Generating Vertices of Polyhedra is Hard

. and other related problems ...
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@ Polyhedra and Vertices
@ What is a polyhedron?
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P = {(z1,22) €R Y S
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@ Polyhedra and Vertices

e What is a vertex?
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Those prickly corners

P = {mGRd‘ A:L‘Zb}

v € P is a vertex if there are no u, w € P such that
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Polynomially decidable questions

Given a polyhedron P = {:U e R ‘ Az > b}, let
V(P) denote its set of vertices.

ols P#0?
ols V(P)#£0?
olIs conv(V(P)) = P?

All these, and many other related questions,
can be decided efficiently by solving linear
programming problems.

(Khachiyan, 1979)
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© Vertex Generation
e What is vertex generation?



Vertex generation

First formulation (Mr. Folklore, Age of Pisces):
Given P = {xeRd‘ Az > b} generate V(P).
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Vertex generation

First formulation (Mr. Folklore, Age of Pisces):
Given P = {xeRd‘ Az > b} generate V(P).

e Output maybe exponentially larger than input!

e Long history ... (Motzkin,Raiffa, Thompson and Thrall, 1953)
(Charnes and Cooper, 1953)
(Balinski, 1961)

e Well solved for many special cases

Simple polytopes (Avis and Fukuda, 1992)
In fixed dimension (Chazelle, 1993)
Network polytopes (Provan, 1994)
Zero-one polytopes (Bussieck and Liibbecke, 1998)
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Vertex generation

Second formulation (Lovész, 1992):

Given P = {x € R?| Az > b} and A C R? decide if A = V(P).

e V(P) can be generated by repeatedly solving the above
decision problem.

e conv(A) C P is easy to check
e P C conv(A) is co-NP-complete (Freund and Orlin 1985)
e Yet, if A C V(P), then P C conv(A) was

Theorem (BBEGK, 2005)

Given P = {x € RY Az > b} and A C V(P), deciding whether
V(P) C A or not is co-NP-complete.
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Equivalent vertex definitions

Assume A € R™4 pc R™, I C [m] = {1,...,m}, and let
@ A; be the submatrix of S formed by the rows ¢ € [;
@ by be the subvector of b formed by the components i € [;
o I={1,...m}\I;
o Pp = {zeR? | Ajw=by, Ajz > b7}
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Equivalent vertex definitions

Assume A € R™4 pc R™, I C [m] = {1,...,m}, and let
@ A; be the submatrix of S formed by the rows ¢ € [;
@ by be the subvector of b formed by the components i € [;
o I={1,...m}\I;
o Pp = {zeR? | Ajw=by, Ajz > b7}

For P = {z € R?| Az > b} such that V(P) # 0, there is a
one-to-one correspondence between vertices of P and the
mazximal tight feasible subsets of the inequalities

MaxTF(P) = { maxl I C |[m]| Py # 0}.
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P = {xeRd | Arz = by, ijij} £ 0.
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Let us define a property IT C o{Lm} guch that I € II iff

P = {xeRd | Arz = by, ijij} £ 0.
@ Then, II is a monotone property:
ICI' €¢Il implies I €Il

o Generating V (P) is equivalent with generating

Maz(IT) = MazTF(P) = { max’'l subsets I € IT}.
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Monotone properties

Assume A € R™*4 and b € R™.
Let us define a property IT C o{Lm} guch that I € II iff

P = {xeRd | Arz = by, ijij} £ 0.
@ Then, II is a monotone property:
ICI' €¢Il implies I €Il

o Generating V (P) is equivalent with generating

Maz(IT) = MazTF(P) = { max’'l subsets I € IT}.

o Typically |II| = size(A,b) < |Maz(II)].
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Monotone generation

Consider a monotone property IT in a lattice
(e.g., {0,1}™)
o Max(Il) =
o Min(Il) =

{ max’l elements v € I1}.
{ min’l elements v ¢ I1}.

Given a monotone system II, generate

) (or Min(II) or both).
) < [Maz(1T)].

o Max(
e Typically size(
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Monotone generation

Consider a monotone property IT in a lattice
(e-g., {0,1}™)
o Maz(Il) = { max’l elements v € I1}.
o Min(IT) = { min’l elements v ¢ I1}.

Given a monotone system II, generate

o Max(I1) (or Min(II) or both).
e Typically size(Il) <« |Max(I1)|.

o How to measure efficiency of
generation?
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© Vertex Generation

@ When is generation hard?
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Sequential generation

e Given a monotone system 11 of input size |II| = N, an
algorithm 2 generates one-by-one the elements

Max(11) = {vy,v2, ..., 00},

outputting vy at time ¢, (t; <to < -+ <tpy).




Vertex Generation
oe

Complexity of generation

Sequential generation

e Given a monotone system 11 of input size |II| = N, an
algorithm 2 generates one-by-one the elements

Max(11) = {vy,v2, ..., 00},

outputting vy at time ¢, (t; <to < -+ <tpy).
@ Algorithm 2 is said to work
e in total polynomial time, if ¢p; < poly(N, M)




Vertex Generation
oe

Complexity of generation

Sequential generation

e Given a monotone system 11 of input size |II| = N, an
algorithm 2 generates one-by-one the elements

MCL.’L'( ) :{U171)27~--7UM}7
outputting vy at time ¢, (t; <to < -+ <tpy).
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Complexity of generation

Sequential generation

e Given a monotone system 11 of input size |II| = N, an
algorithm 2 generates one-by-one the elements

Max(11) = {vy,v2, ..., 00},

outputting vy at time ¢, (t; <to < -+ <tpy).
@ Algorithm 2 is said to work

e with polynomial delay, if
tpt1 — ty < poly(N) forall k<M
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Complexity of generation

Given a monotone system 11 and M C Maxz(I1), decide if
M = Max(11), or find v € Maxz(11)\ M if not.
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NEXT(IL, M)

Given a monotone system 11 and M C Maxz(I1), decide if
M = Max(11), or find v € Maxz(11)\ M if not.

Theorem (Ms. Folklore,1977)

Maz(IT) can be generated in incremental polynomial time (total
polynomial time) if and only if problem NEXT(I1, M) can be
solved in polynomial time for all M C Max(11).
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Complexity of generation

NEXT(IL, M)

Given a monotone system 11 and M C Maxz(I1), decide if
M = Max(11), or find v € Maxz(11)\ M if not.

Theorem (Ms. Folklore,1977)

Maz(IT) can be generated in incremental polynomial time (total
polynomial time) if and only if problem NEXT(I1, M) can be
solved in polynomial time for all M C Max(1T).

(Lawler, Lenstra, and Rinnooy Kann, 1980)

Generation is hard if NEXT(II, M) is NP-hard. )
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© Vertex Generation

o Hypergraph dualization



Prime example for monotone generation

Hypergraph transversals

Let |[U| = m and ‘H C 2Y be a hypergraph. Associate to it a
property 11 = 113, C 2V by

HeH:HCS
S € &
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Prime example for monotone generation

Hypergraph transversals

Let |[U| = m and ‘H C 2Y be a hypergraph. Associate to it a

property 11 = 113, C 2V by

PHeH:HCS (U\S)NH#OVYH € H
S e & &

S is (U\S)isa

@ H* = Max(I1y) is the family of maximal independent
sets of H.

o HY = {U\ S| S € Max(I13)} is the family of minimal
transversals of H.

o H — H? (or H — H*) are known as the hypergraph
transversal or monotone dualization problems.
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Generating hypergraph transversals

Theorem (Fredmand and Khachiyan, 1996)

For any hypergraph H and an arbitrary family M C H? of its
minimal transversals, problem NEXT(H, M) can be solved in

O ((IH] + [ UoBP+HID) time.
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Theorem (Fredmand and Khachiyan, 1996)
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minimal transversals, problem NEXT(H, M) can be solved in
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Generating hypergraph transversals

Theorem (Fredmand and Khachiyan, 1996)

For any hypergraph H and an arbitrary family M C H? of its
minimal transversals, problem NEXT(H, M) can be solved in

O ((IH] + [ UoBP+HID) time.

. many-many special cases ...

Claim (Eiter and Gottlob, 1995)

If for all hyperedges H € H we have |H| < k, where k is fized,
then H® can be generated with polynomial delay.
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© Vertex Generation

@ A polyhedral application
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Vertex generation in fixed dimension

Assume A € R™*? and b € R™, and recall:

Generating the vertices of P = {z € R? | Az > b} is equivalent
with generating MaxTF (maximal subsets I C [m] = {1,...,m}
for which P; = {:1: €R? | Ajx = by, Apz > bj} £ 0).
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Vertex generation in fixed dimension

Assume A € R™*? and b € R™, and recall:

Generating the vertices of P = {z € R? | Az > b} is equivalent
with generating MaxTF (maximal subsets I C [m] = {1,...,m}
for which P; = {:1: €R? | Ajx = by, Apz > bj} £ 0).
@ Think of MaxTF as the family H* of maximal
independent sets of a hypergraph H. What is H?
e H = MinTI = {min’'l J C [m] | P; = 0}.
@ Then we have |J| < d+1 for all J € H.

A polynomial delay vertex generation in fixed dimension

o Generate H = MinT1 in O(m?) time.

o Generate H* = MaxTF with polynomial delay (in terms of |H|).
as in (Eiter and Gottlob, 1995)
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@ Hunt for a Hard Case
e Matching polytopes



Hunt for a Hard
(o] Jo}

Bipartite matching polytope

Let G = (V, E) be a bipartite graph, and consider
Z;]}e <1 YweV
P = aw & RE edv

ze >0 Vee FE




Hunt for a Hard Case
(o] Jo}

Bipartite matching polytope

Let G = (V, E) be a bipartite graph, and consider
Z;]}e <1 YweV
P = aw & RE edv
ze >0 Vee FE
E\1is a matching
covering V N1

MaxTF = {max’l ICVUFE




Hunt for a Hard Case
(o] Jo}

Bipartite matching polytope

Let G = (V, E) be a bipartite graph, and consider
Z;]}e <1 YweV
P = aw & RE edv
ze >0 Vee FE
E\1is a matching
covering V N1

MaxTF = {max’l ICVUFE

V(P) «— MaxTF «— M = { max’l matchings of G}




Hunt for a Hard
(o] Jo}

Bipartite matching polytope

Let G = (V, E) be a bipartite graph, and consider
Z;]}e <1 YweV
P = aw & RE edv
ze >0 Vee FE
E\1is a matching
covering V N1

MaxTF = {max’l ICVUFE

V(P) «— MaxTF «— M = { max’l matchings of G}

Polynomial delay generation (Fukuda and Matsui, 1992)
(Uno, 1997)



Hunt for a Hard Case
(o] Jo}

Bipartite matching polytope

Let G = (V, E) be a bipartite graph, and consider
Z;]}e <1 YweV

P = aw & RE edv
ze >0 Vee FE

E\1is a matching
covering V N1

MaxTF = {max’l ICVUFE

/XX

V(P) «— MaxTF «— M = { max’l matchings of G}

Polynomial delay generation (Fukuda and Matsui, 1992)
(Uno, 1997)

M? can also be generated with polynomial delay
(Boros, Elbassioni, and Gurvich, 2004)
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Non-bipartite matching polytope

Let G = (V, E) be a connected graph, and consider
Z;I:€ <1 YweV
P = T € RE edv

z. >0 Vee FE

MaxTF = {max’l ICVUE ‘ E\1is a 2-matching }

covering V N1

V(P) «— MazTF «— M = { 2-matchings of G}

With polynomial delay (Boros, Elbassioni, and Gurvich, 2004)
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@ Hunt for a Hard Case

@ Yet another reformulation
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I[rreducible Inconsistent Subsystems (IIS)

Consider A € R™*4 and b € R? such that Az > b is inconsistent.
o MinIS(A,b) = {min’l I C [m]| A;x > by is inconsistent }
e MaxFS(A,b) {max’l I C [m] | Az > by is feasible}

Facts and History

o MinIS(A,b)* = MaxFS(A,b)
o Lots of attention ... machine learning applications
(Gleason and Ryan, 1990)
(Ryan, 1996)
(Pfetsch, 2002)
(Amaldi, Pfetsch and Trotter, 2003))
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I[rreducible Inconsistent Subsystems (IIS)

Consider A € R™*4 and b € R? such that Az > b is inconsistent.
o MinIS(A,b) = {min’l I C [m]| A;x > by is inconsistent }
e MaxFS(A,b) {max’l I C [m] | Az > by is feasible}

Facts and History

o MinIS(A,b)* = MaxFS(A,b)
@ Problems min{|I|| I € MinIS(A,b)} and
max{|I| | I € MaxFS(A,b)} are both NP-hard
(Johnson and Preparata, 1978)
(Chakravarty, 1994)
(Pfetsch, 2002)
)

(Amaldi, Pfetsch and Trotter, 2003
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I[rreducible Inconsistent Subsystems (IIS)

Consider A € R™*4 and b € R? such that Az > b is inconsistent.
o MinIS(A,b) = {min’l I C [m]| A;x > by is inconsistent }
e MaxFS(A,b) {max’l I C [m] | Az > by is feasible}

Alternative Polyhedron (Gleason and Ryan, 1990)

Qap = {yeR™ |yTA=0, y'b=1, y >0}
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Claim <= Farkas’ lemma, 1901

MinIS(A,b) «—— V(Qayp)
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I[rreducible Inconsistent Subsystems (IIS)

Consider A € R™*4 and b € R? such that Az > b is inconsistent.
o MinIS(A,b) = {min’l I C [m]| A;x > by is inconsistent }
e MaxFS(A,b) {max’l I C [m] | Az > by is feasible}

Alternative Polyhedron (Gleason and Ryan, 1990)

Qap = {yeR™ |yTA=0, y'b=1, y >0}

<

Claim <= Farkas’ lemma, 1901

MinIS(A,b) «—— V(Qayp)

Another monotone formulation of vertex generation!
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Acyclic subgraph polyhedron

/XX

Let G = (V, E) be a directed graph, € RV, and consider

the linear system {z; — : ,j) € E}

MinIS < { simple cycles of G}

v

With polynomial delay (Read and Tarjan 1975)
max’l min’l
MaxFS < < acyclic subgraphs 3 < { feedback arc sets
of G of G

With polynomial delay (Schwikowski and Speckenmeyer, 2002)

v
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Strongly connected subgraphs’ polyhedron

Let G = (V, E) be a strongly connected directed graph, = € RY, and
consider the system of linear inequalities

zj—x; > 0 V(i,j5) €E

MinIS o~ {min’l1I C E | (V,I) is strongly connected}

Incrementally polynomial
(Boros, Elbassioni, Gurvich and Khachiyan, 2004)

v

MazFS e~ {max’1IC E | (V,I) is not strongly connected}

NP-hard (Boros, Elbassioni, Gurvich and Khachiyan, 2004)

v
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Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyz

Given a directed graph G with real weights on its arcs, generating all
negative cycles of G is NP-hard.
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Negative cycle free subgraphs’ polyhedron

Let G = (V, E) be a directed graph, w: E — R, z € RY, and
consider the system of linear inequalities
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—
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Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyz
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Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyz
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Negative cycle free subgraphs’ polyhedron

Let G = (V, E) be a directed graph, w: E — R, z € RY, and
consider the system of linear inequalities

B} \‘ {zi —x; <wi; VY (i,4) € E}

MinIS «~ {C C E|C is a negative cycle }

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyz

Given a directed graph G with real weights on its arcs, generating all
negative cycles of G is NP-hard. FEven if w;; € {£1} for all arcs
(i,5) € E.

MazFS « {max’1IC E | (V,I) is negative cycle free }

Open &~ 777 blocking short paths 777




Hunt for a Hard Case
@000

Outline

@ Hunt for a Hard Case

@ The hunt is over



Hunt for a Hard Case
[o] le]e}

The hunt is over ...

For a directed graph G = (V, E) and edge weights
w;j € {—1,+1} for all arcs (¢,j) € E, define

Sew = {zi—zj<wy V(i,j) €E}

> owmi— Y up =0Vjev

i:(i,j)EE k:(j,k)EE

Z wijyi; = —1

(4,9)EE
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subsystems of linear inequalities is NP-hard
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Corollary (BBEGK, 2005)

(i) The problem of generating all minimal inconsistent
subsystems of linear inequalities is NP-hard, already for
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NP-hard, already for the family {Pg .}
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Further consequences

Theorem (Fukuda, Liebling and Margot, 1997)

Given a polyhedron P and an open half-space H, deciding if
V(P)NH # 0 is NP-hard.

The same problem for a polytope P is polynomsial (LP).

Corollary (BBEGK, 2005)

(iii) Given a polytope P and an open half-space H, generating
V(P)NH is NP-hard.

(iv) Generating extremal rays of polyhedra is NP-hard.

Generating both vertices and extreme rays of polyhedra is
equivalent with generating vertices of polytopes, and the
complexity of this is still open.
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