CONFERENCE ON CONTINUOUS SYSTEM
SIMULATION LANGUAGES

Proceedings of the Conference on
Continuous System Simulation Languages

23-25 January 1986
San Diego, California

Edited by
Francois E. Cellier, PhD

University of Arizona

A Society for Computer Simulation (Simulation Councils, Inc.) publication.

San Diego, California

Enhanced run-time experiments for continuous system
simulation languages

Dr. Frangois E. Cellier
Associate Professor
Dept. of Electrical & Computer Engineering
The University of Arizona
Tucson, Arizona 85721

Abstract

in recent years, CSSL's have seen a drastic
improvement of their capabilities. Most of these
enhancements are concerned with:

a) modelling: enhanced power of model building and
model structuring facilities including specification
of submodels, model bases (data bases to store
models and submodels), and proper discontinuity
handling (combined continuous/discrete simulation)

b) compilation: enhanced compilation technigues

including separate compilation of submodels, and

direct executing languages (faster response in an
interactive execution environment)

¢) execution: enhanced integration techniques
including new algorithms for stiff systems, highly
oscillatory systems, linear systems, and

techniques for state-space partitioning (faster
execution of large-scale systems).

However, very little has happened with respect to
the flexibility in experimenting with the simulation
model. Basically, only two «experiments» are available
in the classical CSSL:

a) simulation from time O to time ¢/, (expressed by:
FINTIM, TMAX, ..)

b) simulation from time ¢ until something happens
{expressed by: FINISH, TERMINATE, ...).

This is not what we like to find. Ideally seen, we
should be able to design our experiment entirely separate
from the model itself. With the modelling stage already
completed, we would like to decide on the experiment to
be performed, such as the nature of the variables to be
monitored during simulation, evaluation of steady-state
points, derivation of linearized models and their
eigenvalues, execution of complete sensitivity analyses,

78

or replication analyses, etc..

DARE-INTERACTIVE is a new dialect within the
DARE family of simulation languages which has heen
designed and implemented as a testbed for enhanced and
more intelligent run-time experiments. With one single
command, it is already possible to perform a complete
range analysis (sensitivity analysis for nonlinear
models), or a complete replication analysis. The graphics
postprocessor allows to view families of trajectories
either by use of envelope graphics or threedimensional
graphics with hidden lines removed. Envelope graphics
allow to view the range of a variable as a function of
parameter incertainties, instead of a particular

_trajectory, displayed with fourteen digits accuracy out of

which possibly not a single one may be significant ()
Other experiments such as automated steady-state
finding, and curve fitting are currently under
development.

In this paper, we wish to summarize what
possibilities exist with respect to enhancing the
capabilities of simulation run-time experimentation. At
the same time, we shail show practical examples of
implementation of some of these ideas in the
DARE-INTERACTIVE software system.

Sensitivity Analysis

Sensitivity Analysis describes the
behavior of a (linearized) simulation
model In the nelghborhood of an
operating point. The sensitivity
mode! determines the derivatives of
the state variables with respect (to
the parameters under Investigation.

Eventhough sensitivity analysis has been
developed for the analysis of linear systems, it can easily
be extended to large classes of nonlinear systems as well.
In this case, however, the results are not global, but local
to the neighborhood of an operating point. Nonlinear

systems can be linearized in the neighborhood of their
operating points as long as no discontinuities take place
as part of the operating behavior (e.g. bang-bang control),
and as long as the nonlinearities do not essentially govern
the behavior of the system in its operating environment
(e.g. oscillators).

So far, sensitivity analysis was always
performed either by numerical approximations at
run-time, or by manually adding the sensitivity model to
the set of differential equations describing the system
behavior. The former procedure is inefficient and
inaccurate while the latter is tedious, as for each
parameter, there have to be added another »~ differential
equations where n is the mode! order,

it is, however, perfectly possible to automate the
generation of the sensitivity model at compile time. For
that purpose, we require an algebraic differentiation
processor that decomposes complicated expressions
into sets of primitive expressions, and adds the
corresponding derivatives to them. As an example, the
expression:

y = xesin{x2)

is decomposed into the set of primitives:

tl = x2
‘2 = 3“‘(‘[)
y = xot,

The sensitivity model is then added as:

gt; = 2ex
dty = cos(t,)edt,
dy = t2 + x.dt2

assuming that x is the parameter with respect to which
we want to evaluate the sensitivity. ¢y is then the
sensitivity eguation. As this example shows, each
primitive expression can be treated separately by a
simple table jook-up.

We currently have available an ALGOL-coded
program that can compute the derivatives of any ALGOL
procedure with respect to any variable or array of
variables. As most simulation languages use FORTRAN as
their target code, we currently develop a new version of
that software which is PASCAL-coded, and ailows to
compute derivatives of any FORTRAN subroutine or set of
FORTRAN subroutines with respect to any variable or
array of variables. This program shall be integrated into
DARE—INTERACTIVE 2t a later stage.

79

Range Analysis

Range Analysis describes the behavior
o7 a (nonlinear) simulation model over
an operating range of a set of mode’s
parameters. Range Analysrs Is
Sensitivity Analysis in the large.

Sensitivity analysis describes nenlinear models
only in the neighborhood of an operating point. How large
the neighborhood may be without invalidating the results
is a question that is generally not easy to answer. Range
analysis solves that problem to some extent. Here, the
simulation is repeated many times with parameters
varying over their operating ranges. For practical
purposes, only the extreme values are tested, that is: for
k parameters having tolerances associated with them,
we perform 2 simulation runs for all worst case
combinations. Of course, in a nonlinear model, we cannot
know for sure that the worst case takes place at the
borders of the parametfer ranges, but this assumption
makes the problem treatable in an orderly fashion, and, if
the tolerances are sufficiently small, it is probably
justified.

For demonsiration purposes, let us look at
Forrester's world model We assume that four

parameters:
NRUN: Natural rescurces «normal» consumption
POLN: «Normal» pollution
FRN: «HNormal» food ratio
CIAFN: «Nermail» percentage of resources

allecated to the agricultural sector

have tolerances of 25% associated with each of them.
In DARE-INTERACTIVE, parameters are stored in a
separate parameter file which is interactively generated
by the run-time monitor prior to the first execution of
any simulation run. Any parameter may carry tolerances
which do not influence the simulation during normal runs,
but which are interpreted by the system when a range
analysis is performed. The range analysis is executed,
either by specifying CALL RANGE instead of CALL RUN in
the logic block of the DARE program, or by using the
interactive run-time command RANGE in place of
SIMULATE. F/g. / shows the program flow of
DARE—-INTERACTIVE.

DARE—INTERACTIVE has three different modes in
which the user can interact with the system:

a4’ the modelling monitor: in which the user
specifies his model to the system

E

D

| MONITOR

b) the run-time monitor: in which the user
describes his experiment (e.g. parameter values,
run-time display, integration algorithm, type of
experiment (normal simulation, range analysis,
repiication analysis)

c¢) the graphics monitor: in which the user

interacts with the simuiation data-base to view

results of one or several previously performed
simulations.

In our example, we performed a range analysis in
the run-time mode. Automatically, /7 different
simulation runs were executed (the /6 worst cases plus
one «controi» run with the standard parameter settings),
which were stored in /7 different SAVE records. Wwe
then went to the graphics processor to view the envelope
of the population trajectories of the 16 worst case runs
with the /## curve as a reference curve by specifying:

envelope(-blve:yellow) ,p(1:red),p(16),p(1 7:black)

which generated F7g. 2

H7.00%10°
{5.00*109]
00%*10°

-1.00%10

80

As none of the parameters was an initial
condition, all runs obviously start at the same point.
However, they vary largely in their subsequent behavior.
For the project manager, envelope graphics are much more
meaningful that the regular trajectory behavior, as he can
judge much better how his system is really going to
perform. A large range indicates large sensitivities, that
is: the project manager must be very careful in drawing
conclusions, A small range indicates robust behavior of
the system under study.

Replication Analysis

Replication Analysis describes (he
behavior of a noisy system over the
possible ranges or nolse generator
parameters. Replication Analysis is
sensitivity to norse.

Replication analysis is used to study the
influence of noise generators on a noisy system. In
general, it is difficult to judge from a single trajectory
whether a particular observed behavior stems from the
dynamics of the process or from the properties of the
noise generator. In replication analysis, the simulation is
repeated many times with different seed values for the
random number generators. In this way, we again can
obtain an envelope of system performance.

In DARE-INTERACTIVE, we can either specify
CALL REPLIC(100} in the logic block, or REPLICATE,100
as a run-time command to obtain 100 replication runs
which again are stored automatically in 100 different
SAVE records.

We applied this technique to Forrester's world
model by making the former four «constants® now

. variables that are uniformally distributed over a range of

+25% (DARE-INTERACTIVE contains a random number
generator with several independent streams each of wich
may take a different specifiable seed value. Random
variables can be drawn from // different distribution
functions.) We then selected a fixed step integration
algorithm (as variable step integration performs poorly
in case of noisy systems). Then, we performed a
repiication analysis over /6 runs, and displayed the
resulting envelope together with the result from the /7
run of the sensitivity analysis which we had previously
STASHed away into the permanent data base for later
reuse. The result is depicted in F/g 3:

L=p(1) L
=P(16X:

Obviously, /6 runs were not sufficient to get a
smooth envelope, but they were certainly sufficient to
verify that no «catastrophic» behavior is going to take
place if the parameters vary stochastically within the
specified range. In fact, the model seems to be quite
insensitive to this type of parameter variations. This
may partly be due to the lowpass characteristics of the
model which filters out all higher freguencies of the
noise generators which represent a large percentage of
the energy content of the noise signals.. We may have to
repeat the study by postulating a slower varying colored
noise.

Range Surveillance

Range Surveillance allows to monitor
the behavior of state variables and

_auxillary variables otherwise never
looked at by specifying operating
condrtions on Indivigual variables or
sets of variables usually in form of
Inequality constraints.

In a large-scale model, there may be hundreds of
variables out of which only a small percentage will ever
be looked at by the user. It is quite frequent that the
model is validated on the basis of individual variables
which seem to take on reasonabie values, and show a
dynamic behavior for which a plausible explanation can be
found. However, some other variables may pass unnoticed
while exhibiting physically impossible behavior (eg. a
population growing negative). For that purpose, we should
be able to specify operating conditions either by means of
ranges for individual state variables and/or auxillary
variables, or by means of inequality constraints involving
several variables. Currently, there is no such feature
built into DARE—-INTERACTIVE yet.

81

Continous Steady-State Finding

The Continuous Steadv-State s
aerineqd as lhe state In which all
state variables have come to a rest,
that is: All state derivatives take
simultaneously a value close to zero.

when we discuss techniques for continuous
steady-state finding, we mean techniques that execute
faster than straight forward simulation until the
steady-state is reached. Moreover, nonlinear models may
exhibit several continuous steady-states. Which.of them
is approached, may depend on the chosen injtial condition.
Continuous steady-state finding tries to determine all
possible steady-state points of a (nonlinear) model.

One way of solving this problem is to apply
nonlinear programming techniques to minimize the
weighted sum of the squares of all state derivatives.
Such a technique has been built into one of the DARE
dialects already, and is described in a separate paper in
this conference. Another way (as currently applied in
ACSL) s to look at the Jacobian of the model, and solve
for the linearized equations.

We plan to integrate similar algorithms also into
our version of DARE—INTERACTI VE.

Periodic Steady—State Finding

The Periogic Steady~State of 3 Model
s defined as a limit cycle aescribing
the behavior of ‘the model over all
future times.

Many nonlinear models do not approach a
continuous steady-state. Instead, they enter into a limit
cycle, that is: they show oscillatory behavior after the
transient period has elapsed. For low frequency limit
cycles, there is probably no better technigue avaiiable
than straight forward simulation. However, we face
frequently limit cycles exhibiting fairly high frequency
behavior. In such cases, the integration algorithm of
ordinary simulation runs has to assume very small step
sizes to follow the oscillations properly.

Periodic steady-state finding means to trade the
phase information of the limit cycle for more efficient
computation of its frequency and shape. Again, there have
been proposed several different technigues to tackle this
problem. One technique suggests to simulate the system
over one «period» of the limit cycle, and use the average
between initial value and final value for the next

simulation over another period, until the final value
converges to the initial value. This technique requires at
least a very educated guess about the length of the peried
of the final limit cycle. Another technique tracks either
maxima or minima of the simulation over some periods of
the transient oscillation, and uses these points for
extrapolating the solution over a longer time span,
effective]y superimposing a low frequency envelope
integration over the high frequency oscillatory
integration. This technique has been referred to as the
pseudostroboscopic integration algorithm. it is
pretty effective as long as only one pair of complex
eigenvalues of the Jacobian lies close to the imaginary
axis. Several such pairs in the vicinity of each other
interfere in a way that is known to communication
engineers as «fading». The pseudostroboscopic technique
mostly fails in such cases. Singular perturbations
could then still be used, but this technique is very hard to
automate.

Currently, no techniques for periodic steady-state
finding have been incorporated into DARE—INTERACTIVE,
but we plan to implement those techniques described
above.

Stochastic Steady-State Finding

The Stochastic Steady-State of 2
model is agefined as the time arter
which the short term mean valve of a
stochastic variable does no Jonger
change over time.

in all the simulation studies met so far, we were
interested in analyzing the dynamic behavior of a model.
However, there exist cases where we are actually
interested in the steady-state of a stochastic model, and
start gathering (statistical) information about the
system only after the transient period has already
elapsed. Such cases are called non-terminating runs.
They are frequently discussed in the discrete event
simulation literature, but were so far almost entirely
ignored by the continuous system simutation community.
However, the problem is of quite some interest, and
several of the techniques described for the discrete event
simulation case can easily be adapted to the continuous
case as well. Currently, we have no results yet on this
topic, but we are working on it, and plan to report about
our findings at a later stage.

82

Curve Fitting

Curve Fitting allows to determine a
setl of unknown parametérs on the
basis of an optimal match between
some postulated (e.g. measured.
trajectories, and the outcome of g
simulation.

Parameter identification is very closely related
to-simulation. It is rare that deductive modelling can be
taken up to the determination of exact model parameter
values. Thus, curve fitting is one of the foremost tasks
of simulationists. Nevertheless does the conventional
CSSL of today not offer any help in doing so. Most CSSL
languages allow to initiate an optimization study, but the
optimization algorithm is not provided, and traditional
CSSL structures (e.g. in CSMP or ACSL) even prevent the
user from applying a library function for that purpose. We
believe that a nonlinear programming package should be
an intrinsic part of any simulation system.

in DARE-INTERACTIVE, we are currently working
on the following solution. We want to introduce e.g. the
run-time command FIT,ST-07 to fit some of the
variables of our model to those variables specified in the
A% STASH record. Parameters to be fitted are declared
in the parameter file as UNKNOWN, eventually together
with a range in which the parameter values must be
located (inequality constraints involving one parameter
only). The format is the same as in the case of range
analysis. Additional equality constraints and inequality
constraints involving several parameters must be
specified in a different way, e.g by introducing the new
keyword CONSTRAINT followed by a legical condition in
the derivative block. The same syntax could then be
applied to both the curve fitting and the range
surveillance problem, where in the former case the
constraints involve parameters only, while in the latter
case they involve both variables and parameters. The
algorithm to be used is specified by a separate keyword
{similar to the -integration algorithm). The nonlinear
programming package has already been coded and tested.
Currently, we are working on the interface to
DARE—-INTERACTIVE.

A separate program GRAPHICS, which has
already been coded, transforms data stored on any ASCIH
file or series of ASCII files in free format to the format
of a (DARE-internal) TIME record, then calls the graphics
processor from where the data can be STASHed away. Yet
another program for real-time data. acquisition shall be
added at a later stage.

Simulation Data Base

The Simulation Data Base serves (o
held simulation data (and eventually
also other time histories) ror later
reuse. The data may stem [from
dirferent simulation runs, dirrerent
simulation models, possibly even
dirferent simulation systems.

The STASH file is the DARE-INTERACTIVE data
base which can holid any amount of data records stemming
from various sources. The graphics processor can
interact with the STASH file. In this way, results from
different simulation models, eventually even coded in
different languages, can be displayed together in one
graph. In the same way, it is possible to graph simulated
and measured data together in one piot.

DARE—-P was the first simulation language on
the market offering such a capability. Eventhough the
current STASH file structure is most primitive, it already
offers tremendous pessibilities.

We are currently reimplementing the DARE
graphics processor (a report on that project will be made
available at a later stage). Among others, also the STASH
file structure is currently being revised to further
enhance the capabilities of the system.

We are also working on an interactive program for
manipulation of technical data in a technical re/ationa’
gata base. The language shall be similar to MATLAB,
Cleve Moler's famous «matrix manipulation laboratory».
Relations in a relational data base are nothing but
matrices. Just the way how particular elements are
referenced, and the operations to be performed on those
data are different from conventional matrix manipulation
techniques. Recent research on spreadsheel analysis
shall also be considered in the project. A report about
this project shall be made later.

Conclusions

In this paper, we have summarized various means
of enhancing the flexibility and versatility of simulation
systems by improving their run-time experiment
description capabilities. We have ailso introduced
DARE-INTERACTIVE, a work bench for trying out various
of these ideas in practice. Some of the toois are already
operational such as the range analysis and the replication
analysis. Other tools are currently under development.
We project to have all the tools described in this paper
ready in one year from now with the exception of the data
base language which shall keep us busy for roughly two

83

years. We hope that this presentation will stimulate
more research in experiment description methodology.

