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ABSTRACT

A growth model for occidental white shrimp (Penaeus vannamei) in semi-
intensive farming using Fuzzy Inductive Reasoning (FIR) methodology is
presented. The model was developed using data from 17 cycles of culture
(1990-1995) at the “El Remolino” shrimp farm located on the Northwest
Pacific Coast in Sinaloa, Mexico. Due to the nature of the available
data, special routines for handling missing data had to be used. Several
qualitative relationships were found using the FIR methodology. The
significant variables detected were: temperature, salinity, oxygen, and
weight. The model was validated with two cycles that had not been used
in deriving the model. The forecast results exhibited an error near 10%,
which is a considerable improvement over the error of 20% obtained by
classical statistical methods. The use of FIR methodology in aquaculture
seems very promising. It can help farmers find good farming strategies

for obtaining better profits.

Key words: Growth models, shrimp farming, inductive reasoning, fuzzy

systems.



1. INTRODUCTION

Shrimp farming is a branch of agriculture representing annual sales
of millions of dollars and giving employment (direct and indirect) to
thousands of people in the world. The economic success depends on
many factors, including characteristics of the site, climate, water quality,
type of farming, technology used, shrimp species farmed, feeds, shrimp
diseases, farm management, market prices, production costs, government

support, capital, and human resources.

Farmers need to plan the dates for seeding and harvesting the ponds,
taking into account all the aforementioned factors, in order to get the
best profits. It is necessary to analyze the available data to propose
models that can help the producers accomplish this. Few attempts have
been made so far to construct growth models for shrimp in farms. The
few reports found in the open literature use classical statistical method-
ologies, such as multiple regression, and are based on structural model
assumptions that are not supported by deep knowledge as the system is
quite poorly understood (Carvajal, 1993). The prediction errors obtained
when using these models were at a level of approximately 20%, which is
quite high because they can lead to incorrect farming decisions that may

jeopardize the economic basis of the farming enterprise in serious ways.

In this paper, a new attempt at modeling shrimp growth in a farm
is presented that uses an inductive qualitative modeling methodology,
called Fuzzy Inductive Reasoning (FIR). FIR is based on the General
System Problem Solving (GSPS) paradigm proposed by Klir (1985). The
FIR methodology has been proven to be valuable when modeling and



predicting those systems which structure is either totally or at least par-
tially unknown, as it is usually the case of biomedical applications, such

as, anesthesiology and cardiology (Nebot et al., 1996, 1997).

One of the prime advantages of this methodology is that it is not based
on structural knowledge of the system under study, but derives its models
strictly by means of behavioral patterns observed during its knowledge
acquisition phase. This feature is particularly desirable in applications,
such as, shrimp farming, where little if any structural knowledge is avail-
able a priori. Another advantage of this methodology, related to its
inherent imprecision, is that it is able to deal with uncertainty. This is
very important for the task at hand, because the data records obtained
through measurements in the farm are particularly imprecise. It will be
shown that the prediction errors obtained using FIR models are signif-
icantly lower than those reported earlier obtained by means of classical

methodologies, reducing this error from 20% to about 10%.

2. SHRIMP FARMING

Shrimp farming has become increasingly important in recent years.
In 1980, only 2% of the world shrimp production of 1.6 millions of
metric tons was produced on farms, whereas in 1995, already 27% of
the 2.6 million metric tons of shrimp produced worldwide were farmed.
Seventy eight per cent of the farmed shrimp production originated in
Asia, predominantly produced by countries such as Thailand, Indonesia,
China, India, and Vietnam, whereas the remaining 22% were produced
in the Americas, primarily in Ecuador, Mexico, Colombia, and Honduras

(Rosenberry, 1996).



In shrimp farming, the term extensive farming refers to low density
farming (less than 25,000 juveniles per hectare), semi-intensive farming
relates to farming at medium density (between 25,000 and 200,000 ju-
veniles per hectare) and intensive farming denotes high density farming
(with more than 200,000 juveniles per hectare). As the density increases,
the size of the estate needed for the farm decreases, while the technology
necessary to maintain such high density of animals in the ponds becomes
increasingly sophisticated, the capital investment grows, and the produc-

tion cost per unit space increases dramatically.

The farm studied in this research employs semi-intensive farming with
carefully laid out ponds of 5 to 25 hectares, with shrimp feeding equip-
ment and diesel pumps for water exchange. The pumps exchange between
5 and 10% of the water every day. Using the stocking rates that are char-
acteristic of semi-intensive farms, there is already too much competition
for the natural food available in the pond, and therefore, the farmers
have to augment the natural food by actively supplying shrimp feeds.
The construction cost for such a farming venture ranges from US$10,000
to US$25,000 per hectare. Wild or hatchery-produced post-larvae or ju-
veniles (0.1 to 2.0 g) are stocked in growout ponds. It takes between three
and six months to produce a crop of market-sized shrimp. Depending
on the temperature of the site, it is possible to obtain one, two or three
crops per year. The farmer harvests by draining the pond through a net,
or by using a harvest pump. Yields range from 500 to 5,000 kilograms
(head-on) per hectare per year, with 2,000 kilograms per hectare per
year being a much sought after goal. The production cost ranges from

US$2.00 to US$6.00 per kilogram of live shrimp.



After the harvest, the shrimp is frozen and packed. For the US mar-
ket, the shrimp is packed in units of five pounds (2.27 kg) with head-off
shrimp of uniform size. The number of homogeneous head-off shrimp
(tails) that together weigh one pound, determines the size classification
commonly used. Shrimp prices depend on the size classification, and are
regulated by market laws. Table 1 shows recent shrimp prices in the US

(Zimmerman, 1996).

For the European market, the shrimp is packed in units of two or
three kilograms of frozen head-on shrimp of uniform size. As in the case
of the American market, the price depends on the size and is in fact quite
similar, taking into account that a tail weighs approximately 65% of the

whole animal, and one kilogram corresponds to 2.2 Ib.

3. DATA FROM THE “EL REMOLINO” FARM

Mexico produced 72,000 metric tons of shrimp in 1995, 17% of which
came from farms. Most of the 250 Mexican shrimp farms are located
along the northwestern Pacific shore. Most farmers use semi-intensive
farming and grow the occidental white shrimp Penaeus vannamei. This
shrimp was identified by Boone in 1931, and keys for identification, di-
agnosis, and taxonomy can be found in Dore and Frimodt (1988). Ad-
ditional information about the biology of the species can be found in
Barreiro (1970) and Lizarraga (1976). In semi-intensive farming, P. van-
namei reaches sizes between 61..70 and 31..35 (head-on shrimp with an
average weight of 10 to 20 g), exhibiting an average growth of 0.5 to
1.5 g/week, a feed conversion from 1.0 to 3.0 and a global mortality be-

tween 10 and 40%), depending mostly on factors such as those mentioned
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in the next section.

The data presented in this paper has been collected from the “El Re-
molino” farm, property of the enterprise Camaricultores de Sinaloa. The
farm is located on the northwestern Pacific coast of Mexico, close to
a coastal lagoon, from which the water is pumped. In this geographic
zone, the climate is sub-tropical with two annual rain periods. The first
and most important one occurs during the summer (June to October),
whereas the other rainy season, with occasional rains only, occurs dur-
ing the winter (December to February). The salinity of the water in
the ponds depends heavily on the rainfall, varying from 15 parts per
thousand towards the end of the summer rainy season to 90 ppt at the
beginning of the summer rainy season, as it is shown in the upper graph
of Fig. 1. The minimal temperatures in the ponds are registered in Febru-
ary (18°C), whereas the maximal temperatures occur in August (39°C),

as can be seen in the lower graph of Fig. 1.

The farm usually processes two cycles per year, and the annual pro-
duction is approximately 400 tons. Table 2 shows the minimal, maximal,

and mean values of the principal variables that were recorded for the

16 ponds of the farm, from 1987 to 1995.

As can be seen in Table 2, the most important output variables, i.e.,
the final weight and the yield, have varied considerably over these years.
It is important to notice that the input variables are subject to wide
variations due partly to externally controllable factors, such as stock
density, and partly to uncontrollable factors such as the temperature

and amount of rainfall. It is important to be able to identify which of



these variables are most significant, and to determine how they affect the
production, in order to conceive models that make it possible to predict
what would happen if these variables were to assume any given set of
values. A growth model is essential to knowing how the shrimp will
grow, and therefore to be able to plan the best seeding and harvesting

strategy that will optimize the profit obtained.

4. SYSTEM VARIABLES AFFECTING GROWTH

There are many factors affecting the production. In this paper, only
the most significant among the physical (non-controllable) as well as tech-
nological (controllable) factors are mentioned. More detailed informa-
tion can be found in Cook and Rabanal (1978), Gulland and Rothschild
(1984), Korringa (1976), Lawrence (1983), and Weng-Young (1981).

Feed. The quality of feed is very important, because the shrimp ob-
tain most of their nutrition from it. High-quality feeds offer several ad-
vantages over lower-quality feeds: better feed conversion, faster growth,
lower mortality, and improved water quality. Shrimp in ponds must be
fed between one and three times a day with pellets. The protein content

of the feed varies from 20 to 40%.

Density. The number of shrimp present in a pond is an important
factor influencing the growth process. As the shrimp density increases,
there is more competition among the animals for space, feed, and oxygen,
with the result of more organic residuals, and thereby a decrease in the
growth of the animals. These difficulties can be overcome by increasing

the water exchange and feeding rates.



Temperature. Most shrimp are farmed between 22°C and 34°C. In
general, as temperature increases, the growth rate also increases. How-

ever, temperatures above 35°C produce mortality.

Salinity. Adult shrimp can exist in a wide range of salinity, from 10
to 60 parts per thousand. However, they do not tolerate quick changes
in salinity, especially at low values. Optimal values are between 25 and

35 ppt. Values of salinity over 40 ppt reduce the growth rate.

Oxygen. The normal amount of oxygen in the water ranges from 2 to
10 parts per million. Values below 2 parts per million cause stress, a low
growth rate, and mortality. Water with high temperature and salinity

contains less oxygen.

Visibility. This is a measure of the transparency of the water. It
is directly related with the presence of plankton. It also provides infor-
mation about water quality. It is measured with a Secchi disc, a bar
with a mobile disc that is placed in the water. The disc is moved down
until the user lose sight of it. The space left between the beginning of
the bar and the disc indicates the centimeters of visibility of the pond.

Recommended values are between 25 and 35 cm.

5. FIR METHODOLOGY

As has been mentioned earlier, the approach used in this paper to
obtain a shrimp growth model is the Fuzzy Inductive Reasoning (FIR)
methodology. Inductive reasoning was first developed by George Klir
(1985) as a tool for general system analysis. Fuzzy measures were in-

troduced into the General System Problem Solver in the late eighties



(Li and Cellier, 1990), resulting in the Fuzzy Inductive Reasoning (FIR)

methodology.

FIR is a data driven methodology based on system behavior rather
than structural knowledge. It is able to derive causal qualitative relations
between the variables of the system, and to infer future behavior of that
system from observations of its past behavior. It is therefore a useful tool
for modeling and simulating those systems for which no a prior: struc-
tural knowledge is available, including agricultural systems. The FIR
methodology is composed of four main processes, namely: fuzzification,
qualitative modeling, qualitative simulation, and defuzzification. These

four processes are shown in Fig. 2.

SAPS-II (System Approach Problem Solver, Version II), which is the
implementation of the FIR methodology, has been used in this study. It
is available as a Matlab toolbox (Cellier, 1991).

5.1 Fuzzification

FIR is fed with data measured from the system under study, that
are then converted into fuzzy information by means of the fuzzification
function. The fuzzification function converts quantitative values into
qualitative triples, as is shown in Fig. 3. The first element of the triple is
the class value, the second element is the fuzzy membership value, and the
third element is the side value. The class value represents a discretization
of the original real-valued variable. The fuzzy membership value denotes
the level of confidence expressed in the class value chosen to represent a
particular quantitative value. Finally, the side value tells us whether the

quantitative value is to the left, to the right or to the center of the peak
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value of the membership function. The side value, which is a peculiarity
of FIR methodology since it is not commonly introduced in fuzzy logic,
is responsible for preserving the complete knowledge in the qualitative

triple that had been contained in the original quantitative value.

Figure 3 shows an example of fuzzification of the variable tempera-
ture. For instance, a quantitative temperature value of 23°C' is discretized
into a qualitative class value of ‘normal’ with a fuzzy membership func-
tion value of 0.895, and a side function value of ‘right’ (since 23 is to the
right of the maximum of the bell-shaped membership function that char-
acterizes the class ‘normal’). Thus, a single quantitative value is recoded
into a qualitative triple. As it is also shown in Fig. 3, the landmarks 13
and 27 define the class value ‘normal’ (landmarks being the points where
the class value changes). Therefore, any temperature with a quantitative
value between 13 and 27 will be recoded into the qualitative class value

‘normal’.

In order to convert quantitative values to qualitative values, it is
necessary to provide to the fuzzification function the number of classes
into which the definition domain of each variable is going to be divided as
well as the landmarks that separate neighboring classes from each other.
Once this information has been provided, the fuzzification engine of FIR
is capable of automatically fuzzifying the quantitative data values using

either Gaussian or triangular fuzzy membership functions.
5.2 Qualitative Modeling

The qualitative modeling function of the FIR methodology is respon-

sable for finding causal spatial and temporal relations between variables
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that offer the best likelihood for being able to predict the future system
behavior from its own past, thereby obtaining the best model (called a

mask in the FIR terminology) that represents the system.

At this point, the continuous trajectory behavior recorded from the
system has been converted into an episodical behavior (qualitative data)
by means of the fuzzification function. In the process of modeling, it
is desired to discover causal relations among the recoded variables that
make the resulting state transition matrices as deterministic as possible.
A mask represents a possible relation among the qualitative variables.
Let us introduce the concept of a mask by means of a simple example

composed of two inputs and three outputs.

A\" up Uz Y1 Y2 Y3
t—=26tf 0 0 0 0 —1
t— ot 0 -2 -3 0 0 (1)
t -4 0 41 0 0

The negative elements in this matrix are referred to as m—inputs (mask
inputs), which denote input arguments of the qualitative functional re-
lationship. They can be either inputs or outputs of the subsystem to be
modeled, and they can have different time stamps. The above example
contains four m-inputs. The sequence in which they are enumerated is
immaterial. They are usually enumerated from left to right and from top
to bottom. Therefore, the —1, —2, —3 and —4 elements of the mask do
not represent numerical information but a direct causal relation between

these m—inputs and the output to be predicted. The single positive value
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denotes the m—output. The terms m-input and m-output are used in
order to avoid a potential confusion with the inputs and outputs of the
plant. In the above example, the first m-input corresponds to the output
variable ys two sampling intervals back, ys(t — 20t), whereas the second
m—input refers to the input variable us one sampling interval into the

past, ug(t — dt), ete.

A mask denotes a dynamic relationship among qualitative variables.
It has the same number of columns as the episodical behavior, and it has a
certain number of rows, the depth of the mask. It represents the temporal
domain that can influence the output. Each row is delayed relative to its
successor by a time interval of §¢ representing the time lapse between two
consecutive samplings. §¢ may vary from one application to another. In
the previous example the output, y;(¢), will be derived from the values of
the four m-inputs that compose the mask and, therefore, the output is
influenced by the values of different variables at different points in time

(t, t — &t and t — 261).

How is a mask found that, within the framework of all allowable
masks, represents the most deterministic state transition matrix? This
mask will optimize the predictiveness of the model. In SAPS—II, the con-
cept of a mask candidate matrix has been introduced. A mask candidate
matrix is an ensemble of all possible masks from which the best is chosen

by a mechanism of exhaustive search.

The mask candidate matrix contains ‘—1’ elements where the mask
has a potential m-input, a ‘41" element where the mask has its m—output,

and ‘0’ elements to denote forbidden connections. Thus, a mask candi-
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date matrix to determine a predictive model for variable y; in the previ-

ously introduced five—variable example might be:

i\ wy o Uy Y1 Y2 Ys
t—26t (-1 -1 -1 -1 -1
tost | -1 -1 -1 -1 -1 2)
t -1 -1 +1 0 0

Here again, the —1 elements of the mask candidate matrix do not repre-
sent numerical information but possible causal relations with the output.
The function of the optimal mask of SAPS-II is to find those causal
relations among all the possible relations allowed (—1 elements). Cor-
responding mask candidate matrices are used to find predictive models
for y, and y3. In all three mask candidate matrices, the instantaneous
values of the other two output variables are blocked out in order to pre-
vent algebraic loops to occur between the output variables that are to be

estimated.

The optimal mask function of SAPS-II searches through all legal
masks of complexity two, i.e., all masks with a single m—input and finds
the best one; it then proceeds by searching through all legal masks of
complexity three, i.e., all masks with two m—inputs and finds the best of
those; and it continues in the same manner until the maximum complex-
ity has been reached. In all practical examples, the quality of the masks
will first grow with increasing complexity, then reach a maximum, and

then decay rapidly. A good value for the maximum complexity is usually

five or six (Nebot, 1994; Mugica and Cellier, 1994).
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Each of the possible masks is compared to the others with respect to
its potential merit. The optimality of the mask is evaluated with respect
to the maximization of its forecasting power, that is quantified by means
of the quality measure. Let us focus on the computation of the quality

of a specific mask.

The overall quality of a mask, (),,, is defined as the product of its

uncertainty reduction measure, H,, and its observation ratio, O,:

The uncertainty reduction measure is defined as:

Hy = 1.0 — Hy/Hunax (4)

where H,, is the overall entropy of the mask and H .« the highest possible
entropy. H, is a real number in the range between 0.0 and 1.0, where
higher values usually indicate an improved forecasting power. The masks
with highest entropy reduction values generate forecasts with the smallest
amounts of uncertainty. The highest possible entropy Hp.x is obtained
when all probabilities are equal, and a zero entropy is encountered for

relationships that are totally deterministic.

The overall entropy of the mask is then computed as the sum:
H, == p(i)- H (5)
Vi
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where p(¢) is the probability of that input state to occur and H; is the
Shannon entropy relative to the 7, input state. The Shannon entropy

relative to one input state is calculated from the equation:

H; = p(oli) - log, p(o]i) (6)

where p(0l7) is the “conditional probability” of a certain m—output state o
to occur, given that the m—input state 7 has already occurred. The term
probability is meant in a statistical rather than in a true probabilistic
sense. It denotes the quotient of the observed frequency of a particular
state in the episodical behavior divided by the highest possible frequency
of that state.

The observation ratio, O,, measures the number of observations for
each input state. From a statistical point of view, every state should
be observed at least five times (Law and Kelton, 1991). If every legal
m—input state has been observed at least five times, O, is equal to 1.0.
If no m—input state has been observed at all (no data are available), O,

is equal to 0.0. The optimal mask is the mask with the largest @),, value.
5.3 Qualitative Simulation

Once the best model (mask) has been identified, it can be applied to
the qualitative data matrices that were previously obtained in the fuzzi-
fication process, resulting in a ‘rule base’ that, in the FIR terminology,
is called the behavior matriz. Once the behavior matrix and the mask
are available, a prediction of future output states of the system can take

place using the FIR inference engine. This process is called qualitative
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simulation.

The FIR inference engine is based on the k-nearest neighbor rule,
commonly used in the pattern recognition field. In particular, the 5-NN
pattern matching algorithm is the core of the FIR inference process. The
forecast of the output variable is obtained by means of the composition
of the potential conclusion that results from firing the five rules whose

antecedents have best matching with the actual state.

The forecasting procedure is presented in diagram of Fig. 4 (with an
example containing three inputs and one output). The mask is placed
on top of the qualitative data matrix, in such a way that the m—output
matches with the first element to be predicted. The values of the m—inputs
are read out from the mask, and the behavior matrix (‘rule base’) is used,
as it is explained latter, to determine the future value of the m-output,
which can then be copied back into the qualitative data matrix. The
mask is then shifted further down one position to predict the next out-
put value. This process is repeated until all the desired values have been
forecast. The qualitative simulation process predicts an entire qualita-
tive triple from which a quantitative variable can be obtained whenever

needed.

The fuzzy forecasting process works as follows, the membership and
side functions of the new input state (input pattern in Fig. 4) are com-
pared with those of all previous recordings of the same input state con-
tained in the behavior matrix. For this purpose, a normalization function
is computed for every element of the new input state and an Euclidean

distance formula is used to select the 5 nearest neighbors, the ones with
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smallest distance, that are used to forecast the new output state.

The contribution of each neighbor to the estimation of the prediction
of the new output state is a function of its proximity. This is expressed by
giving a distance—weight to each neighbor, as shown in Fig. 4. The new
output state values can be computed as a weighted sum of the output

states of the previously observed five nearest neighbors.
5.4 Defuzzification

Defuzzification is the inverse function of fuzzification. It converts
qualitative triples into quantitative values. As has been mentioned ear-
lier, no information is lost in the process of fuzzication. The qualitative
triple contains exactly the same information as the original quantitative
value, and it is thus possible to defuzzify the quantitative value from the
qualitative triple precisely, i.e., without any error or uncertainty, at any

point in time.

For a deeper insight of the FIR methodology the reader is referred to
Cellier et al. (1996) and Nebot (1994).

6. GROWTH MODEL

FIR, just like all other inductive modeling methodologies, is based
on observations of patterns of input/output behavior, rather than on
structural information. Therefore it needs rich data in order to find
a model. In the application described in this paper, 19 sets of data
corresponding to 19 production cycles in the farm were available. Nine
data sets were recorded from pond number 1, whereas the other ten were

recorded from pond number 5. Both ponds have a size of approximately

18



10 hectares. The recording took place in the years 1990-1995. In both
cases, there were about the same number of cycles registered during

summer and winter.

During each cycle, the following variables were recorded on a weekly
basis: shrimp weight (system output), feed, density, temperature, salin-
ity, oxygen, and visibility (system inputs). All input variables were sam-
pled daily, whereas the value recorded was the mean value over the entire
week. Shrimp weight was sampled weekly, because from a biological point
of view it is an adequate period to detect shrimp growth. In order to il-
lustrate the growth patterns, a subset of the available data are presented
in Fig. 5. The first plot corresponds to a winter recording of pond 1,
whereas the second plot refers to a summer recording of pond 5. From
the available 19 data sets, 17, corresponding to approximately 340 sam-
ples, were used to obtain the growth model, whereas the remaining two

sets, containing about 40 samples, were used to validate the FIR model.

Because each cycle corresponds to a different data set, and because
FIR needs consecutive data to construct a model, the missing data feature
available in the methodology has been used. This process, a knowledge
combination technique, allows the concatenation of different data sets
by adding a group of pre-defined missing data values between separate
sets of available data (Nebot, 1994). All input variables recorded were
considered as potentially useful for the model, allowing the inductive
reasoner to discard those that were less causally relevant. These variables
are described in section 4 of the paper. Previously recorded values of

shrimp weight were considered as additional potential input variables.
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The first step in constructing the FIR model is to convert the quan-
titative variables to qualitative data using the fuzzification function, as
has been described in section 5. To accomplish this, it is necessary to
decide on the number of discrete levels (classes) into which each of these
variables will be recoded. For the example at hand, it was decided that
all seven variables could be sufficiently well characterized by three levels.
The landmarks between neighboring classes were established taking all
data of each variable and dividing them into three groups of approxi-
mately equal size. The results of this process are presented in Table 3.
The resulting landmarks were shown to an expert farmer who found the
division into classes satisfactory and reasonable, from the farming point

of view, for all the variables recorded (Carvajal, personal communication,

1997).

The next step is to find a model that describes the system. The model
is represented by a mask through which the causal relations (both spatial
and temporal) between input and output variables are described. The
process starts with the definition of the mask candidate matrix encoding

an ensemble of all possible masks from which the best is to be chosen.

In the study presented in this paper, a value of §¢ of one week was se-
lected. The mask candidate matrix used in this application is of depth 3.

It is shown below :
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where D stands for density, S for salinity, V for visibility, O for oxygen,
Te for temperature, F' for feed, and W for weight. It was decided to
propose a depth of 3, because it was considered unlikely that any of the
variables in question would have a delay of more than two weeks in their

relation with the output variable.

As a means to accelerate the search, the optimal mask function of
SAPS-II offers the possibility to specify an upper limit to the acceptable
mask complexity, i.e. the largest number of non-zero elements that the
mask may contain. In the present case, a maximum complexity of five was
chosen. The optimal mask function of SAPS-II returned the following
suboptimal masks of complexities three, four, and five. The qualities of

these masks are also indicated:

A\ D S V. O Te F W
t—25t[ 0 0 0 0 0O 0 0
t—st | o o 0o 0o 0 0 -1
t 0 0 0 0 -2 0 +1

Quality = 0.786
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A D 5 V O Te F W
t—25t[ 0 0 0 0O 0 0 0
t—st | 0o -1 0 -2 0 0 -3
t 0 0 0 0 0 0 +1

Quality = 0.781

N D S VO Te FOW

t—20t 0 O 0 0O 0 0 0
t— ot 6o 0 -1 -2 0 0 =3

Quality = 0.550

The interpretation of a mask has been described already in the previous
section. For example, the mask of complexity 5 can be interpreted as
follows, the weight W at the current time ¢ somehow depends on last
week’s values of the degree of visibility V', the level of oxygen O in the
pond, as well as the weight that the shrimp had a week ago. It also

depends on the current value of salinity S in the lake.

It can be seen that a mask depth of two provides a model that suf-
ficiently represents the system, because the output variable at time ¢ is
influenced primarily by the values of some of the measured variables at

that time and at one week earlier.

SAPS-II determined that the density D and the feed F' are less im-

portant variables for explaining the observed growth patterns available

22



for producing the qualitative model. For this reason, these two variables
do not appear in the best masks selected and, therefore, are of lesser
importance for explaining the observed output patterns. The elimina-
tion of these two variables from the set of important inputs may at first
sight be surprising, but can in fact be reasonably explained. When the
shrimp density is increased, the farmers always add more feed to the
ponds, and also enhance the water exchange, in order to maintain the
oxygen content of the water at an acceptable level. Also, the feed is
always supplied proportional to the current biomass in the pond. Thus,
the seven variables are by no means independent of each other, and it is
not necessary to know them all to explain the output. SAPS-II simply

eliminated redundant information.

It is also worth noticing that the masks of complexity 3 and 4 are char-
acterized by quite similar quality values, yet make use of different input
variables. Whereas in the mask of complexity 3 the current temperature
was chosen as an important input variable, the mask of complexity 4
proposed the previous week values of salinity and oxygen contents to be
used instead. Although these three variables are uncontrollable, they
are not independent of each other. Moreover, the selected optimal mask
always represents a compromise taking into account all of the available
data. However, some of the data records represented summer cycles,
whereas others were obtained from winter cycles. As will be discussed
later, the mask of complexity 3 is generally better suited for summer
cycles, whereas the mask of complexity 4 leads to better predictions in

the context of winter cycles.
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7. MODEL VALIDATION

With the masks obtained in the previous section, two different cycles
were forecast to validate the models. The first data set corresponded
to pond number one, cycle fifteen, whereas the second corresponded to
pond number five, cycle seven. The results of the prediction with each
of the three models for the first data set (1-15) are presented in Figs.
6a, 6b, and 6¢c. Figures 7a, 7b, and 7c show forecasting results for the
second data set (5-7). The results obtained for both cycles are quite
good when using the mask of complexity 3 in cycle 1-15 and the mask of
complexity 4 in cycle 5-7. In order to evaluate quantitatively the degree
of agreement between the forecast and the real data, a normalized mean

square error (MSE) was used, defined by:

vsp = Zl® =3P oo
Yvar

where F denotes the mean value and yy,, is the variance. The MSE
values for the six predictions of Figs. 6a, 6b, 6¢ as well as 7a, 7h, 7c are

given in Table 4.

For cycle 1-15, the mask of complexity 5 could not forecast after
week 12, because an input pattern resulted in week 13 that had never been
seen before, as can be seen in Fig. 6¢. Thus, SAPS-II prematurely ended
the forecasting process. According to the results presented in table 4, the
lowest error for cycle 1-15 is 6.8%, whereas it is 10.3% for cycle 5-7. These
errors are acceptably low and significantly smaller than those obtained

earlier for the same data using classical statistical techniques, which were
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around 20% (Carvajal, 1993). The reduction of the prediction error of
roughly 50% is quite important considering its economic impact on the

production.

8. DISCUSSION

As can be seen in Figs. 6a, 6b, and 6¢ as well as 7a, 7b, and 7c, the
best predictions for cycle 5-7 are obtained using the mask of complexity
four, whereas for cycle 1-15, a smaller error is obtained using the mask
of complexity three. Why are the best predictions in each cycle obtained
using different masks? Examining the data, it is possible to come up
with a reasonable explanation. In the case of the prediction of cycle 1-
15, the shrimp were stocked in the pond during the month of August,
coinciding with the main rainy season, therefore the salinity, which is
one of the primary factors limiting shrimp growth, maintains adequate
levels throughout the entire cycle, and therefore, temperature is the most
important variable in this case. By contrast, in cycle 5-7, the shrimp
were seeded during the month of March, i.e., when the salinity becomes
most problematic, and therefore is the dominant factor to be considered.
Although higher temperature values are also advantageous in this period,
the hypersalinity of the water does not permit the shrimp to grow as much

as would be desired.

The above discussion suggests that it might be useful to have available
a specialized model for each of the two main seasons of the region, i.e.,
for the wet season (extending from June to December), and for the dry
season (January to May). The most adequate model for the wet season

could be the mask of complexity 3 that includes temperature as main
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variable, whereas for the dry season, the mask of complexity 4 may be the
most satisfactory, because it includes salinity and oxygen as the principal

variables.

In some cases, it might be preferable for the farmers to have available
a global model that is valid for any season of the year. In this situation,
it would be possible to apply a voting procedure (implemented in SAPS-
IT) as explained in (Nebot and Cellier, 1994). This technique, instead of
working with a single optimal mask, as described in the previous section,
determines three separate masks of high-quality. During the prediction
process, three separate forecasts are computed at each step. Let M,, M,,
and M, be the three best masks. Each of these masks leads to a different
forecast. Let them be called F,, Fy, and F.. Three distance measures

can be computed in the following way:

D, =abs(F, — F,) + abs(F, — F,)
Dy, =abs(F, — F,) + abs(F, — F.)
D. =abs(F.— F,) + abs(F.— F)

denoting the distance of each forecast to its two competitors. Once the
distance measures have been computed, the predicted value with the
largest distance measure is rejected, whereas the mean value of the pre-
dictions obtained with the two remaining masks is accepted as the true

forecast.

In the study at hand, the three selected masks were those introduced

in section 6, because of their high quality values. The predictions ob-
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tained for cycles 1-15 and 5-7, using the proposed voting procedure, are
shown in Figs. 8 and 9, respectively. It should be noticed that it would
be appropriate to include additional structural knowledge in the model,
e.g. preventing the model from predicting decreasing values of shrimp
weight, since such predictions do not make any sense for the application

at hand.

As can be seen in these plots, the results are not as good as those
obtained using the specialized models, shown on Figs. 6a, 6b, 6¢ and 7a,
7b, 7c. It is evident that the predictive power of the combined model
is poorer than that of the individual models (as would be expected);
however the generic model could be useful when farmers do not know
exactly the dates for farming, or when these dates do not match exactly
either of the two defined seasons. It should be mentioned though that
even the results obtained using the generic model are still better than
those obtained previously using classical statistical methods (Carvajal,
1993). The MSE errors are 10.8% for cycle 1-15 and 17.1% for cycle 5-7,

respectively.

As a last remark, a more complete evaluation of the predictive power
of the previously obtained models would be desirable. Undoubtedly, the
use of more than two data sets during model validation process would
considerably increase the evidence of the predictive capability of the mod-
els. However, within the registered data available for this study, it was
not possible to use more than two data sets for validation purposes, due
to the fact that this would imply a reduction of the amount of the training
data available. That is to say, the more data sets we use for validation

purposes, the less data sets will be left for training purposes. As has
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been already explained, FIR is a data driven methodology that infers
the model from system m easured trajectories. FIR is not able to obtain
‘eood” models with poor and/or scarce data. This is the reason why

different kinds of growth patterns have been chosen for model validation.
9. CONCLUSIONS

Shrimp farming is an agricultural activity that recently has gained
in significance. The shrimp farmers need to plan the dates for seeding
and harvesting the ponds taking into account many different factors, in
order to maximize their profits. It is beneficial for them to have available

models that allow them to make informed decisions.

In this paper, qualitative models of shrimp growth have been ob-
tained by means of the Fuzzy Inductive Reasoning (FIR) Methodology.
This methodology seems well suited for predicting shrimp growth in a
farm. The main variables selected by FIR as being significant for predict-
ing shrimp growth are: temperature, salinity, oxygen level, and previous
shrimp weight. The obtained models were validated using data from
two different ponds of the “El Remolino” shrimp farm located on the
northwestern Pacific coast of Mexico (Sinaloa). The two predicted cy-
cles represent different seasons of shrimp stocking into the ponds. One of
them is characteristic of wet season farming (June to December), whereas
the other represents a cycle of dry season farming (January to May). FIR
found two different qualitative models, each one representing one of the
two cycles. The wet-season model uses temperature as the most relevant
input variable, which is reasonable, because during the rainy season, the

salinity levels are always maintained at relatively low values, allowing
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the shrimp to grow as fast as the temperature allows. The dry-season
model uses salinity and oxygen levels as the most important input vari-
ables, as the high salinity levels characteristic of this period limit the
shrimp growth and prevent higher temperature values from having the
same positive effect on shrimp growth as during the wet season. The pre-
diction errors obtained with these models for both cycles are less than
10.5%, which is a good result taking into account that predictions ob-
tained previously for the same data using classical statistical techniques
exhibited errors of somewhere around 20%. This significant improvement
in forecasting can have an important economic impact when planning

production in shrimp farmes.

It would be desirable to use more than two data sets for validation
purposes in order to maximize the evidence of the predictive capability
of the models. With the reduced amount of registered data available, it
was not possible to use more than two validation data sets. However, the

two data sets chosen represent two different kind of growth patterns.

In this paper, a generic model useful for all seasons has also been
obtained using a voting procedure, available in the FIR methodology.
This model can be helpful for farmers when they do not know exactly
the dates of farming or when these dates do not match either of the two
defined seasons. The results obtained using the generic model are slightly

better than those obtained using classical methodologies, offering errors

below 18%.
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Captions of the illustrations

Fig. 1 Temperature and Salinity at the “El Remolino” farm during 1995.

Fig. 2 FIR main processes.

Fig. 3 Fuzzification of a temperature value of 23°C'.

Fig. 4 Qualitative simulation process diagram.

Fig. 5 Examples of shrimp growth patterns recorded at the “El Remolino”

farm.

Fig. 6a Real data and qualitative forecast for cycle 1-15 (Mask of com-
plexity 3).

Fig. 6b Real data and qualitative forecast for cycle 1-15 (Mask of com-
plexity 4).

Fig. 6¢ Real data and qualitative forecast for cycle 1-15 (Mask of com-
plexity 5).

Fig. 7a Real data and qualitative forecast for cycle 5-7 (Mask of com-
plexity 3).

Fig. 7b Real data and qualitative forecast for cycle 5-7 (Mask of com-
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plexity 4).

Fig. 7c Real data and qualitative forecast for cycle 5-7 (Mask of com-
plexity 5).

Fig. 8 Real and forecast data with voting procedure for cycle 1-15.

Fig. 9 Real and forecast data with voting procedure for cycle 5-7.
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Table 1: Head-off shrimp prices in US market (Zimmerman,

October-1995)

Tails / Ib. Dollars / Ib. Tails / 1b.  Dollars / lb.
12 10.25 36..40 4.75
15 9.00 41..50 4.00
16..20 7.75 51..60 3.30
21..25 6.75 61..70 3.00
26..30 5.75 71..80 2.70
31..35 5.25 80..over 2.30
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Table 2: Values of the principal variables recorded at the
“El Remolino” farm (1987-1995)

Variable Minimum Maximum Mean
Density (shrimp/m?) 36 340 137
Days in pond 60 201 132
Survival (%) 48 100 75
Feed conversion 0.6 4.4 2.3
Salinity (ppt) 15 92 48
Temperature (°C') 18 39 28
Oxygen (ppm) 0.4 12 4.0
Visibility (cm) 12 70 30
Final weight (gr) 6.0 21.4 12.8
Yield (Tonne/ha/year) 0.6 3.5 2.2
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Table 3: Landmarks of the three discrete classes defined for

each input variable

Variable Land. 1 Land. 2 Land. 3 Land. 4
Feed 0.0 0.12 0.19 0.60
Density 2.97 8.5 18.8 24.8
Temperature 21.2 25.6 29.6 35.0
Salinity 6.7 30.9 49.0 90.7
Oxygen 0.9 3.7 5.0 11.1
Visibility 12.4 22.9 28.4 88.5
Weight 0.01 4.5 8.2 13.7

42



Shrimp weight (gr.)

12

10

Real data

| |
10 12
Time (weeks)

43

18

20




Shrimp weight (gr.)

12

10

Real data

| |
10 12
Time (weeks)

44

14

16

18

20




Shrimp weight (gr.)

12

10

Forecast data

Real data

1 1
(0] 2 4 6 8 10 12

Time (weeks)

45




Shrimp weight (gr.)

12

11

10

Forecast data _ 7

Real data

6 8 10 12
Time (weeks)

46

14



Shrimp weight (gr.)
a o

I

~ - - - = = =

Forecast data

Real data

2 4 6 8 10 12 14

Time (weeks)

47



Shrimp weight (gr.)
a o

I

Real data

Forecast data

6 8
Time (weeks)

48

10 12 14



Table 4: Mean Square Errors for masks of complexities 3, 4

and 5, for two different forecast cycles

Mask MSE Cycle 1-15 MSE Cycle 5-7
Complex. 3 6.8 % > 100 %
Complex. 4 22.9 % 10.3 %
Complex. 5 XXX 51.5 %
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