Vertex Generation

Hunt for a Hard Case

Related Problems

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Generating Vertices of Polyhedra is Hard

... and other related problems ...

Endre Boros

Joint research with K. Borys, K. Elbassioni, V. Gurvich, and L. Khachiyan¹

Vertex Generation

Hunt for a Hard Case

Related Problems 000

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Outline

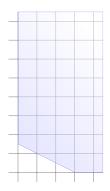
1 Polyhedra and Vertices • What is a polyhedron? • What is a vertex? • What is vertex generation? • When is generation hard? • Hypergraph dualization • A polyhedral application • Matching polytopes • Yet another reformulation • The hunt resumed ... • The hunt is over • Simplices and Bodies

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Intersection of half-spaces



x_1	$+2x_{2}$	\geq	3

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

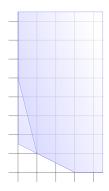
Vertex Generation

Hunt for a Hard Case

Related Problems 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Intersection of half-spaces



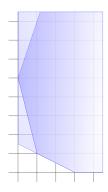
Vertex Generation

Hunt for a Hard Case

Related Problems 000

・ロト ・ 画 ・ ・ 画 ・ ・ 目 ・ うへぐ

Intersection of half-spaces



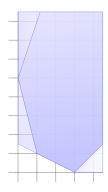
Vertex Generation

Hunt for a Hard Case

Related Problems 000

・ロト ・ 画 ・ ・ 画 ・ ・ 目 ・ うへぐ

Intersection of half-spaces



Vertex Generation

Hunt for a Hard Case

Related Problems 000

・ロト ・ 画 ・ ・ 画 ・ ・ 目 ・ うへぐ

Intersection of half-spaces

$$P = \left\{ (x_1, x_2) \in \mathbb{R}^2 \middle| \begin{array}{ccc} x_1 & +2x_2 & \ge & 3\\ 4x_1 & +x_2 & \ge & 5\\ 3x_1 & -x_2 & \ge & -5\\ -x_1 & +x_2 & \ge & -3 \end{array} \right\}$$

 $\begin{array}{c} Polyhedra\\ \circ\circ\bullet\circ\circ\end{array}$

Vertex Generation

Hunt for a Hard Case

Related Problems 000

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Outline

1 Polyhedra and Vertices • What is a polyhedron? • What is a vertex? • What is vertex generation? • When is generation hard? • Hypergraph dualization • A polyhedral application • Matching polytopes • Yet another reformulation • The hunt resumed ... • The hunt is over • Simplices and Bodies

Polyhedra ○○○●○ Vertex Generation

Hunt for a Hard Case

Related Problems 000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Those prickly corners

$$P = \left\{ x \in \mathbb{R}^d \mid Ax \ge b \right\}$$

 $v \in P$ is a vertex if there are no $u, w \in P$ such that

$$v=\frac{1}{2}u+\frac{1}{2}w$$

Polyhedra ○○○●○ Vertex Generation

Hunt for a Hard Case

Related Problems 000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Those prickly corners

$$P = \left\{ x \in \mathbb{R}^d \mid Ax \ge b \right\}$$

 $v \in P$ is a vertex if there are no $u, w \in P$ such that

$$v=\frac{1}{2}u+\frac{1}{2}w$$

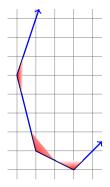
Polyhedra ○○○●○ Vertex Generation

Hunt for a Hard Case

Related Problems 000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Those prickly corners



$$P = \left\{ x \in \mathbb{R}^d \mid Ax \ge b \right\}$$

 $v \in P$ is a vertex if there are no $u, w \in P$ such that

$$v = \frac{1}{2}u + \frac{1}{2}w$$

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Polynomially decidable questions

Given a polyhedron $P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$, let V(P) denote its set of vertices.

• Is $P \neq \emptyset$?

Is $V(P) \neq \emptyset$?

• Is $\operatorname{conv}(V(P)) = P?$

All these, and many other related questions, can be decided efficiently by solving linear programming problems.

(Khachiyan, 1979)

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Polynomially decidable questions

Given a polyhedron $P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$, let V(P) denote its set of vertices.

- Is $P \neq \emptyset$?
- Is $V(P) \neq \emptyset$?
- Is $\operatorname{conv}(V(P)) = P?$

All these, and many other related questions, can be decided efficiently by solving linear programming problems.

(Khachiyan, 1979)

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Polynomially decidable questions

Given a polyhedron $P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$, let V(P) denote its set of vertices.

- Is $P \neq \emptyset$?
- Is $V(P) \neq \emptyset$?
- Is $\operatorname{conv}(V(P)) = P?$

All these, and many other related questions, can be decided efficiently by solving linear programming problems.

(Khachiyan, 1979)

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Polynomially decidable questions

Given a polyhedron $P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$, let V(P) denote its set of vertices.

- Is $P \neq \emptyset$?
- Is $V(P) \neq \emptyset$?
- Is $\operatorname{conv}(V(P)) = P?$

All these, and many other related questions, can be decided efficiently by solving linear programming problems.

(Khachiyan, 1979)

うして ふゆう ふほう ふほう ふしつ

Vertex Generation

Hunt for a Hard Case

Related Problems 000

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Outline

Polyhedra and Vertices
What is a polyhedron?
What is a vertex?

2 Vertex Generation

• What is vertex generation?

- When is generation hard?
- Hypergraph dualization
- A polyhedral application
- **3** Hunt for a Hard Case
 - Matching polytopes
 - Yet another reformulation
 - The hunt resumed ...
 - The hunt is over

Related Problems

• Simplices and Bodies

Hunt for a Hard Case

Related Problems 000

Vertex generation

First formulation (Mr. Folklore, Age of Pisces):

Given
$$P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$$
 generate $V(P)$.

- Output maybe exponentially larger than input!
- Long history ... (Motzkin, Raiffa, Thompson and Thrall, 1953) (Charnes and Cooper, 1953) (Balinski, 1961)
- Well solved for many special cases
 - Simple polytopes
 - In fixed dimension
 - Network polytopes
 - Zero-one polytopes

(Stepl., abada Thostoly A) (Chushi Chushi) (Pert, navor) (2001, navor) (2001, siloeddii J. Inn. Mosiosuff

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Hunt for a Hard Case

Related Problems

Vertex generation

First formulation (Mr. Folklore, Age of Pisces):

Given
$$P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$$
 generate $V(P)$.

• Output maybe exponentially larger than input!

• Long history ... (Motzkin,Raiffa, Thompson and Thrall, 1953) (Charnes and Cooper, 1953) (Balinski, 1961)

- Well solved for many special cases
 - Simple polytopes
 - In fixed dimension
 - Network polytopes
 - Zero-one polytopes

(Avis and Fukuda, 1992) (Chazelle, 1993) (Provan, 1994) Issieck and Lübbecke, 1998)

Hunt for a Hard Case

Related Problems 000

. . .

Vertex generation

First formulation (Mr. Folklore, Age of Pisces):

Given $P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$ generate V(P).

- Output maybe exponentially larger than input!
- Long history ... (Motzkin, Raiffa, Thompson and Thrall, 1953) (Charnes and Cooper, 1953) (Balinski, 1961)
- Well solved for many special cases
 - Simple polytopes
 - In fixed dimension
 - Network polytopes
 - Zero-one polytopes

(Avis and Fukuda, 1992) (Chazelle, 1993) (Provan, 1994) Issieck and Lübbecke, 1998)

Hunt for a Hard Case

Related Problems

. . .

Vertex generation

First formulation (Mr. Folklore, Age of Pisces):

Given $P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$ generate V(P).

- Output maybe exponentially larger than input!
- Long history ... (Motzkin,Raiffa, Thompson and Thrall, 1953) (Charnes and Cooper, 1953) (Balinski, 1961)
- Well solved for many special cases
 - Simple polytopes
 - In fixed dimension
 - Network polytopes
 - Zero-one polytopes

(Avis and Fukuda, 1992) (Chazelle, 1993) (Provan, 1994) (Bussieck and Lübbecke, 1998)

Hunt for a Hard Case

Related Problems

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Vertex generation

Second formulation (Lovász, 1992):

Given $P = \left\{ x \in \mathbb{R}^d | Ax \ge b \right\}$ and $\mathcal{A} \subseteq \mathbb{R}^d$ decide if $\mathcal{A} = V(P)$.

- V(P) can be generated by repeatedly solving the above decision problem.
- $\operatorname{conv}(\mathcal{A}) \subseteq P$ is easy to check
- $P \subseteq \operatorname{conv}(A)$ is co-NP-complete (Freund and Orlin 1985)
- Yet, if $\mathcal{A} \subseteq V(P)$, then $P \subseteq \operatorname{conv}(\mathcal{A})$ was open

Given $P = \{x \in \mathbb{R}^d | Ax \ge b\}$ and $A \subseteq V(P)$, deciding whether $V(P) \subseteq A$ or not is co-NP-complete.

Hunt for a Hard Case

Related Problems 000

うして ふゆう ふほう ふほう ふしつ

Vertex generation

Second formulation (Lovász, 1992):

Given $P = \{x \in \mathbb{R}^d | Ax \ge b\}$ and $\mathcal{A} \subseteq \mathbb{R}^d$ decide if $\mathcal{A} = V(P)$.

- V(P) can be generated by repeatedly solving the above decision problem.
- $\operatorname{conv}(\mathcal{A}) \subseteq P$ is easy to check
- $P \subseteq \operatorname{conv}(\mathcal{A})$ is co-NP-complete (Freund and Orlin 1985)
- Yet, if $\mathcal{A} \subseteq V(P)$, then $P \subseteq \operatorname{conv}(\mathcal{A})$ was open ...

Theorem (BBEGK, 2005)

Given $P = \{x \in \mathbb{R}^d | Ax \ge b\}$ and $A \subseteq V(P)$, deciding whether $V(P) \subseteq A$ or not is co-NP-complete.

Hunt for a Hard Case

Related Problems 000

うして ふゆう ふほう ふほう ふしつ

Vertex generation

Second formulation (Lovász, 1992):

Given $P = \{x \in \mathbb{R}^d | Ax \ge b\}$ and $\mathcal{A} \subseteq \mathbb{R}^d$ decide if $\mathcal{A} = V(P)$.

- V(P) can be generated by repeatedly solving the above decision problem.
- $\operatorname{conv}(\mathcal{A}) \subseteq P$ is easy to check
- $P \subseteq \operatorname{conv}(\mathcal{A})$ is co-NP-complete (Freund and Orlin 1985)
- Yet, if $\mathcal{A} \subseteq V(P)$, then $P \subseteq \operatorname{conv}(\mathcal{A})$ was open ...

Theorem (BBEGK, 2005)

Given $P = \{x \in \mathbb{R}^d | Ax \ge b\}$ and $A \subseteq V(P)$, deciding whether $V(P) \subseteq A$ or not is co-NP-complete.

Hunt for a Hard Case

Related Problems

うして ふゆう ふほう ふほう ふしつ

Vertex generation

Second formulation (Lovász, 1992):

Given $P = \{x \in \mathbb{R}^d | Ax \ge b\}$ and $\mathcal{A} \subseteq \mathbb{R}^d$ decide if $\mathcal{A} = V(P)$.

- V(P) can be generated by repeatedly solving the above decision problem.
- $\operatorname{conv}(\mathcal{A}) \subseteq P$ is easy to check
- $P \subseteq \operatorname{conv}(\mathcal{A})$ is co-NP-complete (Freund and Orlin 1985)

• Yet, if $\mathcal{A} \subseteq V(P)$, then $P \subseteq \operatorname{conv}(\mathcal{A})$ was open ...

Theorem (BBEGK, 2005)

Given $P = \{x \in \mathbb{R}^d | Ax \ge b\}$ and $\mathcal{A} \subseteq V(P)$, deciding whether $V(P) \subseteq \mathcal{A}$ or not is co-NP-complete.

Hunt for a Hard Case

Related Problems 000

うして ふゆう ふほう ふほう ふしつ

Vertex generation

Second formulation (Lovász, 1992):

Given $P = \{x \in \mathbb{R}^d | Ax \ge b\}$ and $\mathcal{A} \subseteq \mathbb{R}^d$ decide if $\mathcal{A} = V(P)$.

- V(P) can be generated by repeatedly solving the above decision problem.
- $\operatorname{conv}(\mathcal{A}) \subseteq P$ is easy to check
- $P \subseteq \operatorname{conv}(\mathcal{A})$ is co-NP-complete (Freund and Orlin 1985)
- Yet, if $\mathcal{A} \subseteq V(P)$, then $P \subseteq \operatorname{conv}(\mathcal{A})$ was open ...

Theorem (BBEGK, 2005)

Given $P = \{x \in \mathbb{R}^d | Ax \ge b\}$ and $\mathcal{A} \subseteq V(P)$, deciding whether $V(P) \subseteq \mathcal{A}$ or not is co-NP-complete.

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Vertex generation

Second formulation (Lovász, 1992):

Given $P = \{x \in \mathbb{R}^d | Ax \ge b\}$ and $\mathcal{A} \subseteq \mathbb{R}^d$ decide if $\mathcal{A} = V(P)$.

- V(P) can be generated by repeatedly solving the above decision problem.
- $\operatorname{conv}(\mathcal{A}) \subseteq P$ is easy to check
- $P \subseteq \operatorname{conv}(\mathcal{A})$ is co-NP-complete (Freund and Orlin 1985)
- Yet, if $\mathcal{A} \subseteq V(P)$, then $P \subseteq \operatorname{conv}(\mathcal{A})$ was open ...

Theorem (BBEGK, 2005)

Given $P = \{x \in \mathbb{R}^d | Ax \ge b\}$ and $\mathcal{A} \subseteq V(P)$, deciding whether $V(P) \subseteq \mathcal{A}$ or not is co-NP-complete.

Related Problems 000

うして ふゆう ふほう ふほう ふしつ

Equivalent vertex definitions

Assume $A \in \mathbb{R}^{m \times d}$, $b \in \mathbb{R}^m$, $I \subseteq [m] = \{1, ..., m\}$, and let

- A_I be the submatrix of S formed by the rows $i \in I$;
- b_I be the subvector of b formed by the components $i \in I$;

•
$$\overline{I} = \{1, ..., m\} \setminus I;$$

•
$$P_I = \{x \in \mathbb{R}^d \mid A_I x = b_I, \ A_{\bar{I}} x \ge b_{\bar{I}} \}.$$

Claim

For $P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$ such that $V(P) \ne \emptyset$, there is a one-to-one correspondence between vertices of P and the maximal tight feasible subsets of the inequalities

 $MaxTF(P) = \{ max'l I \subseteq [m] \mid P_I \neq \emptyset \}.$

Hunt for a Hard Case

Related Problems 000

Equivalent vertex definitions

Assume $A \in \mathbb{R}^{m \times d}$, $b \in \mathbb{R}^m$, $I \subseteq [m] = \{1, ..., m\}$, and let

- A_I be the submatrix of S formed by the rows $i \in I$;
- b_I be the subvector of b formed by the components $i \in I$;

•
$$\overline{I} = \{1, ..., m\} \setminus I;$$

•
$$P_I = \{x \in \mathbb{R}^d \mid A_I x = b_I, \ A_{\bar{I}} x \ge b_{\bar{I}} \}.$$

Claim

For $P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$ such that $V(P) \ne \emptyset$, there is a one-to-one correspondence between vertices of P and the maximal tight feasible subsets of the inequalities

$$MaxTF(P) = \{ max'l \ I \subseteq [m] \mid P_I \neq \emptyset \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Monotone properties

Assume $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$.

Let us define a property $\Pi \subseteq 2^{\{1,\dots,m\}}$ such that $I \in \Pi$ iff

$$P_I = \left\{ x \in \mathbb{R}^d \mid A_I x = b_I, \ A_{\bar{I}} x \ge b_{\bar{I}} \right\} \neq \emptyset.$$

• Then, Π is a monotone property:

 $I \subseteq I' \in \mathbf{\Pi}$ implies $I \in \mathbf{\Pi}$.

• Generating V(P) is equivalent with generating

 $Max(\mathbf{\Pi}) = MaxTF(P) = \{ \max' l \text{ subsets } I \in \mathbf{\Pi} \}.$

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Monotone properties

Assume $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$.

Let us define a property $\Pi \subseteq 2^{\{1,\dots,m\}}$ such that $I \in \Pi$ iff

$$P_I = \left\{ x \in \mathbb{R}^d \mid A_I x = b_I, \ A_{\bar{I}} x \ge b_{\bar{I}} \right\} \neq \emptyset.$$

• Then, Π is a monotone property:

 $I \subseteq I' \in \mathbf{\Pi}$ implies $I \in \mathbf{\Pi}$.

• Generating V(P) is equivalent with generating

 $Max(\mathbf{\Pi}) = MaxTF(P) = \{ \max' l \text{ subsets } I \in \mathbf{\Pi} \}.$

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Monotone properties

Assume $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$.

Let us define a property $\Pi \subseteq 2^{\{1,...,m\}}$ such that $I \in \Pi$ iff

$$P_I = \left\{ x \in \mathbb{R}^d \mid A_I x = b_I, \ A_{\bar{I}} x \ge b_{\bar{I}} \right\} \neq \emptyset.$$

• Then, Π is a monotone property:

 $I \subseteq I' \in \mathbf{\Pi}$ implies $I \in \mathbf{\Pi}$.

• Generating V(P) is equivalent with generating

 $Max(\mathbf{\Pi}) = MaxTF(P) = \{ \max' \mid \text{subsets } I \in \mathbf{\Pi} \}.$

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Monotone properties

Assume $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$.

Let us define a property $\Pi \subseteq 2^{\{1,...,m\}}$ such that $I \in \Pi$ iff

$$P_I = \left\{ x \in \mathbb{R}^d \mid A_I x = b_I, \ A_{\bar{I}} x \ge b_{\bar{I}} \right\} \neq \emptyset.$$

• Then, Π is a monotone property:

 $I \subseteq I' \in \mathbf{\Pi}$ implies $I \in \mathbf{\Pi}$.

• Generating V(P) is equivalent with generating

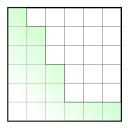
 $Max(\mathbf{\Pi}) = MaxTF(P) = \{ \max' \mid \text{subsets } I \in \mathbf{\Pi} \}.$

Hunt for a Hard Case

Related Problems 000

うして ふゆう ふほう ふほう ふしつ

Monotone generation



Consider a monotone property Π in a lattice (e.g., $\{0,1\}^m$) • $Max(\Pi) = \{ \text{ max'l elements } v \in \Pi \}.$ • $Min(\overline{\Pi}) = \{ \text{ min'l elements } v \notin \Pi \}.$

Given a monotone system 11, generate

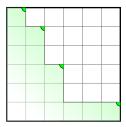
- $\sim Max(2)$ (or Min(2) or both).
- \circ (Typically size(12) << (Max(12)).

Hunt for a Hard Case

Related Problems 000

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Monotone generation



Consider a monotone property II in a lattice (e.g., {0,1}^m)
Max(II) = { max'l elements v ∈ II}.
Min(II) = { min'l elements v ∉ II}.

- Typically size(\square) $\ll |Max(\square)|$.
- Blow to measure efficiency of

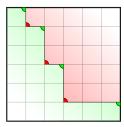
generation

Hunt for a Hard Case

Related Problems 000

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Monotone generation



Consider a monotone property Π in a lattice (e.g., $\{0, 1\}^m$) • $Max(\Pi) = \{ \max' l \text{ elements } v \in \Pi \}.$ • $Min(\overline{\Pi}) = \{ \min' l \text{ elements } v \notin \Pi \}.$

Given a monotone system II, generate

- $Max(\Pi)$ (or $Min(\overline{\Pi})$ or both).
- Typically $size(\Pi) \ll |Max(\Pi)|$.
- How to measure efficiency of

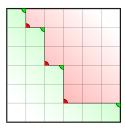
generation?

Hunt for a Hard Case

Related Problems 000

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Monotone generation



Consider a monotone property Π in a lattice (e.g., $\{0,1\}^m$) • $Max(\Pi) = \{ \max' l \text{ elements } v \in \Pi \}.$ • $Min(\overline{\Pi}) = \{ \min' l \text{ elements } v \notin \Pi \}.$

Given a monotone system Π , generate

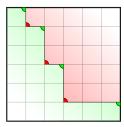
- $Max(\Pi)$ (or $Min(\overline{\Pi})$ or both).
- Typically $size(\mathbf{\Pi}) \ll |Max(\mathbf{\Pi})|$.
- How to measure efficiency of

Hunt for a Hard Case

Related Problems 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Monotone generation



Consider a monotone property Π in a lattice (e.g., $\{0,1\}^m$) • $Max(\Pi) = \{ \max' l \text{ elements } v \in \Pi \}.$ • $Min(\overline{\Pi}) = \{ \min' l \text{ elements } v \notin \Pi \}.$

Given a monotone system Π , generate

- $Max(\Pi)$ (or $Min(\overline{\Pi})$ or both).
- Typically $size(\mathbf{\Pi}) \ll |Max(\mathbf{\Pi})|$.
- How to measure efficiency of

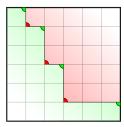
generation

Hunt for a Hard Case

Related Problems 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Monotone generation



Consider a monotone property Π in a lattice (e.g., $\{0,1\}^m$) • $Max(\Pi) = \{ \max' l \text{ elements } v \in \Pi \}.$ • $Min(\overline{\Pi}) = \{ \min' l \text{ elements } v \notin \Pi \}.$

Given a monotone system Π , generate

- $Max(\Pi)$ (or $Min(\overline{\Pi})$ or both).
- Typically $size(\mathbf{\Pi}) \ll |Max(\mathbf{\Pi})|$.
- How to measure efficiency of generation?

Vertex Generation

Hunt for a Hard Case

Related Problems 000

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Outline

- What is a polyhedron? • What is a vertex? 2 Vertex Generation • What is vertex generation? • When is generation hard? • Hypergraph dualization • A polyhedral application • Matching polytopes • Yet another reformulation • The hunt resumed ... • The hunt is over
 - Simplices and Bodies

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Complexity of generation

Sequential generation

• Given a monotone system Π of input size $|\Pi| = N$, an algorithm \mathfrak{A} generates one-by-one the elements

 $Max(\mathbf{\Pi}) = \{v_1, v_2, ..., v_M\},\$

outputting v_k at time t_k $(t_1 \le t_2 \le \cdots \le t_M)$.

• Algorithm \mathfrak{A} is said to work

in total polynomial time, if $t_M \leq poly(N)$

 $t_k \leq poly(N,k)$ for all $k \leq M$

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Complexity of generation

Sequential generation

• Given a monotone system Π of input size $|\Pi| = N$, an algorithm \mathfrak{A} generates one-by-one the elements

$$Max(\Pi) = \{v_1, v_2, ..., v_M\},\$$

outputting v_k at time t_k $(t_1 \le t_2 \le \cdots \le t_M)$.

- Algorithm ${\mathfrak A}$ is said to work
 - in total polynomial time, if $t_M \leq poly(N, M)$
 - in incremental polynomial time, if

 $t_k \le poly(N,k)$ for all $k \le M$

• with polynomial delay, if

 $t_{k+1} - t_k \le poly(N)$ for all k < M

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Complexity of generation

Sequential generation

• Given a monotone system Π of input size $|\Pi| = N$, an algorithm \mathfrak{A} generates one-by-one the elements

$$Max(\mathbf{\Pi}) = \{v_1, v_2, ..., v_M\},\$$

outputting v_k at time t_k $(t_1 \le t_2 \le \cdots \le t_M)$.

- $\bullet\,$ Algorithm ${\mathfrak A}$ is said to work
 - in total polynomial time, if $t_M \leq poly(N, M)$
 - in incremental polynomial time, if

$$t_k \le poly(N,k)$$
 for all $k \le M$

• with polynomial delay, if

 $t_{k+1} - t_k \le poly(N)$ for all k < M

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Complexity of generation

Sequential generation

• Given a monotone system Π of input size $|\Pi| = N$, an algorithm \mathfrak{A} generates one-by-one the elements

$$Max(\mathbf{\Pi}) = \{v_1, v_2, ..., v_M\},\$$

outputting v_k at time t_k $(t_1 \le t_2 \le \cdots \le t_M)$.

- \bullet Algorithm ${\mathfrak A}$ is said to work
 - in total polynomial time, if $t_M \leq poly(N, M)$
 - in incremental polynomial time, if

 $t_k \le poly(N,k)$ for all $k \le M$

• with polynomial delay, if

 $t_{k+1} - t_k \le poly(N)$ for all k < M

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Hunt for a Hard Case

Related Problems 000

Complexity of generation

$\mathrm{NEXT}(\Pi,\mathcal{M})$

Given a monotone system Π and $\mathcal{M} \subseteq Max(\Pi)$, decide if $\mathcal{M} = Max(\Pi)$, or find $v \in Max(\Pi) \setminus \mathcal{M}$ if not.

Theorem (Ms. Folklore, 19??)

 $Max(\Pi)$ can be generated in incremental polynomial time (total polynomial time) if and only if problem $NEXT(\Pi, \mathcal{M})$ can be solved in polynomial time for all $\mathcal{M} \subseteq Max(\Pi)$.

(Lawler, Lenstra, and Rinnooy Kann, 1980)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Hunt for a Hard Case

Related Problems 000

Complexity of generation

$\operatorname{NEXT}(\Pi,\mathcal{M})$

Given a monotone system Π and $\mathcal{M} \subseteq Max(\Pi)$, decide if $\mathcal{M} = Max(\Pi)$, or find $v \in Max(\Pi) \setminus \mathcal{M}$ if not.

Theorem (Ms. Folklore, 19??)

 $Max(\Pi)$ can be generated in incremental polynomial time (total polynomial time) if and only if problem $NEXT(\Pi, \mathcal{M})$ can be solved in polynomial time for all $\mathcal{M} \subseteq Max(\Pi)$.

(Lawler, Lenstra, and Rinnooy Kann, 1980)

うして ふゆう ふほう ふほう ふしつ

Hunt for a Hard Case

Related Problems 000

Complexity of generation

$\mathrm{NEXT}(\Pi,\mathcal{M})$

Given a monotone system Π and $\mathcal{M} \subseteq Max(\Pi)$, decide if $\mathcal{M} = Max(\Pi)$, or find $v \in Max(\Pi) \setminus \mathcal{M}$ if not.

Theorem (Ms. Folklore, 19??)

 $Max(\Pi)$ can be generated in incremental polynomial time (total polynomial time) if and only if problem $NEXT(\Pi, \mathcal{M})$ can be solved in polynomial time for all $\mathcal{M} \subseteq Max(\Pi)$.

(Lawler, Lenstra, and Rinnooy Kann, 1980)

うして ふゆう ふほう ふほう ふしつ

Hunt for a Hard Case

Related Problems 000

Complexity of generation

$\mathrm{NEXT}(\Pi,\mathcal{M})$

Given a monotone system Π and $\mathcal{M} \subseteq Max(\Pi)$, decide if $\mathcal{M} = Max(\Pi)$, or find $v \in Max(\Pi) \setminus \mathcal{M}$ if not.

Theorem (Ms. Folklore, 19??)

 $Max(\Pi)$ can be generated in incremental polynomial time (total polynomial time) if and only if problem $NEXT(\Pi, \mathcal{M})$ can be solved in polynomial time for all $\mathcal{M} \subseteq Max(\Pi)$.

(Lawler, Lenstra, and Rinnooy Kann, 1980)

うして ふゆう ふほう ふほう ふしつ

Vertex Generation

Hunt for a Hard Case

Related Problems 000

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Outline

• What is a polyhedron? • What is a vertex? 2 Vertex Generation • What is vertex generation? • When is generation hard? • Hypergraph dualization • A polyhedral application • Matching polytopes • Yet another reformulation • The hunt resumed ... • The hunt is over • Simplices and Bodies

Hunt for a Hard Case

Related Problems 000

Prime example for monotone generation

Hypergraph transversals

Let |U| = m and $\mathcal{H} \subseteq 2^U$ be a hypergraph. Associate to it a property $\Pi = \Pi_{\mathcal{H}} \subseteq 2^U$ by

 $S \in \Pi \iff \begin{cases} \nexists H \in \mathcal{H} : H \subseteq S \\ S \text{ is independent} \end{cases} \Leftrightarrow (U \setminus S) \cap H \neq \emptyset \ \forall H \in \mathcal{H} \\ (U \setminus S) \text{ is a transversal} \end{cases}$

- $\mathcal{H}^* = Max(\Pi_{\mathcal{H}})$ is the family of maximal independent sets of \mathcal{H} .
- $\mathcal{H}^d = \{U \setminus S \mid S \in Max(\Pi_{\mathcal{H}})\}$ is the family of minimal transversals of \mathcal{H} .
- $\mathcal{H} \to \mathcal{H}^d$ (or $\mathcal{H} \to \mathcal{H}^*$) are known as the hypergraph transversal or monotone dualization problems.

Hunt for a Hard Case

Related Problems 000

Prime example for monotone generation

Hypergraph transversals

Let |U| = m and $\mathcal{H} \subseteq 2^U$ be a hypergraph. Associate to it a property $\Pi = \Pi_{\mathcal{H}} \subseteq 2^U$ by

 $S \in \Pi \iff \begin{array}{c} \nexists H \in \mathcal{H} : H \subseteq S \\ S \text{ is independent} \end{array} \qquad \Leftrightarrow \begin{array}{c} (U \setminus S) \cap H \neq \emptyset \ \forall H \in \mathcal{H} \\ \Leftrightarrow \\ (U \setminus S) \text{ is a transversal} \end{array}$

- $\mathcal{H}^* = Max(\Pi_{\mathcal{H}})$ is the family of maximal independent sets of \mathcal{H} .
- $\mathcal{H}^d = \{U \setminus S \mid S \in Max(\Pi_{\mathcal{H}})\}$ is the family of minimal transversals of \mathcal{H} .
- $\mathcal{H} \to \mathcal{H}^d$ (or $\mathcal{H} \to \mathcal{H}^*$) are known as the hypergraph transversal or monotone dualization problems.

Hunt for a Hard Case

Related Problems 000

Prime example for monotone generation

Hypergraph transversals

Let |U| = m and $\mathcal{H} \subseteq 2^U$ be a hypergraph. Associate to it a property $\Pi = \Pi_{\mathcal{H}} \subseteq 2^U$ by

- $S \in \Pi \iff \begin{array}{c} \nexists H \in \mathcal{H} : H \subseteq S \\ S \text{ is independent} \end{array} \qquad \Leftrightarrow \begin{array}{c} (U \setminus S) \cap H \neq \emptyset \ \forall H \in \mathcal{H} \\ \Leftrightarrow \\ (U \setminus S) \text{ is a transversal} \end{array}$
 - $\mathcal{H}^* = Max(\Pi_{\mathcal{H}})$ is the family of maximal independent sets of \mathcal{H} .
 - $\mathcal{H}^d = \{U \setminus S \mid S \in Max(\Pi_{\mathcal{H}})\}$ is the family of minimal transversals of \mathcal{H} .
 - $\mathcal{H} \to \mathcal{H}^d$ (or $\mathcal{H} \to \mathcal{H}^*$) are known as the hypergraph transversal or monotone dualization problems.

Hunt for a Hard Case

Related Problems 000

Prime example for monotone generation

Hypergraph transversals

Let |U| = m and $\mathcal{H} \subseteq 2^U$ be a hypergraph. Associate to it a property $\Pi = \Pi_{\mathcal{H}} \subseteq 2^U$ by

- $S \in \Pi \iff \begin{array}{c} \nexists H \in \mathcal{H} : H \subseteq S \\ S \text{ is independent} \end{array} \iff \begin{array}{c} (U \setminus S) \cap H \neq \emptyset \; \forall H \in \mathcal{H} \\ (U \setminus S) \text{ is a transversal} \end{array}$
 - $\mathcal{H}^* = Max(\Pi_{\mathcal{H}})$ is the family of maximal independent sets of \mathcal{H} .
 - $\mathcal{H}^d = \{U \setminus S \mid S \in Max(\Pi_{\mathcal{H}})\}$ is the family of minimal transversals of \mathcal{H} .
 - $\mathcal{H} \to \mathcal{H}^d$ (or $\mathcal{H} \to \mathcal{H}^*$) are known as the hypergraph transversal or monotone dualization problems.

Hunt for a Hard Case

Related Problems 000

Prime example for monotone generation

Hypergraph transversals

Let |U| = m and $\mathcal{H} \subseteq 2^U$ be a hypergraph. Associate to it a property $\Pi = \Pi_{\mathcal{H}} \subseteq 2^U$ by

 $S \in \Pi \iff \begin{array}{c} \nexists H \in \mathcal{H} : H \subseteq S \\ S \text{ is independent} \end{array} \iff \begin{array}{c} (U \setminus S) \cap H \neq \emptyset \ \forall H \in \mathcal{H} \\ (U \setminus S) \text{ is a transversal} \end{array}$

- $\mathcal{H}^* = Max(\Pi_{\mathcal{H}})$ is the family of maximal independent sets of \mathcal{H} .
- $\mathcal{H}^d = \{U \setminus S \mid S \in Max(\Pi_{\mathcal{H}})\}$ is the family of minimal transversals of \mathcal{H} .
- *H* → *H^d* (or *H* → *H^{*}*) are known as the hypergraph transversal or monotone dualization problems.

Vertex Generation

Hunt for a Hard Case

Related Problems

Generating hypergraph transversals

Theorem (Fredmand and Khachiyan, 1996)

For any hypergraph \mathcal{H} and an arbitrary family $\mathcal{M} \subseteq \mathcal{H}^d$ of its minimal transversals, problem $NEXT(\mathcal{H}, \mathcal{M})$ can be solved in $O\left((|\mathcal{H}| + |\mathcal{H}^d|)^{o(\log |\mathcal{H}| + |\mathcal{H}^d|)}\right)$ time.

... many-many special cases ...

Claim (Eiter and Gottlob, 1995)

If for all hyperedges $H \in \mathcal{H}$ we have $|H| \leq k$, where k is fixed, then \mathcal{H}^d can be generated with polynomial delay.

Vertex Generation

Hunt for a Hard Case

Related Problems

Generating hypergraph transversals

Theorem (Fredmand and Khachiyan, 1996)

For any hypergraph \mathcal{H} and an arbitrary family $\mathcal{M} \subseteq \mathcal{H}^d$ of its minimal transversals, problem $NEXT(\mathcal{H}, \mathcal{M})$ can be solved in $O\left((|\mathcal{H}| + |\mathcal{H}^d|)^{o(\log |\mathcal{H}| + |\mathcal{H}^d|)}\right)$ time.

... many-many special cases ...

Claim (Eiter and Gottlob, 1995)

If for all hyperedges $H \in \mathcal{H}$ we have $|H| \leq k$, where k is fixed, then \mathcal{H}^d can be generated with polynomial delay.

Vertex Generation

Hunt for a Hard Case

Related Problems

(日) (日) (日) (日) (日) (日) (日) (日)

Generating hypergraph transversals

Theorem (Fredmand and Khachiyan, 1996)

For any hypergraph \mathcal{H} and an arbitrary family $\mathcal{M} \subseteq \mathcal{H}^d$ of its minimal transversals, problem $NEXT(\mathcal{H}, \mathcal{M})$ can be solved in $O\left((|\mathcal{H}| + |\mathcal{H}^d|)^{o(\log |\mathcal{H}| + |\mathcal{H}^d|)}\right)$ time.

... many-many special cases ...

Claim (Eiter and Gottlob, 1995)

If for all hyperedges $H \in \mathcal{H}$ we have $|H| \leq k$, where k is fixed, then \mathcal{H}^d can be generated with polynomial delay.

Hunt for a Hard Case

Related Problems 000

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Outline

- Polyhedra and VerticesWhat is a polyhedron?
 - What is a vertex?

2 Vertex Generation

- What is vertex generation?
- When is generation hard?
- Hypergraph dualization

• A polyhedral application

- **3** Hunt for a Hard Case
 - Matching polytopes
 - Yet another reformulation
 - The hunt resumed ...
 - The hunt is over

Related Problems

• Simplices and Bodies

Hunt for a Hard Case

Related Problems 000

Vertex generation in fixed dimension

Assume $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$, and recall:

Generating the vertices of $P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$ is equivalent with generating MaxTF (maximal subsets $I \subseteq [m] = \{1, ..., m\}$ for which $P_I = \{x \in \mathbb{R}^d \mid A_I x = b_I, A_{\bar{I}} x \ge b_{\bar{I}}\} \neq \emptyset$).

• Think of MaxTF as the family \mathcal{H}^* of maximal independent sets of a hypergraph \mathcal{H} .

- $\mathcal{H} = MinTI = \{ \min' \mid J \subseteq [m] \mid P_J = \emptyset \}.$
- Then we have $|J| \leq d+1$ for all $J \in \mathcal{H}$. \Leftarrow Helly

Hunt for a Hard Case

Related Problems 000

Vertex generation in fixed dimension

Assume $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$, and recall:

Generating the vertices of $P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$ is equivalent with generating MaxTF (maximal subsets $I \subseteq [m] = \{1, ..., m\}$ for which $P_I = \{x \in \mathbb{R}^d \mid A_I x = b_I, A_{\bar{I}} x \ge b_{\bar{I}}\} \neq \emptyset$).

- Think of MaxTF as the family \mathcal{H}^* of maximal independent sets of a hypergraph \mathcal{H} .
- $\mathcal{H} = MinTI = \{ \min' I J \subseteq [m] \mid P_J = \emptyset \}.$
- Then we have $|J| \leq d+1$ for all $J \in \mathcal{H}$. \iff Helly

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Vertex generation in fixed dimension

Assume $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$, and recall:

Generating the vertices of $P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$ is equivalent with generating MaxTF (maximal subsets $I \subseteq [m] = \{1, ..., m\}$ for which $P_I = \{x \in \mathbb{R}^d \mid A_I x = b_I, A_{\bar{I}} x \ge b_{\bar{I}}\} \neq \emptyset$).

- Think of MaxTF as the family \mathcal{H}^* of maximal independent sets of a hypergraph \mathcal{H} . What is \mathcal{H} ?
- $\mathcal{H} = MinTI = \{ \min' I J \subseteq [m] \mid P_J = \emptyset \}.$
- Then we have $|J| \leq d+1$ for all $J \in \mathcal{H}$. \Leftarrow Helly

Hunt for a Hard Case

Related Problems 000

Vertex generation in fixed dimension

Assume $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$, and recall:

Generating the vertices of $P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$ is equivalent with generating MaxTF (maximal subsets $I \subseteq [m] = \{1, ..., m\}$ for which $P_I = \{x \in \mathbb{R}^d \mid A_I x = b_I, A_{\bar{I}} x \ge b_{\bar{I}}\} \neq \emptyset$).

- Think of MaxTF as the family \mathcal{H}^* of maximal independent sets of a hypergraph \mathcal{H} . What is \mathcal{H} ?
- $\mathcal{H} = MinTI = \{ \min' \mid J \subseteq [m] \mid P_J = \emptyset \}.$
- Then we have $|J| \leq d+1$ for all $J \in \mathcal{H}$. \Leftarrow Helly

Hunt for a Hard Case

Related Problems 000

Vertex generation in fixed dimension

Assume $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$, and recall:

Generating the vertices of $P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$ is equivalent with generating MaxTF (maximal subsets $I \subseteq [m] = \{1, ..., m\}$ for which $P_I = \{x \in \mathbb{R}^d \mid A_I x = b_I, A_{\bar{I}} x \ge b_{\bar{I}}\} \neq \emptyset$).

- Think of MaxTF as the family \mathcal{H}^* of maximal independent sets of a hypergraph \mathcal{H} . What is \mathcal{H} ?
- $\mathcal{H} = MinTI = \{ \min' \mid J \subseteq [m] \mid P_J = \emptyset \}.$
- Then we have $|J| \leq d+1$ for all $J \in \mathcal{H}$. \leftarrow Helly
- A polynomial delay vertex generation in fixed dimension
 - Generate $\mathcal{H} = MinTI$ in $O(m^d)$ time.
 - Generate $\mathcal{H}^{*} = MaxTF$ with polynomial delay (in terms of $|\mathcal{H}|$ as in (Filter and Gattleb, 1990)

・ロト ・ 雪 ト ・ ヨ ト

Hunt for a Hard Case

Related Problems

Vertex generation in fixed dimension

Assume $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$, and recall:

Generating the vertices of $P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$ is equivalent with generating MaxTF (maximal subsets $I \subseteq [m] = \{1, ..., m\}$ for which $P_I = \{x \in \mathbb{R}^d \mid A_I x = b_I, A_{\bar{I}} x \ge b_{\bar{I}}\} \neq \emptyset$).

- Think of MaxTF as the family \mathcal{H}^* of maximal independent sets of a hypergraph \mathcal{H} . What is \mathcal{H} ?
- $\mathcal{H} = MinTI = \{ \min' \mid J \subseteq [m] \mid P_J = \emptyset \}.$
- Then we have $|J| \leq d+1$ for all $J \in \mathcal{H}$. \leftarrow Helly

A polynomial delay vertex generation in fixed dimension

• Generate $\mathcal{H} = MinTI$ in $O(m^d)$ time.

• Generate $\mathcal{H}^* = MaxTF$ with polynomial delay (in terms of $|\mathcal{H}|$). as in (Eiter and Gottlob, 1995)

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ 三目 - の々ぐ

Hunt for a Hard Case

Related Problems

Vertex generation in fixed dimension

Assume $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$, and recall:

Generating the vertices of $P = \{x \in \mathbb{R}^d \mid Ax \ge b\}$ is equivalent with generating MaxTF (maximal subsets $I \subseteq [m] = \{1, ..., m\}$ for which $P_I = \{x \in \mathbb{R}^d \mid A_I x = b_I, A_{\bar{I}} x \ge b_{\bar{I}}\} \neq \emptyset$).

- Think of MaxTF as the family \mathcal{H}^* of maximal independent sets of a hypergraph \mathcal{H} . What is \mathcal{H} ?
- $\mathcal{H} = MinTI = \{ \min' \mid J \subseteq [m] \mid P_J = \emptyset \}.$
- Then we have $|J| \leq d+1$ for all $J \in \mathcal{H}$. \leftarrow Helly

A polynomial delay vertex generation in fixed dimension

- Generate $\mathcal{H} = MinTI$ in $O(m^d)$ time.
- Generate $\mathcal{H}^* = MaxTF$ with polynomial delay (in terms of $|\mathcal{H}|$). as in (Eiter and Gottlob, 1995)

Vertex Generation

Hunt for a Hard Case ${\scriptstyle \bullet 00000000000}$

Related Problems 000

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Outline

• What is a polyhedron? • What is a vertex? • What is vertex generation? • When is generation hard? • Hypergraph dualization • A polyhedral application 3 Hunt for a Hard Case • Matching polytopes • Yet another reformulation • The hunt resumed ... • The hunt is over • Simplices and Bodies

Vertex Generation

Related Problems 000

Bipartite matching polytope

Let
$$G = (V, E)$$
 be a bipartite graph, and consider

$$P = \left\{ x \in \mathbb{R}^E \mid \sum_{e \ni v} x_e \leq 1 \quad \forall v \in V \\ x_e \geq 0 \quad \forall e \in E \end{array} \right\}$$

$$MaxTF = \left\{ \max' \mathbf{I} \mathbf{I} \subseteq V \cup E \mid \begin{bmatrix} E \setminus \mathbf{I} \text{ is a matching} \\ \text{covering } V \cap \mathbf{I} \end{bmatrix}$$

$$V(P) \longleftrightarrow MaxTF \longleftrightarrow \mathcal{M} = \left\{ \max' \mathbf{I} \text{ matchings of } G \right\}$$

Polynomial delay generation (Fukuda and Matsui, 1992) (Uno, 1997)

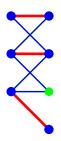
 \mathcal{M}^d can also be generated with polynomial delay

Boros, Elbassioni, and Gurvich, 2004)

- 日本 - 4 日本 - 4 日本 - 日本

Vertex Generation 00000000000 Related Problems 000

Bipartite matching polytope



Let
$$G = (V, E)$$
 be a bipartite graph, and consider

$$P = \left\{ x \in \mathbb{R}^E \mid \sum_{e \ni v} x_e \leq 1 \quad \forall v \in V \\ x_e \geq 0 \quad \forall e \in E \right\}$$

$$MaxTF = \left\{ \text{max'l } \mathbf{I} \subseteq V \cup E \mid \begin{array}{c} E \setminus \mathbf{I} \text{ is a matching} \\ \text{covering } V \cap \mathbf{I} \end{array} \right\}$$

$$V(P) \longleftrightarrow MaxTF \longleftrightarrow \mathcal{M} = \left\{ \text{ max'l matchings of } G \right\}$$

Polynomial delay generation (Fukuda and Matsui, 1992) (Uno, 1997)

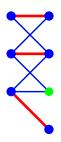
 \mathcal{M}^d can also be generated with polynomial delay

(Boros, Elbassioni, and Gurvich, 2004)

Vertex Generation

Related Problems 000

Bipartite matching polytope



Let $G = (V, E)$ be a bipartite graph, and consider
$P = \left\{ x \in \mathbb{R}^E \mid \begin{array}{cc} \sum_{e \ni v} x_e & \leq 1 \forall v \in V \\ x_e & \geq 0 \forall e \in E \end{array} \right\}$
$ \qquad \qquad$
$MaxTF = \left\{ \max' \mathbf{I} \subseteq V \cup E \mid \begin{array}{c} E \setminus \mathbf{I} \text{ is a matching} \\ \text{covering } V \cap \mathbf{I} \end{array} \right\}$
$V(P) \longleftrightarrow MaxTF \longleftrightarrow \mathcal{M} = \{ \max' l \text{ matchings of } G \}$

Polynomial delay generation (Fukuda and Matsui, 1992) (Uno, 1997)

 \mathcal{M}^d can also be generated with polynomial delay

(Boros, Elbassioni, and Gurvich, 2004)

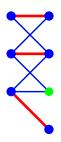
ション ふゆ マ キャット マックシン

Vertex Generation

Related Problems

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Bipartite matching polytope



Let
$$G = (V, E)$$
 be a bipartite graph, and consider

$$P = \left\{ x \in \mathbb{R}^E \mid \begin{array}{c} \sum_{e \ni v} x_e & \leq 1 \quad \forall v \in V \\ \\ x_e & \geq 0 \quad \forall e \in E \end{array} \right\}$$

$$MaxTF = \left\{ \max' \mathbf{I} \mathbf{I} \subseteq V \cup E \mid \begin{array}{c} E \setminus \mathbf{I} \text{ is a matching} \\ \\ \operatorname{covering} V \cap \mathbf{I} \end{array} \right\}$$

$$V(P) \longleftrightarrow MaxTF \longleftrightarrow \mathcal{M} = \left\{ \max' \mathbf{I} \operatorname{matchings of} G \right\}$$

Polynomial delay generation (Fukuda and Matsui, 1992) (Uno, 1997)

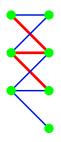
 \mathcal{M}^{a} can also be generated with polynomial delay (Boros, Elbassioni, and Gurvich, 200

Vertex Generation

Related Problems

ション ふゆ マ キャット マックシン

Bipartite matching polytope



Let
$$G = (V, E)$$
 be a bipartite graph, and consider

$$P = \left\{ x \in \mathbb{R}^E \mid \begin{array}{c} \sum_{e \ni v} x_e & \leq 1 \quad \forall v \in V \\ \\ x_e & \geq 0 \quad \forall e \in E \end{array} \right\}$$

$$MaxTF = \left\{ \text{max'l } \mathbf{I} \subseteq V \cup E \mid \begin{array}{c} E \setminus \mathbf{I} \text{ is a matching} \\ \\ \text{covering } V \cap \mathbf{I} \end{array} \right\}$$

$$V(P) \longleftrightarrow MaxTF \longleftrightarrow \mathcal{M} = \left\{ \text{ max'l matchings of } G \right\}$$

Polynomial delay generation (Fukuda and Matsui, 1992) (Uno, 1997)

 \mathcal{M}^d can also be generated with polynomial delay (Boros, Elbassioni, and Gurvich, 2004)

Vertex Generation

Related Problems 000

Non-bipartite matching polytope

Let
$$G = (V, E)$$
 be a connected graph, and consider

$$P = \left\{ x \in \mathbb{R}^E \mid \begin{array}{c} \sum_{e \ni v} x_e & \leq 1 \quad \forall v \in V \\ \\ x_e & \geq 0 \quad \forall e \in E \end{array} \right\}$$

$$MaxTF = \left\{ \max \exists \mathbf{I} \subseteq V \cup E \mid \begin{array}{c} E \setminus \mathbf{I} \text{ is a 2-matching} \\ \\ \text{covering } V \cap \mathbf{I} \end{array} \right\}$$

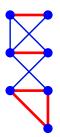
$$V(B) \leftarrow MaxTE \leftarrow MaxTE \in C \text{ and the proof } C$$

With polynomial delay (Boros, Elbassioni, and Gurvich, 2004)

イロト イポト イヨト イヨト 三日

Vertex Generation 00000000000 Related Problems 000

Non-bipartite matching polytope



Let
$$G = (V, E)$$
 be a connected graph, and consider

$$P = \left\{ x \in \mathbb{R}^E \mid \sum_{e \ni v} x_e \leq 1 \quad \forall v \in V \\ x_e \geq 0 \quad \forall e \in E \right\}$$

$$MaxTF = \left\{ \max' \mathbf{I} \mathbf{I} \subseteq V \cup E \mid E \setminus \mathbf{I} \text{ is a 2-matching } covering V \cap \mathbf{I} \right\}$$

 $V(P) \longleftrightarrow MaxTF \longleftrightarrow \mathcal{M} = \{ 2\text{-matchings of } G \}$

With polynomial delay

(Boros, Elbassioni, and Gurvich, 2004)

・ロト ・個ト ・モト ・モト

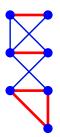
3

Vertex Generation

Related Problems 000

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Non-bipartite matching polytope



Let
$$G = (V, E)$$
 be a connected graph, and consider

$$P = \left\{ x \in \mathbb{R}^E \mid \sum_{e \ni v} x_e \leq 1 \quad \forall v \in V \\ x_e \geq 0 \quad \forall e \in E \right\}$$

$$MaxTF = \left\{ \max' \mathbf{I} \subseteq V \cup E \mid E \setminus \mathbf{I} \text{ is a 2-matching} \\ \text{covering } V \cap \mathbf{I} \right\}$$

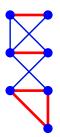
 $V(P) \longleftrightarrow MaxTF \longleftrightarrow \mathcal{M} = \{ \text{ 2-matchings of } G \}$

With polynomial delay (Boros, Elbassioni, and Gurvich, 2004)

Vertex Generation

Related Problems 000

Non-bipartite matching polytope



Let
$$G = (V, E)$$
 be a connected graph, and consider

$$P = \left\{ x \in \mathbb{R}^E \mid \sum_{e \ni v} x_e \leq 1 \quad \forall v \in V \\ x_e \geq 0 \quad \forall e \in E \right\}$$

$$MaxTF = \left\{ \max' \mathbf{I} \mathbf{I} \subseteq V \cup E \mid E \setminus \mathbf{I} \text{ is a 2-matching } covering V \cap \mathbf{I} \right\}$$

 $V(P) \longleftrightarrow MaxTF \longleftrightarrow \mathcal{M} = \{ \text{ 2-matchings of } G \}$

With polynomial delay

(Boros, Elbassioni, and Gurvich, 2004)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Vertex Generation

Related Problems 000

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Outline

- What is a polyhedron? • What is a vertex? • What is vertex generation? • When is generation hard? • Hypergraph dualization • A polyhedral application 3 Hunt for a Hard Case • Matching polytopes • Yet another reformulation • The hunt resumed ... • The hunt is over
 - Simplices and Bodies

Vertex Generation 00000000000 Related Problems 000

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Irreducible Inconsistent Subsystems (IIS)

Consider $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^d$ such that $Ax \ge b$ is inconsistent.

• $MinIS(A, b) = \{\min' \mid I \subseteq [m] \mid A_I x \ge b_I \text{ is inconsistent} \}$ • $MaxFS(A, b) = \{\max' \mid I \subseteq [m] \mid A_I x \ge b_I \text{ is feasible} \}$

Vertex Generation

Related Problems 000

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Irreducible Inconsistent Subsystems (IIS)

Consider $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^d$ such that $Ax \ge b$ is inconsistent.

- $MinIS(A, b) = \{ \min' \mid I \subseteq [m] \mid A_I x \ge b_I \text{ is inconsistent} \}$
- $MaxFS(A, b) = \{ max' | I \subseteq [m] | A_I x \ge b_I \text{ is feasible} \}$

Vertex Generation

Related Problems 000

ション ふゆ マ キャット マックシン

Irreducible Inconsistent Subsystems (IIS)

Consider $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^d$ such that $Ax \ge b$ is inconsistent.

- $MinIS(A, b) = \{\min' \mid I \subseteq [m] \mid A_I x \ge b_I \text{ is inconsistent} \}$
- $MaxFS(A, b) = \{ max' | I \subseteq [m] | A_I x \ge b_I \text{ is feasible} \}$

Vertex Generation

Related Problems 000

うして ふゆう ふほう ふほう ふしつ

Irreducible Inconsistent Subsystems (IIS)

Consider $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^d$ such that $Ax \ge b$ is inconsistent.

- $MinIS(A, b) = \{ \min' \mid I \subseteq [m] \mid A_I x \ge b_I \text{ is inconsistent} \}$
- $MaxFS(A, b) = \{ max' | I \subseteq [m] | A_I x \ge b_I \text{ is feasible} \}$

Facts and History

• $MinIS(A, b)^* = MaxFS(A, b)$

Vertex Generation

Related Problems

Irreducible Inconsistent Subsystems (IIS)

Consider $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^d$ such that $Ax \ge b$ is inconsistent.

- $MinIS(A, b) = \{ \min' \mid I \subseteq [m] \mid A_I x \ge b_I \text{ is inconsistent} \}$
- $MaxFS(A, b) = \{ max' | I \subseteq [m] | A_I x \ge b_I \text{ is feasible} \}$

Facts and History

- $MinIS(A, b)^* = MaxFS(A, b)$
- Lots of attention ... machine learning applications

(Gleason and Ryan, 1990)

(Ryan, 1996)

(Pfetsch, 2002)

うして ふゆう ふほう ふほう ふしつ

(Amaldi, Pfetsch and Trotter, 2003)

Vertex Generation

Related Problems 000

Irreducible Inconsistent Subsystems (IIS)

Consider $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^d$ such that $Ax \ge b$ is inconsistent.

- $MinIS(A, b) = \{ \min' \mid I \subseteq [m] \mid A_I x \ge b_I \text{ is inconsistent} \}$
- $MaxFS(A, b) = \{ max' | I \subseteq [m] | A_I x \ge b_I \text{ is feasible} \}$

Facts and History

- $MinIS(A, b)^* = MaxFS(A, b)$
- Problems $\min\{|I| \mid I \in MinIS(A, b)\}$ and $\max\{|I| \mid I \in MaxFS(A, b)\}$ are both NP-hard

(Johnson and Preparata, 1978)

(Chakravarty, 1994)

(Pfetsch, 2002)

(Amaldi, Pfetsch and Trotter, 2003)

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Irreducible Inconsistent Subsystems (IIS)

Consider $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^d$ such that $Ax \ge b$ is inconsistent.

- $MinIS(A, b) = \{ \min' \mid I \subseteq [m] \mid A_I x \ge b_I \text{ is inconsistent} \}$
- $MaxFS(A, b) = \{ max' | I \subseteq [m] | A_I x \ge b_I \text{ is feasible} \}$

Alternative Polyhedron

(Gleason and Ryan, 1990)

$$Q_{A,b} = \{ y \in \mathbb{R}^m \mid y^T A = 0, \ y^T b = 1, \ y \ge 0 \}$$

Claim

= Farkas' lemma, 1901

$$MinIS(A,b) \iff V(Q_{A,b})$$

Another monotone formulation of vertex generation!

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Irreducible Inconsistent Subsystems (IIS)

Consider $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^d$ such that $Ax \ge b$ is inconsistent.

- $MinIS(A, b) = \{ \min' \mid I \subseteq [m] \mid A_I x \ge b_I \text{ is inconsistent} \}$
- $MaxFS(A, b) = \{ max' | I \subseteq [m] | A_I x \ge b_I \text{ is feasible} \}$

Alternative Polyhedron

(Gleason and Ryan, 1990)

$$Q_{A,b} = \{ y \in \mathbb{R}^m \mid y^T A = 0, y^T b = 1, y \ge 0 \}$$

Claim

 \leftarrow Farkas' lemma, 1901

$$MinIS(A,b) \quad \longleftrightarrow \quad V(Q_{A,b})$$

Another monotone formulation of vertex generation!

Vertex Generation

Related Problems 000

Irreducible Inconsistent Subsystems (IIS)

Consider $A \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^d$ such that $Ax \ge b$ is inconsistent.

- $MinIS(A, b) = \{ \min' \mid I \subseteq [m] \mid A_I x \ge b_I \text{ is inconsistent} \}$
- $MaxFS(A, b) = \{ max' | I \subseteq [m] | A_I x \ge b_I \text{ is feasible} \}$

Alternative Polyhedron

(Gleason and Ryan, 1990)

$$Q_{A,b} = \{ y \in \mathbb{R}^m \mid y^T A = 0, y^T b = 1, y \ge 0 \}$$

Claim

 \leftarrow Farkas' lemma, 1901

$$MinIS(A,b) \iff V(Q_{A,b})$$

Another monotone formulation of vertex generation!

Vertex Generation

Related Problems 000

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

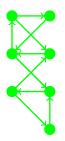
Outline

• What is a polyhedron? • What is a vertex? • What is vertex generation? • When is generation hard? • Hypergraph dualization • A polyhedral application 3 Hunt for a Hard Case • Matching polytopes • Yet another reformulation • The hunt resumed ... • The hunt is over • Simplices and Bodies

Vertex Generation

Related Problems 000

Acyclic subgraph polyhedron



Let G = (V, E) be a directed graph, $x \in \mathbb{R}^V$, and consider the linear system $\{x_i - x_j \ge 1 \ \forall \ (i, j) \in E\}$

 $MinIS \leftrightarrow \{ \text{ simple cycles of } G \}$

With polynomial delay

(Read and Tarjan 1975)

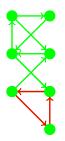
うして ふゆう ふほう ふほう ふしつ

With polynomial delay (Schwikowski and Speckenmeyer, 2002)

Vertex Generation

Related Problems 000

Acyclic subgraph polyhedron



Let $G = (V, E)$ be a directed graph, $x \in \mathbb{R}^V$, and consider
the linear system $\{x_i - x_j \ge 1 \ \forall \ (i, j) \in E\}$

$MinIS \leftrightarrow \{ \text{ simple cycles of } G \}$

With polynomial delay

(Read and Tarjan 1975)

ション ふゆ アメリア ション ひゃく

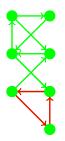
 $MaxFS \leftrightarrow \left\{ \begin{array}{c} \max'' \\ \operatorname{acyclic subgraphs} \\ \operatorname{of} G \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} \min'' \\ \operatorname{feedback \ are \ sets} \\ \operatorname{of} G \end{array} \right\}$

With polynomial delay (Schwikowski and Speckenmeyer, 2002)

Vertex Generation 0000000000

Related Problems 000

Acyclic subgraph polyhedron



Let G = (V, E) be a directed graph, $x \in \mathbb{R}^V$, and consider the linear system $\{x_i - x_j \ge 1 \ \forall \ (i, j) \in E\}$

 $MinIS \leftrightarrow \{ \text{ simple cycles of } G \}$

With polynomial delay

(Read and Tarjan 1975)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

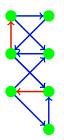
 $MaxFS \leftrightarrow \left\{\begin{array}{c} max''\\ acyclic subgraphs\\ of G\end{array}\right\} \leftrightarrow \left\{\begin{array}{c} min''\\ feedback arc sets\\ of G\end{array}\right\}$

With polynomial delay (Schwikowski and Speckenmeyer, 2002)

Vertex Generation 00000000000 Related Problems 000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Acyclic subgraph polyhedron



Let $G = (V, E)$ by the linear system					nsider	
Min	$nIS \leftrightarrow \{ sim \}$	ple cy	v <mark>cles</mark> of	G		
With polynomial delay			(Read and Tarjan 1975)			

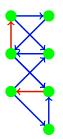
$$MaxFS \leftrightarrow \left\{ \begin{array}{c} max'l \\ acyclic \ subgraphs \\ of \ G \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} min'l \\ feedback \ arc \ sets \\ of \ G \end{array} \right\}$$

With polynomial delay (Schwikowski and Speckenmeyer, 2002)

Vertex Generation 00000000000 Related Problems 000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Acyclic subgraph polyhedron



Let $G = (V, E)$ be a directed graph the linear system $\{x_i - x_j \ge 1\}$	- / /
$MinIS \leftrightarrow \{ \text{ simple} \}$	cycles of G }
With polynomial delay	(Read and Tarjan 1975)
$MarES \leftrightarrow \begin{cases} max'l \\ acyclic subgraphs \end{cases}$	$\int \min' l$

$$MaxFS \leftrightarrow \left\{ \begin{array}{c} max'l \\ acyclic \ subgraphs \\ of \ G \end{array} \right\} \leftrightarrow \left\{ \begin{array}{c} min'l \\ feedback \ arc \ sets \\ of \ G \end{array} \right\}$$

With polynomial delay (Schwikowski and Speckenmeyer, 2002)

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Strongly connected subgraphs' polyhedron

Let G = (V, E) be a strongly connected directed graph, $x \in \mathbb{R}^V$, and consider the system of linear inequalities $x_j - x_i \ge 0 \quad \forall \ (i, j) \in E$ $\sum_{(i,j) \in E} (x_j - x_i) \ge 1$ $(i,j) \in E$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Vertex Generation

Hunt for a Hard Case

Related Problems 000

うして ふゆう ふほう ふほう ふしつ

Strongly connected subgraphs' polyhedron

Let G = (V, E) be a strongly connected directed graph, $x \in \mathbb{R}^V$, and consider the system of linear inequalities

$$x_j - x_i \ge 0 \quad \forall \ (i,j) \in E$$

 $\sum_{(i,j) \in E} (x_j - x_i) \ge 1$

 $MinIS \iff \{ \min' \mathbf{I} \subseteq E \mid (V, \mathbf{I}) \text{ is strongly connected} \}$

Incrementally polynomial (Boros, Elbassioni, Gurvich and Kh

 $Max FS \longrightarrow \{\max' | 1 \subseteq E | (V, 1) \text{ is not strongly connected} \}$ NP-hard (Boros, Elbassioni, Gurvich and Khachiyan, 2004)

Vertex Generation

Hunt for a Hard Case

Related Problems 000

うして ふゆう ふほう ふほう ふしつ

Strongly connected subgraphs' polyhedron

Let G = (V, E) be a strongly connected directed graph, $x \in \mathbb{R}^V$, and consider the system of linear inequalities

$$x_j - x_i \ge 0 \quad \forall \ (i,j) \in E$$

 $\sum_{(i,j) \in E} (x_j - x_i) \ge 1$

 $MinIS \iff \{ \min' \mathbf{I} \subseteq E \mid (V, \mathbf{I}) \text{ is strongly connected} \}$

Incrementally polynomial (Boros, Elbassioni, Gurvich and Khachiyan, 2004)

 $MaxFS \longrightarrow \{max' | 1 \subseteq E \mid (V, 1) \text{ is not strongly connected} \}$ NP-hard (Boros, Elbassioni, Gurvich and Khachiyan, 2004)

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Strongly connected subgraphs' polyhedron

X

Let G = (V, E) be a strongly connected directed graph, $x \in \mathbb{R}^V$, and consider the system of linear inequalities

$$x_j - x_i \ge 0 \quad \forall \ (i,j) \in E$$

 $\sum_{(i,j) \in E} (x_j - x_i) \ge 1$

 $MinIS \iff \{ \min' \mathbf{I} \subseteq E \mid (V, \mathbf{I}) \text{ is strongly connected} \}$

Incrementally polynomial

(Boros, Elbassioni, Gurvich and Khachiyan, 2004)

 $MaxFS \iff \{\max' | \mathbf{I} \subseteq E \mid (V, \mathbf{I}) \text{ is not strongly connected} \}$

(Boros, Elbassioni, Gurvich and Khachiyan, 2004)

うして ふゆう ふほう ふほう ふしつ

Vertex Generation

Related Problems 000

うして ふゆう ふほう ふほう ふしつ

Strongly connected subgraphs' polyhedron

Let G = (V, E) be a strongly connected directed graph, $x \in \mathbb{R}^V$, and consider the system of linear inequalities

$$x_j - x_i \ge 0 \quad \forall \ (i,j) \in E$$

 $\sum_{(i,j) \in E} (x_j - x_i) \ge 1$

 $MinIS \iff \{ \min' \mathbf{I} \subseteq E \mid (V, \mathbf{I}) \text{ is strongly connected} \}$

Incrementally polynomial (Boros, Elbassioni, Gurvich and Khachiyan, 2004)

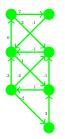
 $MaxFS \iff \{ \max' | \mathbf{I} \subseteq E \mid (V, \mathbf{I}) \text{ is not strongly connected} \}$

NP-hard (Boros, Elbassioni, Gurvich and Khachiyan, 2004)

Vertex Generation

Related Problems

Negative cycle free subgraphs' polyhedron



Let G = (V, E) be a directed graph, $w : E \to \mathbb{R}, x \in \mathbb{R}^V$, and consider the system of linear inequalities $\{x_i - x_j \le w_{ij} \ \forall \ (i, j) \in E\}$ MinIS $\rightsquigarrow \{\mathbf{C} \subseteq E \mid \mathbf{C} \text{ is a negative cycle }\}$

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

Given a directed graph G with real weights on its arcs, generating all negative cycles of G is **NP-hard**.

 $MaxFS \iff \{\max' | \mathbf{I} \subseteq E \mid (V, \mathbf{I}) \text{ is negative cycle free } \}$

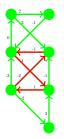
Open *~~ ???* **blocking short paths** ???

・ロト ・四ト ・ヨト ・ヨ

Vertex Generation

Related Problems

Negative cycle free subgraphs' polyhedron



Let G = (V, E) be a directed graph, $w : E \to \mathbb{R}, x \in \mathbb{R}^V$, and consider the system of linear inequalities $\{x_i - x_j \le w_{ij} \ \forall \ (i, j) \in E\}$ MinIS $\iff \{\mathbf{C} \subseteq E \mid \mathbf{C} \text{ is a negative cycle }\}$

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

Given a directed graph G with real weights on its arcs, generating all negative cycles of G is **NP-hard**. Even if $w_{ij} \in \{\pm 1\}$ for all arcs $(i, j) \in B$.

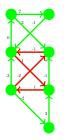
 $MaxFS \iff \{\max' | \mathbf{I} \subseteq E \mid (V, \mathbf{I}) \text{ is negative cycle free } \}$

Open *~~ ???* **blocking short paths** ???

Vertex Generation

Related Problems 000

Negative cycle free subgraphs' polyhedron



Let G = (V, E) be a directed graph, $w : E \to \mathbb{R}, x \in \mathbb{R}^V$, and consider the system of linear inequalities $\{x_i - x_j \le w_{ij} \ \forall \ (i, j) \in E\}$ MinIS $\iff \{\mathbf{C} \subseteq E \mid \mathbf{C} \text{ is a negative cycle }\}$

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

Given a directed graph G with real weights on its arcs, generating all negative cycles of G is **NP-hard**. Even if $w_{ij} \in \{\pm 1\}$ for all arcs $(i, j) \in E$.

 $MaxFS \iff \{\max' | \mathbf{I} \subseteq E \mid (V, \mathbf{I}) \text{ is negative cycle free } \}$

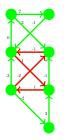
うして ふゆう ふほう ふほう ふしつ

Vertex Generation

Related Problems

うして ふゆう ふほう ふほう ふしつ

Negative cycle free subgraphs' polyhedron



Let G = (V, E) be a directed graph, $w : E \to \mathbb{R}, x \in \mathbb{R}^V$, and consider the system of linear inequalities $\{x_i - x_j \le w_{ij} \ \forall \ (i, j) \in E\}$ MinIS $\iff \{\mathbf{C} \subseteq E \mid \mathbf{C} \text{ is a negative cycle }\}$

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

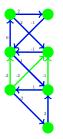
Given a directed graph G with real weights on its arcs, generating all negative cycles of G is **NP-hard**. Even if $w_{ij} \in \{\pm 1\}$ for all arcs $(i, j) \in E$.

Vertex Generation

Related Problems 000

うして ふゆう ふほう ふほう ふしつ

Negative cycle free subgraphs' polyhedron



Let G = (V, E) be a directed graph, $w : E \to \mathbb{R}, x \in \mathbb{R}^V$, and consider the system of linear inequalities $\{x_i - x_j \le w_{ij} \ \forall \ (i, j) \in E\}$ MinIS $\iff \{\mathbf{C} \subseteq E \mid \mathbf{C} \text{ is a negative cycle }\}$

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

Given a directed graph G with real weights on its arcs, generating all negative cycles of G is **NP-hard**. Even if $w_{ij} \in \{\pm 1\}$ for all arcs $(i, j) \in E$.

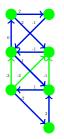
 $MaxFS \iff \{\max' | \mathbf{I} \subseteq E \mid (V, \mathbf{I}) \text{ is negative cycle free } \}$

Vertex Generation

Related Problems

ション ふゆ マ キャット マックシン

Negative cycle free subgraphs' polyhedron



Let G = (V, E) be a directed graph, $w : E \to \mathbb{R}, x \in \mathbb{R}^V$, and consider the system of linear inequalities $\{x_i - x_j \le w_{ij} \ \forall \ (i, j) \in E\}$ MinIS $\iff \{\mathbf{C} \subseteq E \mid \mathbf{C} \text{ is a negative cycle }\}$

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

Given a directed graph G with real weights on its arcs, generating all negative cycles of G is **NP-hard**. Even if $w_{ij} \in \{\pm 1\}$ for all arcs $(i, j) \in E$.

 $MaxFS \iff \{\max' | \mathbf{I} \subseteq E \mid (V, \mathbf{I}) \text{ is negative cycle free } \}$

Open *« ???* blocking short paths ???

Vertex Generation

Related Problems 000

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Outline

• What is a polyhedron? • What is a vertex? • What is vertex generation? • When is generation hard? • Hypergraph dualization • A polyhedral application 3 Hunt for a Hard Case • Matching polytopes • Yet another reformulation • The hunt resumed ... • The hunt is over • Simplices and Bodies

Vertex Generation

Related Problems 000

The hunt is over ...

For a directed graph G = (V, E) and edge weights $w_{ij} \in \{-1, +1\}$ for all arcs $(i, j) \in E$, define

$$\mathcal{S}_{G,w} = \{ x_i - x_j \le w_{ij} \ \forall \ (i,j) \in E \}$$

$$P_{G,w} = \left\{ y \in \mathbb{R}^E \; \middle| \; \begin{array}{l} \sum_{i:(i,j)\in E} y_{ij} - \sum_{k:(j,k)\in E} y_{jk} = 0 \; \forall \; j \in V \\ \sum_{i:(i,j)\in E} w_{ij}y_{ij} = -1 \end{array} \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Vertex Generation

Related Problems 000

ション ふゆ マ キャット マックシン

The hunt is over ...

- (i) The problem of generating all minimal inconsistent subsystems of linear inequalities is NP-hard already for the family {S_{G,w}}.
- (ii) The problem of generating vertices of polyhedra is NP-hard

Vertex Generation

Related Problems 000

ション ふゆ マ キャット マックシン

The hunt is over ...

- (i) The problem of generating all minimal inconsistent subsystems of linear inequalities is NP-hard, already for the family {S_{G,w}}.
- (ii) The problem of generating vertices of polyhedra is *NP-hard*, already for the family [Pow].

Vertex Generation

Related Problems 000

ション ふゆ マ キャット マックシン

The hunt is over ...

- (i) The problem of generating all minimal inconsistent subsystems of linear inequalities is NP-hard, already for the family {S_{G,w}}.
- (ii) The problem of generating vertices of polyhedra is *NP-hard*, already for the family {P_{G,w}}.

Vertex Generation

Related Problems 000

ション ふゆ マ キャット マックシン

The hunt is over ...

- (i) The problem of generating all minimal inconsistent subsystems of linear inequalities is NP-hard, already for the family {S_{G,w}}.
- (ii) The problem of generating vertices of polyhedra is **NP-hard**, already for the family $\{P_{G,w}\}$.

Vertex Generation

Related Problems 000

Further consequences

Theorem (Fukuda, Liebling and Margot, 1997)

Given a polyhedron P and an open half-space H, deciding if $V(P) \cap H \neq \emptyset$ is **NP-hard**.

The same problem for a polytope P is **polynomial** (LP)

Corollary (BBEGK, 2005)

(iii) Given a polytope P and an open half-space H, generating V(P) ∩ H is NP-hard.

Generating extremal rays of polyhedra is NP-hard.

Generating both vertices and extreme rays of polyhedra is equivalent with generating vertices of polytopes, and the complexity of this is still **open**.

Related Problems 000

Further consequences

Theorem (Fukuda, Liebling and Margot, 1997)

Given a polyhedron P and an open half-space H, deciding if $V(P) \cap H \neq \emptyset$ is **NP-hard**.

The same problem for a polytope P is **polynomial** (LP).

Corollary (BBEGK, 2005)

(iii) Given a polytope P and an open half-space H, generating V(P) ∩ H is NP-hard.

(iv) Generating extremal rays of polyhedra is NP-hard.

Related Problems 000

Further consequences

Theorem (Fukuda, Liebling and Margot, 1997)

Given a polyhedron P and an open half-space H, deciding if $V(P) \cap H \neq \emptyset$ is **NP-hard**.

The same problem for a polytope P is **polynomial** (LP).

Corollary (BBEGK, 2005)

(iii) Given a polytope P and an open half-space H, generating $V(P) \cap H$ is **NP-hard**.

(iv) Generating extremal rays of polyhedra is **NP-hard**.

Related Problems 000

Further consequences

Theorem (Fukuda, Liebling and Margot, 1997)

Given a polyhedron P and an open half-space H, deciding if $V(P) \cap H \neq \emptyset$ is **NP-hard**.

The same problem for a polytope P is **polynomial** (LP).

Corollary (BBEGK, 2005)

(iii) Given a polytope P and an open half-space H, generating $V(P) \cap H$ is **NP-hard**.

(iv) Generating extremal rays of polyhedra is **NP-hard**.

Related Problems 000

Further consequences

Theorem (Fukuda, Liebling and Margot, 1997)

Given a polyhedron P and an open half-space H, deciding if $V(P) \cap H \neq \emptyset$ is **NP-hard**.

The same problem for a polytope P is **polynomial** (LP).

Corollary (BBEGK, 2005)

(iii) Given a polytope P and an open half-space H, generating $V(P) \cap H$ is **NP-hard**.

(iv) Generating extremal rays of polyhedra is **NP-hard**.

Vertex Generation

Hunt for a Hard Case

Related Problems ••••

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Outline

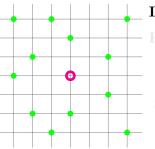
- What is a polyhedron? • What is a vertex? • What is vertex generation? • When is generation hard? • Hypergraph dualization • A polyhedral application • Matching polytopes • Yet another reformulation • The hunt resumed ... • The hunt is over 4 Related Problems
 - Simplices and Bodies

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Simplices



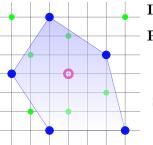
 $\mathcal{A}\subseteq\mathbb{R}^{d}$ and $\mathbf{o} \in \mathbb{R}^d$ Input:

Vertex Generation

Hunt for a Hard Case

Related Problems $0 \bullet 0$

Simplices



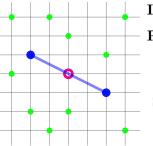
 $\mathcal{A} \subseteq \mathbb{R}^d$ and $\mathbf{o} \in \mathbb{R}^d$ Input: **Property:** $\Pi \subseteq 2^{\mathcal{A}}$ $\mathcal{X} \in \Pi$ iff $\mathbf{o} \in \operatorname{conv}(\mathcal{X})$

Vertex Generation

Hunt for a Hard Case

Related Problems $0 \bullet 0$

Simplices



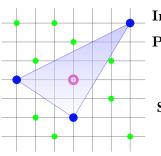
Input: $\mathcal{A} \subseteq \mathbb{R}^d$ and $\mathbf{o} \in \mathbb{R}^d$ **Property:** $\Pi \subseteq 2^{\mathcal{A}}$ $\mathcal{X} \in \Pi$ iff $\mathbf{o} \in \operatorname{conv}(\mathcal{X})$

Vertex Generation

Hunt for a Hard Case

Related Problems $0 \bullet 0$

Simplices



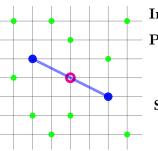
Input: $\mathcal{A} \subseteq \mathbb{R}^d$ and $\mathbf{o} \in \mathbb{R}^d$ **Property:** $\Pi \subseteq 2^{\mathcal{A}}$ $\mathcal{X} \in \Pi$ iff $\mathbf{o} \in \operatorname{conv}(\mathcal{X})$ Simplices: $Min(\Pi)$ $\mathcal{S}(\mathcal{A}) = \{ \min^{2} \mathcal{X} \subseteq \mathcal{A} \mid \mathbf{o} \in \operatorname{conv}(\mathcal{X}) \}$

Vertex Generation

Hunt for a Hard Case

Related Problems $0 \bullet 0$

Simplices



Input: $\mathcal{A} \subseteq \mathbb{R}^d$ and $\mathbf{o} \in \mathbb{R}^d$ **Property:** $\Pi \subseteq 2^{\mathcal{A}}$ $\mathcal{X} \in \Pi$ iff $\mathbf{o} \in \operatorname{conv}(\mathcal{X})$ Simplices: $Min(\Pi)$ $\mathcal{S}(\mathcal{A}) = \{ \min^{2} \mathcal{X} \subseteq \mathcal{A} \mid \mathbf{o} \in \operatorname{conv}(\mathcal{X}) \}$

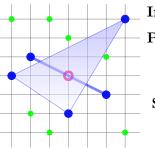
うしつ 川田 ふぼう ふぼう ふしゃ

Vertex Generation

Hunt for a Hard Case

Related Problems $0 \bullet 0$

Simplices



Input: $\mathcal{A} \subseteq \mathbb{R}^d$ and $\mathbf{o} \in \mathbb{R}^d$ **Property:** $\Pi \subseteq 2^{\mathcal{A}}$ $\mathcal{X} \in \Pi$ iff $\mathbf{o} \in \operatorname{conv}(\mathcal{X})$ Simplices: $Min(\Pi)$ $\mathcal{S}(\mathcal{A}) = \{ \min^{2} \mathcal{X} \subseteq \mathcal{A} \mid \mathbf{o} \in \operatorname{conv}(\mathcal{X}) \}$ $\mathcal{X} \in \mathcal{S}(\mathcal{A}) \implies |\mathcal{X}| \le d+1$

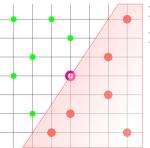
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Vertex Generation

Hunt for a Hard Case

Related Problems $0 \bullet 0$

Simplices



Input: $\mathcal{A} \subseteq \mathbb{R}^d$ and $\mathbf{o} \in \mathbb{R}^d$ **Property:** $\Pi \subseteq 2^{\mathcal{A}}$ $\mathcal{X} \in \Pi$ iff $\mathbf{o} \in \operatorname{conv}(\mathcal{X})$ Simplices: $Min(\Pi)$ $\mathcal{S}(\mathcal{A}) = \{ \min^{2} \mathcal{X} \subseteq \mathcal{A} \mid \mathbf{o} \in \operatorname{conv}(\mathcal{X}) \}$ $\mathcal{X} \in \mathcal{S}(\mathcal{A}) \implies |\mathcal{X}| \le d+1$ Anti-simplices: $Max(\Pi)$

 $\mathcal{S}(\mathcal{A})^* = \{ \max' l \ \mathcal{X} \subseteq \mathcal{A} \mid o \notin \operatorname{conv}(\mathcal{X}) \}$

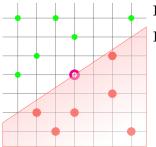
ション ふゆ マ キャット マックシン

Vertex Generation

Hunt for a Hard Case

Related Problems $0 \bullet 0$

Simplices



Input: $\mathcal{A} \subseteq \mathbb{R}^d$ and $\mathbf{o} \in \mathbb{R}^d$ **Property:** $\Pi \subseteq 2^{\mathcal{A}}$ $\mathcal{X} \in \Pi$ iff $\mathbf{o} \in \operatorname{conv}(\mathcal{X})$ Simplices: $Min(\Pi)$ $\mathcal{S}(\mathcal{A}) = \{ \min^{2} \mathcal{X} \subseteq \mathcal{A} \mid \mathbf{o} \in \operatorname{conv}(\mathcal{X}) \}$ $\mathcal{X} \in \mathcal{S}(\mathcal{A}) \implies |\mathcal{X}| \le d+1$ Anti-simplices: $Max(\Pi)$

 $\mathcal{S}(\mathcal{A})^* = \{ \max' l \ \mathcal{X} \subseteq \mathcal{A} \mid o \notin \operatorname{conv}(\mathcal{X}) \}$

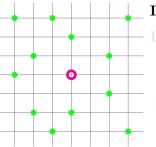
ション ふゆ マ キャット マックシン

Vertex Generation

Hunt for a Hard Case

Related Problems 000

Bodies



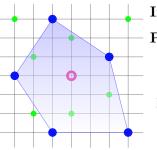
 $\mathcal{A} \subseteq \mathbb{R}^d$ and $\mathbf{o} \in \mathbb{R}^d$ Input:

Vertex Generation

Hunt for a Hard Case

Related Problems

Bodies



Input: $\mathcal{A} \subseteq \mathbb{R}^d$ and $\mathbf{o} \in \mathbb{R}^d$ **Property:** $\Pi \subseteq 2^{\mathcal{A}}$ $\mathcal{Y} \in \Pi$ iff $\mathbf{o} \in \operatorname{intconv}(\mathcal{Y})$

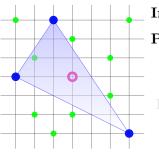
・ロト ・ 通 ト ・ モト ・ モー・ つへぐ

Vertex Generation

Hunt for a Hard Case

Related Problems

Bodies



Input: $\mathcal{A} \subseteq \mathbb{R}^d$ and $\mathbf{o} \in \mathbb{R}^d$ **Property:** $\Pi \subseteq 2^{\mathcal{A}}$ $\mathcal{Y} \in \Pi$ iff $\mathbf{o} \in \operatorname{intconv}(\mathcal{Y})$

・ロト ・ 通 ト ・ モト ・ モー・ つへぐ

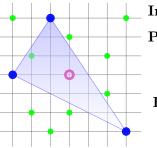
Vertex Generation

Hunt for a Hard Case

Related Problems

ション ふゆ マ キャット マックシン

Bodies



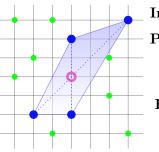
Input: $\mathcal{A} \subseteq \mathbb{R}^d$ and $\mathbf{o} \in \mathbb{R}^d$ **Property:** $\Pi \subseteq 2^{\mathcal{A}}$ $\mathcal{Y} \in \Pi$ iff $\mathbf{o} \in \operatorname{intconv}(\mathcal{Y})$ **Bodies:** $Min(\Pi)$ $\mathcal{B}(\mathcal{A}) = \{ \min^{2} \mathcal{Y} \subseteq \mathcal{A} \mid \mathbf{o} \in \operatorname{int}\operatorname{conv}(\mathcal{Y}) \}$

Vertex Generation

Hunt for a Hard Case

Related Problems

Bodies



Input: $\mathcal{A} \subseteq \mathbb{R}^d$ and $\mathbf{o} \in \mathbb{R}^d$ **Property:** $\Pi \subseteq 2^{\mathcal{A}}$ $\mathcal{Y} \in \Pi$ iff $\mathbf{o} \in \operatorname{intconv}(\mathcal{Y})$ **Bodies:** $Min(\Pi)$ $\mathcal{B}(\mathcal{A}) = \{ \min^{2} \mathcal{Y} \subseteq \mathcal{A} \mid \mathbf{o} \in \operatorname{int}\operatorname{conv}(\mathcal{Y}) \}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

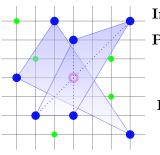
Vertex Generation

Hunt for a Hard Case

Related Problems

ション ふゆ マ キャット マックシン

Bodies



Input: $\mathcal{A} \subseteq \mathbb{R}^d$ and $\mathbf{o} \in \mathbb{R}^d$ **Property:** $\Pi \subseteq 2^{\mathcal{A}}$ $\mathcal{Y} \in \Pi$ iff $\mathbf{o} \in \operatorname{intconv}(\mathcal{Y})$ **Bodies:** $Min(\Pi)$ $\mathcal{B}(\mathcal{A}) = \{ \min^{2} \mathcal{Y} \subseteq \mathcal{A} \mid \mathbf{o} \in \operatorname{int}\operatorname{conv}(\mathcal{Y}) \}$ $\mathcal{Y} \in \mathcal{B}(\mathcal{A}) \implies d+1 \leq |\mathcal{Y}| \leq 2d$

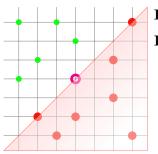
Vertex Generation

Hunt for a Hard Case

Related Problems

ション ふゆ マ キャット マックシン

Bodies



Input: $\mathcal{A} \subseteq \mathbb{R}^d$ and $\mathbf{o} \in \mathbb{R}^d$ **Property:** $\Pi \subseteq 2^{\mathcal{A}}$ $\mathcal{Y} \in \Pi$ iff $\mathbf{o} \in \operatorname{intconv}(\mathcal{Y})$ **Bodies:** $Min(\Pi)$ $\mathcal{B}(\mathcal{A}) = \{ \min^{\mathcal{I}} \mathcal{Y} \subseteq \mathcal{A} \mid \mathbf{o} \in \operatorname{intconv}(\mathcal{Y}) \}$ $\mathcal{Y} \in \mathcal{B}(\mathcal{A}) \implies d+1 \leq |\mathcal{Y}| \leq 2d$ Anti-bodies: $Max(\Pi)$ $\mathcal{B}(\mathcal{A})^* = \{ \max' \mid \mathcal{Y} \subseteq \mathcal{A} \mid \mathbf{o} \notin \operatorname{intconv}(\mathcal{Y}) \}$

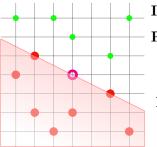
Vertex Generation

Hunt for a Hard Case

Related Problems

ション ふゆ マ キャット マックシン

Bodies



Input: $\mathcal{A} \subseteq \mathbb{R}^d$ and $\mathbf{o} \in \mathbb{R}^d$ **Property:** $\Pi \subseteq 2^{\mathcal{A}}$ $\mathcal{Y} \in \Pi$ iff $\mathbf{o} \in \operatorname{intconv}(\mathcal{Y})$ **Bodies:** $Min(\Pi)$ $\mathcal{B}(\mathcal{A}) = \{ \min^{\mathcal{I}} \mathcal{Y} \subseteq \mathcal{A} \mid \mathbf{o} \in \operatorname{intconv}(\mathcal{Y}) \}$ $\mathcal{Y} \in \mathcal{B}(\mathcal{A}) \implies d+1 \leq |\mathcal{Y}| \leq 2d$ Anti-bodies: $Max(\Pi)$ $\mathcal{B}(\mathcal{A})^* = \{ \max' \mid \mathcal{Y} \subset \mathcal{A} \mid \mathbf{o} \notin \operatorname{intconv}(\mathcal{Y}) \}$

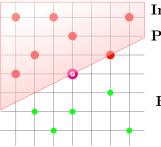
Vertex Generation

Hunt for a Hard Case

Related Problems

ション ふゆ マ キャット マックシン

Bodies



Input: $\mathcal{A} \subseteq \mathbb{R}^d$ and $\mathbf{o} \in \mathbb{R}^d$ **Property:** $\Pi \subseteq 2^{\mathcal{A}}$ $\mathcal{Y} \in \Pi$ iff $\mathbf{o} \in \operatorname{intconv}(\mathcal{Y})$ **Bodies:** $Min(\Pi)$ $\mathcal{B}(\mathcal{A}) = \{ \min^{\mathcal{I}} \mathcal{Y} \subseteq \mathcal{A} \mid \mathbf{o} \in \operatorname{intconv}(\mathcal{Y}) \}$ $\mathcal{Y} \in \mathcal{B}(\mathcal{A}) \implies d+1 \leq |\mathcal{Y}| \leq 2d$ Anti-bodies: Max(II) $\mathcal{B}(\mathcal{A})^* = \{ \max' \mid \mathcal{Y} \subset \mathcal{A} \mid \mathbf{o} \notin \operatorname{intconv}(\mathcal{Y}) \}$