNDIAGPT

on™

( I
- PRIPLOT )~ - NS JGNED=
+(PRTBNF

PRTLIHIT
e e FRTRIDTH
- ERERDTID———

' PLIWIOTH .
' PLTCHHIDTH'
' PLTXMARG '

LABELS )

»(UZERD >

CHARACTER

LETTER
—o{BIGIT

{ SPEC AL -CHARACTER]

SYMBOL

OPENSYMBOL

LARBIETMBOL

+{ SYMBOL T

NEWNRME

[TFITER M

[ CamT ]

———+{IETTER}

OPTIONS DEFINITION VERSION  3-MAY-83 15:30:03.

R R R R R T N R R S e I R N R R EEE R EE R R XN

1 .0PT

2 SETOPTION

3 FIRSTSYM ALPHABETICAL .,

4 FOLLOWSYM ALPHABETICAL ,

5 FIRSTSYM SEQUENTIAL

6 FOLLOWSYM SEQUENTIAL ,

7 INTERSECTION }

8 ;

9

10 SYNDIA

1 PRTPLOT 100 ,

12 PRTBNF 70 ,

13 PLOT DISPLAY ,

14 PLTWIDTH 20.0 ,

15 PLTCHWIDTH 0.25 ,

16 LABELS ,

17 OZERO 3

18

19 $$448
SEPARATORS: SYNTAX DEFINITION  3-MAY-83 15:30:03.
F13 13333t Pt FE i1ttt 1ttt E ittt 111 1 233 1133 133

BLANK § $8888 ' ( (* ) & . = [
1 1)

COMMENT DELIMITERS

(¢ &)

TERMINAL SYMBOL DELIMITERS
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SYNTAX DEFINITION VERSION  3-MAY-83 95:30:03. TERMINAL SYMBOLS VERSION  3-MAY-83 15:30:03.
EE I R R R L P T S T T T T T T T T T I T T T T e T T T T T T T T I Yy
SYMBOL CROSSREFERENCES
q (!!Illll!ll.lllllliﬂlilidII!QQIGO!OBI!IQIIDDGIQ)
2 (* " ( 32
3 (# PLO SYNTAX DEFINITION *) ) 32
yo(# *) U 29
5 (thdlllllllllllllltllllllllﬁ!l!lll..'lllﬂ..lll) + 27 27
6 . 1 12
7 - 27 27
8 PROGRAM = IDENTIFIER BLOCK '.F . . 8
9 2
10 BLOCK = ['CONST' { IDENTIFIER f, 12
11 tz? UNSIGNED_INTEGER $ ',' } ';'] 3 11 12 13 13 18
12 ['VAR' { IDENTIFIER $ ',* } ;%] < 24 :
13 { $ 'PROCEDURE! IDENTIFIER ':' BLOCK ';! } <e ol
14 STATEMENT . <> 2y
15 2 1" 24
16 STATEMENT = [(IDENTIFIER ':=' EXPRESSION) 5 24
17 {(*CALL' IDENTIFIER) = 24
18 J(*BEGIN' { STATEMENT $ ';' } 'END') BEGIN 18
19 {('IF' CONDITION 'THEN' STATEMENT) CALL i1
20 | ( '"WHILE' CONDITION 'DO' STATEMENT)] . CONST 10
21 DO 20
22 CONDITION = ('ODD' EXPRESSION) END 18
23 | (EXPRESSION IDENT 34
24 (=t ] IO ] I ] et | oIxr ] 15e) IF 19
25 EXPRESSION) . oDD 22
26 PROCEDURE 13
27 EXPRESSION = ['4' | f='] { TERM $ ('+' | %=9)} . THEN 19
28 UINTEGER 36
29 TERM = { FACTOR ¢ ('#' | v/9)} . VAR 12
30 WHILE 20
31 FACTOR = IDENTIFIER | UNSIGNED_INTEGER
32 | ('(' EXPRESSION ')') .
33 *FIRST' SYMBOL SETS ( SEQUENTIAL) 3-MAY-83 15:30:03.
34 IDENTIFIER = 'IDENT' ., P T T T T T e T P T PP T Y
35
36 UNSIGNED_INTEGER = 'UINTEGER' .
37 $44%3 BLOCK
) 1 CONST
> 2 VAR
NON-TERMINAL SYMBOLS VERSION  3-MAY-83 15:30:03. <> 3 PROCEDURE
:::::=:=====================;===================== <> )‘ >>STATEMENT >>IDENTIFIER
' IDENT CALL BEGIN IF WHILE
SYMBOL CROSSREFERENCES S 5
BLOCK 8 10% 13 :
CONDITION 19 20 22% i CONDITION :
EXPRESSION 15 22 23 25 1% 32 1 oDD
FACTOR 29 31 >>EXPRESSION
IDENTIFIER 8 10 12 13 16 17 + -
31 348 <> 2 >>TERM >>FACTOR >>IDENTIFIER
PROGRAM 8% KK IDENT
STATEMENT 14 16% 18 19 20 S>UNSIGNED_INTEGER
TERM 27 20% UINTEGER ¢{ :
5. Si0NED_INTEGER {9 33 36®
EXPRESSION &
1 + -
<> 2 >>TERM D>>FACTOR >>IDENTIFIER
IDENT

>>UNSIGNED,_INTEGER
UINTEGER (



FACTOR :
1 >>IDENTIFIER
IDENT
>>UNSIGNED_INTEGER
UINTEGER (

IDENTIFIER
i IDENT

PROGRAM
1 >>IDENTIFIER
IDENT

STATEMENT :
1 >>IDENTIFIER
IDENT CALL BEGIN IF WHILE

O 2
TERM
1 >>FACTOR >>IDENTIFIER
IDENT
.>>UNSIGNED_INTEGER
UINTEGER (
UNSIGNED_INTEGER :
1 UINTEGER
'FIRST' SYMBOL SETS (ALPHABETICAL) 3-MAY-83 15:30:03
N e R N R I N N N S I N S SRS IS RN RN AR RSN
BLOCK :
<> BEGIN CALL CONST IDENT IF
PROCEDURE VAR WHILE
CONDITION :
( + - IDENT ODD UINTEGER
EXPRESSION :
{ + = IDENT UINTEGER
FACTOR :
( IDENT UINTEGER
IDENTIFIER :
IDENT
PROGRAM :
IDENT
STATEMENT :
<O BEGIN CALL IDENT 1IF WHILE
TERM

( IDENT UINTEGER

UNSIGNED_INTEGER :
UINTEGER

'FOLLOW® SYMBOL SETS (SEQUENTIAL) 3~MAY-83 15:30:03.

BLOCK @

CONDITION @
1 THEN
i DO

EXPRESSION ¢
1 5 O < K > O
1)

=> 2 >>STATEMENT

«-> 2 >>CONDITION

FACTOR @
L
<> 2
-> 2 >>TERM
IDENTIFIER @
1 >>BLOCK
1 CONST
<> 2 VAR
<O 3 PROCEDURE
<O 4 >>STATEMENT >>IDENTIFIER
L} IDENT CALL BEGIN IF WHILE
< 5 .
1 =
1,
<O 2 H
1 H
1 'z

=> 2 >>PROGRAM
~> 2 >>STATEMENT
=> 2 >>FACTOR

PROGRAM :
1

STATEMENT ¢

1 i
<> 2 END
-> 2 >>BLOCK

TERM

1 4+ -
<2
=> 2 >>EXPRESSION

UNSIGNED_INTEGER 3
L

20

«> 2 >>FACTOR
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'FOLLOW! SYMBOL SET (ALPHABETICAL) 3-MAY-83 15:30:03 VERSION  3-MAY-83 15:30:03.

RSN NN NN NN S RO EE S ERE SR NI ERERERNERRES

1 (I|GQilllQﬁllIIQIlilIQQl!ll.!l.ﬂllll!l!li.&ll!&)
2 (¢ *)
BLOCK 3 (% PL/0 SAMPLE PROGRAM *)
- 4 (* L
' 5 éllnllllﬂﬂnlﬂildllllﬂlﬂlllllli!lllpi!ll!lllilll;
6
CONDITION : 7
DO THEN 8 PROGRAM EXAMPLE
9
. 10 CONST M=7 , N=85
EXPRESSION : 11 VAR X,Y,2,Q,R ;
) 3 £ &=z &> e > > DO 12
END THEN 13 :
14 PROCEDURE MULTIPLY ¢
, 15 VAR A,B
FACTOR ¢ 16
) L B S R R TS S 17 BEGIN A:=X ; B:isY  2:=0
> >= DO END THEN 18 WHILE B>0 DO
19 BEGIN IF ODD B THEN 2:sZ+A
20 At=2%) : B:=B/2
IDENTIFIER @ 24  END
e Y A L I R Y 22 END (% MULTIPLY *) 3
<> = > 5= BEGIN CALL CONST 23
DO IDENT IF PROCEDURE THEN 24
VAR WHILE 25 PROCEDURE DIVIDE
" 26 VAR W
27
PROGRAM ¢ 28 BEGIN R:=X { Q=0 ; WY 3

>>>>> EMPTY 'FOLLOW! SYMBOL SET <<<<¢ 29 WHILE W<=R DO W:=2%W
30 WHILE W>Y DO

31 BEGIN Q:=2%Q ; W:eW/2
STATEMENT ¢ 32 IF W<=R THEN
. 3 END 33 BEGIN Ri=R-W ; Q:=Q+1
34 END
35 END
TERM : 36 END (% DIVIDE %)
) 4 = o 3 < K2 O e > O 37
DO END THEN 38
39 (#eceee MAIN PROGRAM wmac-i@)
40 BEGIN
UNSIGNED_INTEGER ! 41 X:eM 3 Y:=N ; CALL MULTIPLY 3
+ 0y = ) K Ke O 42 X:=25 § Y:s3 ; CALL DIVIDE
= > >z DO END THEN 43 END ,
uh  $3444
CORRECT

NO 'INTERSECTION' SET FOUND

SEPARATORS: SYNTAX CHECK  3-MAY-83 15:30:03.

F 13t 1 ittt 1ttt sttt ittt ittt ittt ittt it
BLANK $348¢ ( (% ) & ®) 4
- o/ tz 3 £ K2 O o > O

COMMENT DELIMITERS
(2 @)



IDENTIFIER LIST VERSION  3-MAY-83 15:30:03.

M ENNIE RN S B RNOES NN IR ONC R RS I CEERE NG EXPRESSION

SYMBOL CROSSREFERENCES rtgjw
A 15 17 19 20 20 ~LiAns
B 15 17 18 19 20 20
DIVIDE 25 b2

8

EXAMPLE
M 10 41
MULTIPLY 14 41
N 10 Y , TERM
Q 1 28 31 31 33 33
R 1 28 29 32 33 33
W 26 28 29 29 29 30
3 31 32 33 " +{FRETGR)
X 1" 17 28 Y | 42
Y 11 17 28 30 3] 42
2 " i 19 19 FACTOR
-+{ IDENTIFIER }
PROGRAM
gqﬁﬁﬁﬂﬁﬂf ~——»{BLOCK } (g — o, {EXPRESSION]] O
1DENTIF IER
BLOCK
~(GEND
~
UNSIGNED- INTEGER
+(UINIEGER

(
+{ STATERENT

STATEMENT

€D,
D\ st —E>—|
W‘m

CONDITION




