Distributed modelling and data base
management in simulation

Frangois E. Cellier

Dept. of Electrical & Computer Engr.
University of Arizona
Tucson, AZ 85721

ABSTRACT

This paper describes a concept of structuring
simulation systems in such a way, that the individual
program modules remain manageably small. This concept
shows some considerable advantages over currently
applied programming techniques in that it provides the
user of the software with increased flexibility, in
that it allows several persons to interact with aiffe-
rent portions of the software system in a basically
independent manner, and in that it opens new perspec-
tives with respect to multiprocessor implementations.

INTRODUCTION

In a recent paper (1), we listed 141 different
desirable features of simulation software systems vs
15 different software systems currently on the market
or under development. The most comprehensive of these
systems, COSY (2,3), is a huge system with roughly 300
keywords, and yet a good number of the 141 features
are not implemented even in COSY,

Worse, those 141 features are strictly features of
a simulation svstem leaving the model building process
entirely up to the user. Oren (4) recently listed a
large number of features, he would like to see imple-
mented in a modelling system. Compared to a system
providing a good number of those features, COSY is
still just a dwarf.

What are we going to do about this? Are we going

to code up a gigantesque program of some several 100000
Tines of code to implement a supercompiler for a super-
software system? Who is going to maintain such a soft-
ware thereafter? Who is going to further enhance it

by implementing yet additional features (which are most
certain to be requested!)? Obviously, this is not a
conceivable solution to the problem.

We must find ways to decompose this complex pro-
blem into a series of simpler tasks which are basically
independent of each other, each of which must be kept
sufficiently small to make it implementable, maintain-
able, and updatable. These modules are interfaced
through a data base (we might want to call it inform-
ation base) in which simulation trajectories are stored
but also sets of parameter values, table-look-up func-
tions, experiment descriptions, models, and finally
note books.

Now, all the involved graphics commands can be
thrown out of the simulation, and replaced by a simple
STORE command to store data in the data base.

Graphics are preformed by a separate interactive gra-
phics program which picks up the required data from the
data base, and combines them into fancy graphs which
can be even more powerful than in any of the existing
simulation languages, as the graphics program is now
entirely independent of the simulation language, and

21

Magnus Rimvall
Institute of Automatic Control
Swiss Federal Institute of Technology
ETH-Zentrum
CH-8092 Ziirich - Switzerland

can handle data produced by eventually any program.
The same holds true for statistical computations which
can be performed by a separate interactive statistics
program hooked to the data base. And these are just
two examples of programs which can easily be separated
out. We shall see further examples in due course.

DATA BASE ORGANIZATION

This concept has first been implemented by
Standridge (5) who designed the SDL/I simulation data
language embedding a relational data base. Each rel-
ation consists of one or several tables ideally suited
to store sets of trajectories from one simulation run
(one table) or sets of trajectories from several re-
plications (several tables). SDL/I has two user
interfaces:

a) A batch-operated command interface (OIL definition
language) for standardized data operations, and

b) a program interface (Fortran subroutines) for more
general data manipulations.

These two interfaces make SDL/I a powerful tool, as
standard type applications can be programmed quickly by
creating a file containing a couple of simple command
lines (usually 10 to 20 lines of code) which is then
submitted as input to the (batch-operated) data base
manager which interprets them, and executes the reques-
ted actions. More involved applications are performed
by coding a Fortran program (or any program capable of
calling Fortran subroutines) in which individual data
entries in the data base can be accessed and modified
according to any user-specified algorithm.

Disadvantages of SDL/I are as follows:

a) The command language should be interactive rather

than batch-operated.

b} The command language should allow to refer to
relations and variables by name rather than by

index.

¢) The command language is not powerful enough with
respect to data manipulations supported. The only
primitive data element of SDL/I is in fact a two-
dimensional matrix. The command language should
allow us to perform any data operation on these
data elements in a calculus-oriented and user-

friendly manner, say:
Z(TOM) = X{JOHN) + Y(MARY[3])

where TOM and JOHN are names of relations, MARY{3]
refers to the third table (replication) in the
relation called MARY, and X, Y and Z are column
names (single trajectories = variables) in these
relations. Thus, the above statement in fact de-
notes a vector operation. A good example of an
interactive language for matrix manipulations is

d)

e)

f).

MATLAB {6}. An immediate solution to the problem
might be fo enhance MATLAB by two commands: LOADREL
and SAYEREL to retrieve and store individual rel-
ations, and code the above command in MATLAB as:

LOADREL ('SAMPLE.DBS' ,JOHN,J)
LOADREL('SAHPLE.DBS',MARY,M],MZ,M3,M4)
LOADREL (' SAMPLE.DBS' ,TOM,T)

T{:,7) = J(:,4) + M3(:,6);

SAYEREL (' SAMPLE.DBS' ,TOM,T)

Obviously, this is just a quick work-around rather
than a true solution, as we still would have to
refer to the variables by their relative position
(2 being the 7th column of relation TOM, etc.)
rather than by their mnemonic name. A better solu-
tion in the Tong run may be to throw away SDL/!
altogether, and start from scratch using MATLAB as
a basis.

SDL/I contains some graphics and statistics opera-
tors which really ought to be part of the applic-
ation packages rather than being part of the data
base manager.

SDL/1 stores all data in one single file which is
operated sequentially (for portability consider-
ations) by simple READ/WRITE-commands. This makes
the data access extremely slow and inefficient as
the data grows in volume. A better (and almost as
portable) solution would be to store just the data
base organization in this central file. Each rel-
ation should occupy a file of its own (with a
generic name: ZZ0001.DAT, ...}. Where currently
the actual data is stored, pointers should indicate
the generic file name where the actual data can be
found.

SDL/1 does not provide for simultaneous multiple-
access mechanisms. This feature is important for
our last application: the multi-processor implement-
ation of our simulation system. Again, the solu-
tion is conceptually simple: Rather than letting
the user communicate directly with the data base
manager, a message passing mechanism is placed
between user and data base manager (... making the
data base almost batch-operated again !). The data
base manager can now reside in a CPU of its own,

the visible "operating system” of which is the
command interpreter of the data base manager.
user sends a "program” (single command) to the
data base processor through remote-job entry (RJE)
whenever he requests a data base access. The queue
manager of the Yocal area network (LAN) queues the
commands (requests) for the data base manager, re-
quests which are passed through the LAN by the file
server of the LAN. One user sitting at one work-
station can perform a simulation, while another
user on another workstation can simultaneously
analyse data produced by previous simulations in

a graphical or statistical sense. A specialized
microprocessor can take measurements from a real
plant which are simultaneously stored in the data
base through the same access mechanisms. The pro-
Ject manager can retrieve data, compare simulated
to measured trajectories graphically, write note
book files, etc.. Using the graphics module, we
mgy even decide to Took at data which are concur-
rently generated by another processor running a
simulation program. The only delay involved is

the one created by the two message passing mechan-.
isms involved. However, while the simulation still
goes on, we may decide to do something else, e.qg.
compute some statistics, etc.. The simulation pro-

Each

22

gram shall never even notice. Experimenting with

simulations finally feels just the same as walking
a Voltage meter over to a power plant, and measur-
ing and analysing data taken from that plant.

THE HISTORY OF SIMULATION SOFTWARE SYSTEMS

10 years ago, life was still fairly easy for a
simulationist. He coded his CSMP program on a card
deck simply by repunching all cards which were in error,
sorting them by hand, and placing them in a sort of
cookie sheet entitled "CSMP-INPUT". He then waited for
a couple of hours, and finally found his listing in a
special cabinet entitled "OUTPUT". The computer for
him was just a magic box reading in punched cards,
doing something with them, and finally printing out
Tistings. He did not need to know anything except what
was written in his CSMP manual.

The software systems themselves were simple enough.
A CSMP manual could be digested in a couple of hours,
and here we went analysing our 2nd order oscillatory
network or whatever,

Alan Pritsker calls these systems first generation
simulation software, and amazingly enough, most of the
simulation systems in fashion today still fall into the
same category (although the time of punched cards is
long passed -- we used them for a couple of years to
mark on their back side where we were, and placed them
behind the name tag on our office doors ... until they
were used up). The only real changes are with respect
to the input medium (using a terminal and a text editor
which have to be mastered), with respect to the output
media (graphical output on either plotter or graphical
terminal), and partly with respect to the execution
mode (interactive modification of parameter values and
rerun) -- thus, basically reducing the turn around.

An ACSL manual is still as easy to read as the meanwhile
oldfashioned CSMP manual.

COSY is a typical example of a second generation
simulation software system, much more complex with re-
spect to the features offered, but still a monolithic
piece of software primarily for batch execution of
large-scale simulation problems such as complex missile
simulations, drum-boiler-turbine systems, etc..

SDL/I introduced the third generation of simulation
software. A set of independent programs:

1) SLAM combined continuous/discrete simulation

{7,8)

2) SIMCHART : graphical postprocessor

3) AID statistical analysis and distribution

function fitting

were hooked around the data base (SDL/I) in the way de-
scribed in the introduction to this paper. The major
concern with this approach was the problem of appro-
priately embedding the software in the underlying
operating system. Prior to executing any of these
modules, a fair number of command language instructions
(file assignments, etc.) had to be given to the opera-
ting system. The required knowledge of the operating
system was quite substantial. Moreover, the same in-
structions had to be typed in over and over again, as
e.9. the execution of a simulation program (from a
users point of view an intrinsic operation) possibly
invalved:

a) assigning the input file

b) calling the preprocessor translating the model into

an intermediate language (mostly Fortran),
¢) reassigning some files,

d) calling the Fortran compiler (possibly several times

for several files in a sequence),
e) calling the linker,
f) executing the linked program,
g) reassigning files again,
h)

Clever users started soon to write their own short
command procedures to circumvent this boring repetition
of one and the same command sequence, and this brings
us to:

calling a graphics postprocessor.

THE SIMULATION OPERATING SYSTEM

As we just learnt, the "primitive" operational
instructions of a simulation user (to execute a problem,
to delete a problem, to store a problem in the model
base, etc.) consist of an entire series of "primitive"
operational instructions of the underlying general-
purpose operating system. ‘In fact, many of the pre-
viously discussed data base operations are just inter-
nal communications between different program modules
from which the user should be protected altogether.

It makes thus a lot of sense to combine all those
previously developed short command procedures into one
large "command procedure" (which, for efficiency con-
siderations, may eventually again be coded in a high
level programming language such as Pascal, making calls
to operating system functions (on VAX/VMS: LIBS... -
functions)), protecting the user (as in the good old
days) entirely from any deeper understanding of the
underlying general-purpose operating system. On a
VAX, this program may be started from within the
LOGIN.COM-file, followed by an immediate LOGOUT. In
this case, the user never even enters VMS, and thus
gets to believe that this command procedure constitutes
the operating system of the machine. We call it there-
fore the simulation operating system. As high level
languages protect the user from underlying machine
Tanguage instructions, special-purpose operating
systems protect him from the underlying general-purpose
operating system instructions.

The first commercially available simulation
operating system (4th generation simulation software)
was TESS (9) released by Pritsker & Associates in
summer 1984, This system contains as subsystems:

1) SLAM-II : enhanced version of SLAM
2) SDL/II : enhanced data base
3) AID : data analysis module

4) SIMCHART/II : enhanced SIMCHART (color graphics)
5) An interactive color-graphics PERT-network builder
6) A form-driven data-input builder

7) An interactive color-graphics facility diagram
builder

8) A rule builder for simulation run-time animation

Although the TESS system as a whole is pretty large

(roughly 125'000 lines of Fortran code -- according to
private communication by Charlie Standridge), each in-
dividual program module is manageably small. The TESS
language itself is amazingly simple. Each command con-

23

sists of one out of 4 verbs (BUILD, REPORT, GRAPH, and
DEFINE) followed by one out of 8 nouns (NETWORK,
CONTROLS, SCENARIO, DATA, SUMMARY, FACILITIES and
RULES) -- reminding us very much of the famous
"ADVENTURE" games ! The following table states all
meaningful combinations of this orthogonal structure.

MODELING & INPUTS & PRESENTATION
STMULATION RESULTS SPECIFICATIONS
%
»~ 4 2 > 17 -
£| 8| % SIE|S
- = ul Lt = == 4 el
HEEBE BB EEE
BUILD X X X X X X X X
REPORT X X X X X
2
GRAPH X X X X X
g
§
& DEFINE X X

Each node (that is: each cross in the table) represents
one program module. Thus, TESS consists of 20 inde-
pendent program modules, all communicating with each
other through the data base (21st program), unified
through the TESS command language (22nd program). This
approach protects the user from the nitty-gritties of
the underlying operating system, and to a large extent
even from a direct confrontation with the data base
manager, as the majority of data base access commands
are executed by the TESS language itself.

The disadvantage of the approach chosen lies in
the fact that we cannot possibly foresee what TESS
commands the actual TESS user would like to have at
his disposal. To give an example: Here comes a user
who claims that his SLAM-II program is so large that
he could not possibly execute it in an interactive way.
In fact, the accounting system at his installation has
been set up to give a bonus for night-time operation.
For this reason, he would like to submit his SLAM-II
program to the batch queue for night execution only.
Unfortunately, this is the end of TESS usage, as the
TESS designers had not foreseen this request (and
obviously never could foresee all possible needs). The
poor user has to resort to good old VMS, digging in
the files to find his SLAM program {no easy task as
his program forms part of the model base.), and submit
it to the batch queue manually. This again requires
a good knowledge of both VMS and the internal struc-
tures of TESS.

For these reasons, MIDGET (10,11) goes yet another
step further. Rather than providing one static TESS-
1ike command language, MIDGET provides for a framework
for the development of such simulation operating sys-
tems (called "development systems" in MIDGET). A
v.DSD"-file contains the syntactic description of the
command language together with the documentation to be
included in the interactive HELP-1ibrary. A *,COM"-
file contains the semantic routines associated with
each command. A Pascal-coded compiler-compiler
(NEWDEV) which is part of the MIDGET kernel system
then generates the individual menu-driven development
system. Each development system is in itself then a
TESS-1ike language for a particular task. Inclusion
of a new command is a matter of ¥2 hour programming,
development of a completely new development system is

a matter of roughly 3 days programming. Currently
available are development systems for a couple of
simulation languages (including: ACSL, SLAM, SDL/I,
GASP-V/INTERACTIVE), for the TEX word processor of
Knuth {12), for a syntax analysis system (13), and for
playing games on the VAX (our current QIX record is at
29000 points -- how about that!). The syntax analysis
system is of particular interest: Here NEWDEV is a
compiler-compiler to create the environment in which
to run another compiler-compiler for LL(1) grammar
analysis.

MULTIPROCESSOR IMPLEMENTATIONS

Multiprocessor implementations of the previously
elaborated concepts are not far down the road. The
first generation of local area networks (LAN's) pro-

vided for communication between terminals and computers.

At ETH Zurich, we have installed the Sytek Localnet 20
(14) with several 100 PCU's and more than 100 miles of
coax cable. This network makes all main frames and
some process computers available to hundreds of users
sitting at 100s of terminals throughout the Campus.
Gateways connect this system to the Sytek network of
the University of Zurich and to Telepak, the Swiss

X25 switching data network. At the University of
Arizona, we have installed several local area networks
within the Electrical & Computer Engr. Dept. (including
Localnet 20, Ethernet, and Concord Datasystem's

Token Net). A colleague of ours (Ralph Martinez) has
a project ongoing to build gateways among these net-
works, and also to the Defense Data Network (15).

The second generation of LAN-software shall in-
clude enhanced capabilities for:

1) file transfer protocols,

2) electronic mail,

3) printer servers,

4) queue managers (for the ports), and
5) remote-job-entry (RJE) protocols.

Ralph Martinez is working on such a system (for the
Sytek network), and the software shall be released in
the second quarter of 1985. A specialized data base
processor is already on the market {INTELs iDBP 86/440
(16)) which allows to store files in a host-independent
filehandling system hooked to a LAN (Ethernet).

Currently, we are about to design the new data
language (aqn the basis of MATLAB). The first imple-
mentation shall be made available on VAX/VMS. However,
the program shall be kept as portable as possible, and
we consider to transfer it lateron to an INTEL 286/310
running iRMX 286 hooked to the Localnet 20, where it
shall reside as a special-purpose operating system,

In fact, this "operating system" shall Took like a
time-shared, batch-operated main-frame system,
"Programs” (data access commands) are passed to it
by means of the RJE network protocols.

A prototype of the interactive color-graphics
system (including threedimensional graphics with hidden
lines removed, envelope graphics, split-screen mode)
is already available (on VAX). It shall be reimple-
mented during the coming months (on an INTEL 286/310)
to make it commercially available.

. We are also working on a raw data analysis module
implementing the concepts of SAPS (17).

. A wide range of simulation software is already
available including DARE/INTERACTIVE, DESCTOP, and

24

GASP-
obtain the required interfaces to

V/INTERACTIVE (all on VAX/VMS}: kAlA sy%te?ﬁ shall
in em to the

simulation data processor.

tn

(10)

(1)

(12)

(13)

(14)

(15)

(16)
(17)

REFERENCES

F.E.Cellier, "Simulation Software: Today and
Tomorrow", Proc. of the IMACS Symposium on
Simulation in Engineering Sciences, Nantes, France,
May 9-11, 1983, (J.Burger, Y.Varny, eds.),
North-Holland Publishing Company, pp. 3-19.

F.E.Cellier, A.P.Bongulielmi, "The COSY Simulation
Language", Proc. of the 9th IMACS Congress on
Simulation of Systems, Sorrento, Italy,

September 24-28, 1979, (G.Savastano, G.C.Vansteen-
kiste, L.Dekker, eds.), North~Holland Publishing
Company, pp. 271-281.

F.E.Cellier, et alia, “Discrete Processes in COSY",
Proc. of the European Simulation Meeting on Simul-
ation Methodology, Cosenza, Italy, April 9-11, 198]
(F. Maceri, ed.), to appear.

T.1.0ren, "Computer-Aided Modelling Systems",
Progress in Modelling and Simulation, {F.E.Cellier,
ed.), Academic Press, 1982, pp. 189-203.

C.R.Standridge, A.A.B.Pritsker, "Using Data Base
Capabilities in Simulation, Progress in Modelling
and Simulation, (F.E.Cellier, ed.), Academic Press,
1982, pp. 347-365.

C.Moler, "MATLAB Users' Guide”, Technical Report:
CS81-1 (Revised), August 1982, Dept. of Computer
Science, University of New Mexico, Albuquerque,
NM 87131, 60p.

A.A.B.Pritsker, Introduction to Simulation and
sraM-Ir, Second Edition, Halsted Press, 1984,
612p.

C.D.Pegden, A.A.B.Pritsker, "The Many Interfaces
of SLAM", progress in Modelling and Simulation,
(F.E.Cellier, ed.), Academic Press, 1982,

pp. 247-261.

Pritsker & Associates, Inc., The TESS User's
Manual, P.0.Box 2413, West Lafayette, IN 47906,
May 1984, 515p.

F.E.Cellier, M.Rimvall, "MIDGET: A Framework for
Developing Special-Purpose Operating Systems",
in preparation.

M.Rimvall, F.E.Cellier, "MIDGET, Ein flexibles,
simulationstechnisches Entwicklungssystem",

Proc. of the ASIM'84 Symposium, Vienna, Austria,
September 25-27, 1984, Springer, Informatik Fach-
berichte.

D.Knuth, The TEX Text Processing System, Digital
Press, 1979.

A.P.Bongulielmi, F.E.Cellier, "On the Usefulness
of Deterministic Grammars for Simulation Languages"
simuletter, Vol. 15, No. 1, 1984, pp. 14-36.

Sytek, Inc., LocalNet 20, Reference Manual and
Installation Guide, Document No. R2000.1/1-028,
1225 Charleston Rd., Mountain View, CA 94043.

R.Martinez, J.Sheppard, “Internet Gateway Protocols
and VLSI", Proc. of the Government Microcircuit
Applications Conference, November 6-8, 1984,

Las Vegas.

Intel, Inc., iDBP DBMS Reference Manual, 1983.

H.J.Uyttenhove, sapPs sSystem Approach Problem Solver,
Ph.D. Thesis, SUNY Binghampton NY, 1981

