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Intersection of half-spaces

P =

(x1, x2) ∈ R2

∣∣∣∣∣∣∣∣
x1 +2x2 ≥ 3

4x1 +x2 ≥ 5
3x1 −x2 ≥ −5
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Polynomially decidable questions

Given a polyhedron P =
{

x ∈ Rd
∣∣ Ax ≥ b

}
, let

V (P ) denote its set of vertices.

Is P 6= ∅?
Is V (P ) 6= ∅?
Is conv(V (P )) = P?

· · ·

All these, and many other related questions,
can be decided efficiently by solving linear
programming problems.

(Khachiyan, 1979)
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Vertex generation

First formulation (Mr. Folklore, Age of Pisces):

Given P =
{

x ∈ Rd
∣∣ Ax ≥ b

}
generate V (P ).

Output maybe exponentially larger than input!

Long history ... (Motzkin,Raiffa, Thompson and Thrall, 1953)
(Charnes and Cooper, 1953)

(Balinski, 1961)
· · ·

Well solved for many special cases
Simple polytopes (Avis and Fukuda, 1992)
In fixed dimension (Chazelle, 1993)
Network polytopes (Provan, 1994)
Zero-one polytopes (Bussieck and Lübbecke, 1998)

· · ·
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Vertex generation

Second formulation (Lovász, 1992):

Given P =
{

x ∈ Rd
∣∣ Ax ≥ b

}
and A ⊆ Rd decide if A = V (P ).

V (P ) can be generated by repeatedly solving the above
decision problem.
conv(A) ⊆ P is easy to check
P ⊆ conv(A) is co-NP-complete (Freund and Orlin 1985)

Yet, if A ⊆ V (P ), then P ⊆ conv(A) was open ...

Theorem (BBEGK, 2005)

Given P =
{

x ∈ Rd
∣∣ Ax ≥ b

}
and A ⊆ V (P ), deciding whether

V (P ) ⊆ A or not is co-NP-complete.
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Equivalent vertex definitions

Assume A ∈ Rm×d, b ∈ Rm, I ⊆ [m] = {1, ...,m}, and let

AI be the submatrix of S formed by the rows i ∈ I;
bI be the subvector of b formed by the components i ∈ I;
Ī = {1, ...,m} \ I;
PI =

{
x ∈ Rd | AIx = bI , AĪx ≥ bĪ

}
.

Claim

For P =
{

x ∈ Rd
∣∣ Ax ≥ b

}
such that V (P ) 6= ∅, there is a

one-to-one correspondence between vertices of P and the
maximal tight feasible subsets of the inequalities

MaxTF (P ) = { max’l I ⊆ [m] | PI 6= ∅}.



Polyhedra Vertex Generation Hunt for a Hard Case Related Problems

Equivalent vertex definitions

Assume A ∈ Rm×d, b ∈ Rm, I ⊆ [m] = {1, ...,m}, and let

AI be the submatrix of S formed by the rows i ∈ I;
bI be the subvector of b formed by the components i ∈ I;
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Monotone properties

Assume A ∈ Rm×d and b ∈ Rm.

Let us define a property Π ⊆ 2{1,...,m} such that I ∈ Π iff

PI =
{

x ∈ Rd | AIx = bI , AĪx ≥ bĪ

}
6= ∅.

Then, Π is a monotone property:

I ⊆ I ′ ∈ Π implies I ∈ Π.

Generating V (P ) is equivalent with generating

Max(Π) = MaxTF (P ) = { max’l subsets I ∈ Π}.

Typically |Π| = size(A, b)� |Max(Π)|.
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Monotone generation

Consider a monotone property Π in a lattice
(e.g., {0, 1}m)

Max(Π) = { max’l elements v ∈ Π}.
Min(Π) = { min’l elements v 6∈ Π}.

Given a monotone system Π, generate

Max(Π) (or Min(Π) or both).
Typically size(Π) � |Max(Π)|.
How to measure efficiency of
generation?



Polyhedra Vertex Generation Hunt for a Hard Case Related Problems

Monotone generation

Consider a monotone property Π in a lattice
(e.g., {0, 1}m)

Max(Π) = { max’l elements v ∈ Π}.
Min(Π) = { min’l elements v 6∈ Π}.

Given a monotone system Π, generate

Max(Π) (or Min(Π) or both).
Typically size(Π) � |Max(Π)|.
How to measure efficiency of
generation?



Polyhedra Vertex Generation Hunt for a Hard Case Related Problems

Monotone generation

Consider a monotone property Π in a lattice
(e.g., {0, 1}m)

Max(Π) = { max’l elements v ∈ Π}.
Min(Π) = { min’l elements v 6∈ Π}.

Given a monotone system Π, generate

Max(Π) (or Min(Π) or both).
Typically size(Π) � |Max(Π)|.
How to measure efficiency of
generation?



Polyhedra Vertex Generation Hunt for a Hard Case Related Problems

Monotone generation

Consider a monotone property Π in a lattice
(e.g., {0, 1}m)

Max(Π) = { max’l elements v ∈ Π}.
Min(Π) = { min’l elements v 6∈ Π}.

Given a monotone system Π, generate

Max(Π) (or Min(Π) or both).
Typically size(Π) � |Max(Π)|.
How to measure efficiency of
generation?



Polyhedra Vertex Generation Hunt for a Hard Case Related Problems

Monotone generation

Consider a monotone property Π in a lattice
(e.g., {0, 1}m)

Max(Π) = { max’l elements v ∈ Π}.
Min(Π) = { min’l elements v 6∈ Π}.

Given a monotone system Π, generate

Max(Π) (or Min(Π) or both).
Typically size(Π) � |Max(Π)|.
How to measure efficiency of
generation?



Polyhedra Vertex Generation Hunt for a Hard Case Related Problems

Monotone generation

Consider a monotone property Π in a lattice
(e.g., {0, 1}m)

Max(Π) = { max’l elements v ∈ Π}.
Min(Π) = { min’l elements v 6∈ Π}.

Given a monotone system Π, generate

Max(Π) (or Min(Π) or both).
Typically size(Π) � |Max(Π)|.
How to measure efficiency of
generation?



Polyhedra Vertex Generation Hunt for a Hard Case Related Problems

Outline

1 Polyhedra and Vertices
What is a polyhedron?
What is a vertex?

2 Vertex Generation
What is vertex generation?
When is generation hard?
Hypergraph dualization
A polyhedral application

3 Hunt for a Hard Case
Matching polytopes
Yet another reformulation
The hunt resumed ...
The hunt is over

4 Related Problems
Simplices and Bodies



Polyhedra Vertex Generation Hunt for a Hard Case Related Problems

Complexity of generation

Sequential generation

Given a monotone system Π of input size |Π| = N , an
algorithm A generates one-by-one the elements

Max(Π) = {v1, v2, ..., vM},

outputting vk at time tk (t1 ≤ t2 ≤ · · · ≤ tM ).
Algorithm A is said to work

in total polynomial time, if tM ≤ poly(N,M)
in incremental polynomial time, if

tk ≤ poly(N, k) for all k ≤M

with polynomial delay, if

tk+1 − tk ≤ poly(N) for all k < M
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Complexity of generation

NEXT(Π,M)

Given a monotone system Π andM⊆Max(Π), decide if
M = Max(Π), or find v ∈Max(Π) \M if not.

Theorem (Ms. Folklore,19??)

Max(Π) can be generated in incremental polynomial time (total
polynomial time) if and only if problem NEXT(Π,M) can be
solved in polynomial time for all M⊆Max(Π).

(Lawler, Lenstra, and Rinnooy Kann, 1980)

Generation is hard if NEXT(Π,M) is NP-hard.
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Prime example for monotone generation

Hypergraph transversals

Let |U | = m and H ⊆ 2U be a hypergraph. Associate to it a
property Π = ΠH ⊆ 2U by

S ∈ Π ⇔
@H ∈ H : H ⊆ S

S is independent
⇔

(U \ S) ∩H 6= ∅ ∀H ∈ H

(U \ S) is a transversal

H∗ = Max(ΠH) is the family of maximal independent
sets of H.
Hd = {U \ S | S ∈Max(ΠH)} is the family of minimal
transversals of H.
H → Hd (or H → H∗) are known as the hypergraph
transversal or monotone dualization problems.
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property Π = ΠH ⊆ 2U by

S ∈ Π ⇔
@H ∈ H : H ⊆ S

S is independent
⇔

(U \ S) ∩H 6= ∅ ∀H ∈ H

(U \ S) is a transversal

H∗ = Max(ΠH) is the family of maximal independent
sets of H.
Hd = {U \ S | S ∈Max(ΠH)} is the family of minimal
transversals of H.
H → Hd (or H → H∗) are known as the hypergraph
transversal or monotone dualization problems.
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Generating hypergraph transversals

Theorem (Fredmand and Khachiyan, 1996)

For any hypergraph H and an arbitrary family M⊆ Hd of its
minimal transversals, problem NEXT(H,M) can be solved in
O

(
(|H|+ |Hd|)o(log |H|+|Hd|)

)
time.

... many-many special cases ...

Claim (Eiter and Gottlob, 1995)

If for all hyperedges H ∈ H we have |H| ≤ k, where k is fixed,
then Hd can be generated with polynomial delay.
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Polyhedra Vertex Generation Hunt for a Hard Case Related Problems

Vertex generation in fixed dimension

Assume A ∈ Rm×d and b ∈ Rm, and recall:

Generating the vertices of P = {x ∈ Rd | Ax ≥ b} is equivalent
with generating MaxTF (maximal subsets I ⊆ [m] = {1, ...,m}
for which PI =

{
x ∈ Rd | AIx = bI , AĪx ≥ bĪ

}
6= ∅).

Think of MaxTF as the family H∗ of maximal
independent sets of a hypergraph H.
H = MinTI = { min’l J ⊆ [m] | PJ = ∅}.
Then we have |J | ≤ d + 1 for all J ∈ H. ⇐= Helly

A polynomial delay vertex generation in fixed dimension

Generate H = MinTI in O(md) time.

Generate H∗ = MaxTF with polynomial delay (in terms of |H|).
as in (Eiter and Gottlob, 1995)
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}
6= ∅).

Think of MaxTF as the family H∗ of maximal
independent sets of a hypergraph H. What is H?
H = MinTI = { min’l J ⊆ [m] | PJ = ∅}.
Then we have |J | ≤ d + 1 for all J ∈ H. ⇐= Helly

A polynomial delay vertex generation in fixed dimension

Generate H = MinTI in O(md) time.

Generate H∗ = MaxTF with polynomial delay (in terms of |H|).
as in (Eiter and Gottlob, 1995)



Polyhedra Vertex Generation Hunt for a Hard Case Related Problems

Vertex generation in fixed dimension

Assume A ∈ Rm×d and b ∈ Rm, and recall:

Generating the vertices of P = {x ∈ Rd | Ax ≥ b} is equivalent
with generating MaxTF (maximal subsets I ⊆ [m] = {1, ...,m}
for which PI =

{
x ∈ Rd | AIx = bI , AĪx ≥ bĪ
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Bipartite matching polytope

Let G = (V,E) be a bipartite graph, and consider

P =

x ∈ RE

∣∣∣∣∣∣
∑
e3v

xe ≤ 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E


MaxTF =

{
max’l I ⊆ V ∪ E

∣∣∣∣ E \ I is a matching
covering V ∩ I

}
V (P )←→MaxTF ←→M = { max’l matchings of G}

Polynomial delay generation (Fukuda and Matsui, 1992)
(Uno, 1997)

Md can also be generated with polynomial delay
(Boros, Elbassioni, and Gurvich, 2004)
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Non-bipartite matching polytope

Let G = (V,E) be a connected graph, and consider

P =

x ∈ RE

∣∣∣∣∣∣
∑
e3v

xe ≤ 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E


MaxTF =

�
max’l I ⊆ V ∪ E

���� E \ I is a 2-matching
covering V ∩ I

�

V (P )←→MaxTF ←→M = { 2-matchings of G}

With polynomial delay (Boros, Elbassioni, and Gurvich, 2004)
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Irreducible Inconsistent Subsystems (IIS)

Consider A ∈ Rm×d and b ∈ Rd such that Ax ≥ b is inconsistent.
MinIS(A, b) = {min’l I ⊆ [m] | AIx ≥ bI is inconsistent}
MaxFS(A, b) = {max’l I ⊆ [m] | AIx ≥ bI is feasible}
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MaxFS(A, b) = {max’l I ⊆ [m] | AIx ≥ bI is feasible}

Facts and History

MinIS(A, b)∗ = MaxFS(A, b)
Lots of attention ... machine learning applications

(Gleason and Ryan, 1990)

(Ryan, 1996)

(Pfetsch, 2002)

(Amaldi, Pfetsch and Trotter, 2003)
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Irreducible Inconsistent Subsystems (IIS)

Consider A ∈ Rm×d and b ∈ Rd such that Ax ≥ b is inconsistent.
MinIS(A, b) = {min’l I ⊆ [m] | AIx ≥ bI is inconsistent}
MaxFS(A, b) = {max’l I ⊆ [m] | AIx ≥ bI is feasible}

Facts and History

MinIS(A, b)∗ = MaxFS(A, b)
Problems min{|I| | I ∈MinIS(A, b)} and
max{|I| | I ∈MaxFS(A, b)} are both NP-hard

(Johnson and Preparata, 1978)

(Chakravarty, 1994)

(Pfetsch, 2002)

(Amaldi, Pfetsch and Trotter, 2003)
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Irreducible Inconsistent Subsystems (IIS)

Consider A ∈ Rm×d and b ∈ Rd such that Ax ≥ b is inconsistent.
MinIS(A, b) = {min’l I ⊆ [m] | AIx ≥ bI is inconsistent}
MaxFS(A, b) = {max’l I ⊆ [m] | AIx ≥ bI is feasible}

Alternative Polyhedron (Gleason and Ryan, 1990)

QA,b = {y ∈ Rm | yT A = 0, yT b = 1, y ≥ 0}

Claim ⇐= Farkas’ lemma, 1901

MinIS(A, b) ←→ V (QA,b)

Another monotone formulation of vertex generation!
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Polyhedra Vertex Generation Hunt for a Hard Case Related Problems

Acyclic subgraph polyhedron

Let G = (V,E) be a directed graph, x ∈ RV , and consider
the linear system {xi − xj ≥ 1 ∀ (i, j) ∈ E}

MinIS ↔ { simple cycles of G}

With polynomial delay (Read and Tarjan 1975)

MaxFS ↔

 max’l
acyclic subgraphs

of G

↔
 min’l

feedback arc sets
of G


With polynomial delay (Schwikowski and Speckenmeyer, 2002)
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Strongly connected subgraphs’ polyhedron

Let G = (V, E) be a strongly connected directed graph, x ∈ RV , and
consider the system of linear inequalities

8>><
>>:

xj − xi ≥ 0 ∀ (i, j) ∈ E

X
(i,j)∈E

(xj − xi) ≥ 1

9>>=
>>;

MinIS ! { min’l I ⊆ E | (V, I) is strongly connected}

Incrementally polynomial
(Boros, Elbassioni, Gurvich and Khachiyan, 2004)

MaxFS ! {max’l I ⊆ E | (V, I) is not strongly connected}

NP-hard (Boros, Elbassioni, Gurvich and Khachiyan, 2004)
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Negative cycle free subgraphs’ polyhedron
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Let G = (V, E) be a directed graph, w : E → R, x ∈ RV , and
consider the system of linear inequalities

{xi − xj ≤ wij ∀ (i, j) ∈ E}

MinIS ! {C ⊆ E | C is a negative cycle }

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

Given a directed graph G with real weights on its arcs, generating all
negative cycles of G is NP-hard. Even if wij ∈ {±1} for all arcs
(i, j) ∈ E.

MaxFS ! {max’l I ⊆ E | (V, I) is negative cycle free }

Open ! ??? blocking short paths ???
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The hunt is over ...

For a directed graph G = (V,E) and edge weights
wij ∈ {−1,+1} for all arcs (i, j) ∈ E, define

SG,w = { xi − xj ≤ wij ∀ (i, j) ∈ E }

PG,w =

y ∈ RE

∣∣∣∣∣∣∣∣∣
∑

i:(i,j)∈E

yij −
∑

k:(j,k)∈E

yjk = 0 ∀ j ∈ V∑
(i,j)∈E

wijyij = −1
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The hunt is over ...

Corollary (BBEGK, 2005)

(i) The problem of generating all minimal inconsistent
subsystems of linear inequalities is NP-hard, already for
the family {SG,w}.

(ii) The problem of generating vertices of polyhedra is
NP-hard, already for the family {PG,w}.
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Further consequences

Theorem (Fukuda, Liebling and Margot, 1997)

Given a polyhedron P and an open half-space H, deciding if
V (P ) ∩H 6= ∅ is NP-hard.

The same problem for a polytope P is polynomial (LP).

Corollary (BBEGK, 2005)

(iii) Given a polytope P and an open half-space H, generating
V (P ) ∩H is NP-hard.

(iv) Generating extremal rays of polyhedra is NP-hard.

Generating both vertices and extreme rays of polyhedra is
equivalent with generating vertices of polytopes, and the
complexity of this is still open.
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Simplices

Input: A ⊆ Rd and o ∈ Rd

Property: Π ⊆ 2A

X ∈ Π iff o ∈ conv(X )

Simplices: Min(Π)

S(A) = { min’l X ⊆ A | o ∈ conv(X )}

X ∈ S(A) =⇒ |X | ≤ d + 1

Anti-simplices: Max(Π)

S(A)∗ = { max’l X ⊆ A | o 6∈ conv(X )}
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Property: Π ⊆ 2A

Y ∈ Π iff o ∈ intconv(Y)

Bodies: Min(Π)

B(A) = { min’l Y ⊆ A | o ∈ intconv(Y)}

Y ∈ B(A) =⇒ d + 1 ≤ |Y| ≤ 2d

Anti-bodies: Max(Π)

B(A)∗ = { max’l Y ⊆ A | o 6∈ intconv(Y)}
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