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A classical bijection

We recall that an increasing forest on n vertices is a forest
on vertices labelled 1, 2, . . . , n such that labels increase
along paths from the vertex of smallest label in each
component.

Let p = a1a2 . . . an be a permutation of the integers
1, 2, . . . , n. For i = 2, 3, . . . , n, if we have aj < ai for
some integer 1 ≤ j < i, then we define the edge ai′ai,
where i′ is the greatest such integer.

Then the graph defined by these edges is an increasing
forest on n vertices. Furthermore, the construction can be
reversed. The above algorithm defines a bijection between
n-permutations and increasing forests on n vertices.

This bijection is well-known in enumerative combinatorics
(see for instance R.Stanley, Enumerative combinatorics I
(1986), p. 25). It has been introduced independently by
W.H. Burge (1972), J. Françon (1976), X. Viennot (1976).
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LP from a combinatorial point of view

A linear program in Rd is defined by a polytopal region
- the feasible region, intersection of closed half-spaces
defined by affine hyperplanes - the program hyperplanes,
and by a linear form on Rd - the objective function

The problem is to determine, if it exists, the maximum of
the objective function on the feasible region. When the
feasible region is non empty and bounded, the maximum
always exists.

For a combinatorial interpretation, we forget the scalar
values, and only keep in mind the sign properties.

More precisely, to describe the program hyperplanes
h1, h2, . . . , hn, we associate with every point of Rd the vec-
tor in {+,−, 0}n whose i-th component is + resp. − if the
point is in the open half-space h+

i resp. h−
i , and 0 if the

point is on the hyperplane hi. We obtain a finite collection
of sign-vectors, called covectors. The sign-vectors associ-
ated with the vertices determined by h1, h2, . . . , hn - called
cocircuits - are sufficient to determine combinatorially all
covectors.

The objective function f is represented by directing in
its increasing direction all edges defined by h1, h2, . . . , hn

not parallel to f . We note that edges can be computed
combinatorially from cocircuits. A vertex v of the feasible
region is a maximum of the objective function if and only
if no edge of the feasible region incident to v is outgoing
from v.
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Pseudolinear programming

Pseudolinear programming are other words for program-
ming in oriented matroids.

The combinatorial definitions of real linear programming
extend with small adaptations to pseudohyperplane ar-
rangements, that is to oriented matroids.

Parallelism is defined by a special pseudohyperplane,
called the plane at infinity. Two pseudohyperplanes, or
a pseudohyperplane and a pseudoline, are parallel if their
intersection is contained in the plane at infinity. A pseu-
doline of the arrangement is a dimension 1 intersection of
pseudohyperplanes.

Edges are directed along pseudolines not parallel to the
objective function in the direction from its negative side
towards its positive side.

A region is bounded if has no vertex in the plane at infinity.

The main difference between the general versus real case
is that the program graph may contain directed cycles.

Nevertheless, the main theorem remains valid:

the program graph restricted to a bounded feasible region
contains at least one vertex with no outgoing edge.

Any such vertex is a solution to the pseudolinear program.
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Combinatorial representation of a (pseudo)linear program

The plane at infinity, represented (projectively) by a
sphere, is the (pseudo)hyperplane p = h1. A vertex of
the arrangement on the plane at infinity is represented by
two opposite cocircuits.

The objective function is the (pseudo)hyperplane f = h2.

The feasible region R is the fundamental region, defining
the positive side of all (pseudo)hyperplanes.
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The notation 23467 abbreviates the sign-vector 0 + − −
0 +−.

An hyperplane not containing a vertex v has a + resp.
− sign in the cocircuit determined by v if and only if h
separates resp. does not separate v and the fundamental
region. In dimension 2, these signs can be easily read off
from the figure.
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Tableau of a basis

A basis of a linear program in Rd is a set of d + 1 affinely
independent program hyperplanes. Geometrically, the
hyperplanes of a basis constitute the facets of a d-simplex.

Let B be a basis of a linear program, and h ∈ B. The
fundamental cocircuit of h with respect to B, denoted
by C∗(B; h), is the cocircuit determined by the vertex
intersection of the hyperplanes of B \ {h} such the sign
of h is +.

The tableau of a basis B is a square matrix with rows
and columns indexed by the program hyperplanes, and
coefficients +,− and 0 (omitted), such that the column
for h ∈ B is the fundamental cocircuit C∗(B; h), and the
column for h 6∈ B consists of a − in (h, h).

Then, for h 6∈ B the coefficients in row h are up to a factor
-1 the signs of the affine dependency expressing h in terms
of the hyperplanes in B. This row is the opposite of the
fundamental circuit C(B; h). For h ∈ B the row h consists
of a + in (h, h).
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Optimal bases. The Simplex Criterion

Let us consider the linear program defined by the hyper-
planes h1, h2, . . . , hn, with plane at infinity p = h1 and
objective function f = h2.

A basis B of this program is said optimal if

• p ∈ B
• f 6∈ B
• the fundamental cocircuit C∗(B; p) is positive
• the fundamental circuit C(B; f) has f as unique positive
element

Proposition (The Simplex Criterion)

A vertex v of the feasible region R maximizes the
objective function on R if and only if there is an optimal
basis B = {b1 = p, b2, . . . , br} such that v = b2∩b3∩. . .∩br.

nb. The condition C∗(B; p) positive means that v is a
vertex of R. The condition C+(B; f) = {f} means that R
does not meet the positive side of the hyperplane parallel
to f through v [see A. Schrijver, Theory of Linear and
Integer Programming, p. 93].

Optimal bases are generally not unique.
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Fully optimal bases

Let us consider the linear program defined by the indexed
set of hyperplanes h1, h2, . . . , hn, with plane at infinity
p = h1 and objective function f = h2.

We say that a basis B of the program is fully optimal si

• h1 ∈ B
• h2 6∈ B
• the first non zero sign in every row of the tableau of B
is a +
• the first non zero sign in every column except the first
is a −

A fully optimal basis is in particular optimal for the
program defined on the fundamental region by the plane
at infinity p = h1 and the objective function f = h2.

In particular the intersection of the hyperplanes 6= p of
a fully optimal basis is a vertex of the feasible region
maximizing f , i.e. a solution of the program.

Whereas the property of being an optimal basis does not
depend on the ordering, a fully optimal basis depends on
the ordering.
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Main theorem

A bounded region has exactly one fully optimal basis.

The existence is established by means of algorithms.

The first algorithm (or, rather, two dual algorithms) is
indirect. Given a basis satisfying certain properties, we
construct a bounded region for which this basis is fully
optimal.

We show directly that two different bases produce two
different regions. A numerical equality establishes that
this mapping is a bijection.

A second construction is direct. We construct the fully
optimal basis of a bounded region by means of a sequence
of ordered multi(pseudo)linear programs.
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Activities of bases

Let B be basis of an ordered hyperplane arrangement
h1, h2, . . . , hn.

We say that a hyperplanes h ∈ B which is the smallest
element of C∗(B; h) is internally active (with respect to
B).

We denote by ι(B) the number of internally active hyper-
planes in B.

The external activity ε(B) is defined similarly from the
fundamental circuits (these definitions are due to W.T.
Tutte circa 1950).

The number bij of bases with ι(B) = i and ε(B) = j does
not depend on the ordering of the hyperplanes.

A basis with external activity zero is internal. A basis
with total activity - internal plus external - 1 is uniactive.

Proposition

A fully optimal basis is internal and uniactive.

(exercise).
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From uniactive internal bases to bounded regions

The definition of a fully optimal basis in terms of tableau
prompts an algorithm to redefine the feasible region by
reversing the signs of certain hyperplanes so that a given
uniactive internal basis become fully optimal.

Algorithm BASORI

Let B = {b1 = h1, b2, . . . , br} be a uniactive internal basis.

(1) resign the hyperplanes in C∗(B; b1) so that all signs
become positive

(2) for i = 2, . . . , r resign the hyperplanes in C∗(B; bi) \
⋃

j<i C∗(B; bj) so that all signs become opposite to the sign
after resigning of the smallest element of C∗(B; bi).

Note that by the properties of B the smallest element in
(2) is in

⋃

j<i C∗(B; bj)), hence it has already be resigned.
It is easily checked that we get a bounded region, and that
B is fully optimal with respect to this region.

There is a dual algorithm using circuits instead of cocir-
cuits.

The mapping from uniactive internal bases to bounded
regions defined by BASORI is injective (proof 2/3 pages).
Since the number of uniactive internal bases is equal to the
number of bounded regions (T. Zaslavsky 1975, for real
arrangements; M. Las Vergnas 1977 for o.m.), we have

Theorem

The mapping defined by BASORI, from uniactive
internal bases to bounded regions, is a bijection.
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From bounded regions to bases

For determining the fully optimal basis of a given bounded
region by means of BASORI, we would have to apply
the algorithm to successive internal uniactive bases until
the desired region is obtained, clearly a not very efficient
process.

The following algorithm ORIBASE constructs directly the
fully optimal basis of a bounded region.

Step 1

Let R be a bounded region of an ordered hyperplane
arrangement. By the simplex criterion, the desired fully
optimal basis B = {b1 = e1, b2, . . . , br}< is such that the
vertex v1 = v = b2 ∩ b3 ∩ . . .∩ br is a solution of the linear
program defined on R, with plane at infinity p = b1 = h1

and objective function f = b2.

This property may not suffice to determine v when the
program is degenerate. In general v will be the unique
solution of a linear multiprogram defined by the ordering
of the sequence of hyperplanes, or ordered multiprogram.

Let Bmin = {f1 = h1, f2 = h2, . . . , fr}< be the lexico-
graphically minimal basis (for simplicity, we suppose that
h2 is not parallel to h1). The ordered multiprogram on the
fundamental region R is the problem of determining, for
the plane at infinity p = f1, the set of vertices of R maxi-
mizing f2, then among this set those vertices maximizing
f3, etc. until a unique vertex is obtained.
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The multiprogram graph

This first step of ORIBASE - ordered multiprogramming
- can be expressed as a problem of graph.

Let vv′ be an edge, not contained in the plane at infinity
p, of the graph defined by the arrangement. The edge vv′

is contained in a line d of the arrangement. Let f be the
smallest objective function not parallel to d. We direct vv′

away from f ∩ d.

Observe that, classically, vv′ would have been directed
according to the direction of d going from f− towards
f+. With the classical orientation, the problem to solve,
mixing minima and maxima, would depend on the location
of the region with respect to the objective functions.
Or, we would have to redefine the orientation of the
multiprogram graph for each region, taken as fundamental.

For the present choice, the directed graph remains the
same for any region chosen as fundamental. The first step
of ORIBASE is to determine a vertex maximal in terms of
the multiprogram graph, i.e. a sink of the graph restricted
to the region. This problem is purely graphical. We know
that when the region is bounded there is unique vertex
solution to this problem. We call it the active vertex v = v1

of the region.

The hyperplane b = b2 is the smallest hyperplane of the
arrangement containing v1.
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the 15 planes of C15

1 : plane at infinity
2 : 5678
3 : 1234
4 : 3478
5 : 1256

6 : 2468
7 : 1357
8 : 467
9 : 258
A : 358

B : 167
C : 238
D : 146
E : 147
F : 235

215 regions, 51 bounded regions

71 vertices, 9 on the plane at infinity

C15 - Fully optimal basis of the tetrahedron 2ABD

(1) Bmin = 1246 v1 = 2 b2 = 3
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The derived multiprogram

Step 2

We define a new ordered multiprogram with one dimension
less, the program derived at v from the initial problem.

The derived arrangement is the sequence of traces on
p = b1 = e1 of the hyperplanes containing v = v1 The
hyperplane b = b2 of Step 1 is now the plane at infinity
p′ = b ∩ p = b2 ∩ h1 of the derived arrangement. The
objective function are the traces on p = h1 of the objective
fonctions containing v.

The vertices of the derived graph are the traces on the
hyperplane p = h1 of the half-lines issued from v on the
same side of b2 that the region R. Let ww′ be an edge
of the derived graph not contained in b2. This edge is
supported by a line d′ of the derived arrangement. The line
d′ and the vertex v define a plane cutting the hyperplane
b = b2 in a line d of the initial arrangement. The direction
of the edge ww′ of the derived graph depends on the
orientation of d in v. There are two cases.

(i) The two edges supported by d incident to v1 are
directed in-out in the multiprogram graph.

This direction defines a direction on the line d, hence also
on d′ parallel to d. We direct all edges supported by d′ in
this direction, in particular ww′.

(ii) The two edges supported by d incident to v1 are di-
rected out-out in the multiprogram graph. By construc-
tion these directions proceed from a smallest objective
function containing v. The trace of f on p is an objective
function of the derived arrangement, and this the small-
est objective function non parallel to d′. This objective
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function defines the direction of ww′ as in Step 1.

The feasible region R′ in the derived program is the
projection of R from v.

Let v′ be the solution of the ordered multiprogram on R′,
unique sink of the derived graph restricted to R′. Then
v2 = v′ is such that < v1, v2 >= b3 ∩ b4 ∩ . . . ∩ br, and b3

is the smallest hyperplane containing v1 and v2.

Remark

The construction in Step 2 is different from the construc-
tion in Step 1. In case (i) directions do not proceed from
objective functions, but from directions in the graph of
Step 1. Furthermore the feasible region R′ is not neces-
sarily bounded. (see the example in C15).

It is possible to unify the constructions by introducing
’virtual’ derived objective functions in case (i).

In case (i) the local orientation of d at v is defined by a
smallest objective function f not containing v (and not
parallel to b). We add to the derived arrangement a
hyperplane f ′ contained in p infinitely close of p′, on the
side of f not containing v and parallel to f ∩ p.

Then directions given by the graphic method of Step 2 can
now also be obtained from objective functions as in Step
1. In the new derived arrangement, the feasible region is
bounded. The sink v′ remains unchanged.
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3. Other steps

We iterate the construction of Step 2.

The algorithm ORIBASE yields a sequence of vertices
v1, v2, . . . of the feasible region R such that v1, v2, . . . , vi

span a face of dimension i − 1 of R. Then, the hyper-
plane bi+1 of the fully optimal basis of R is the smallest
hyperplane of the arrangement containing v1, v2, . . . , vi.

We note that br supports a facet of R. However,
b2, . . . , br−1 may not support any face (see example).
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fully optimal basis of 2ABD = 135F
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Activities of bases and Tutte polynomial

The Tutte polynomial of a matroid M on a set E can be
defined by the formula

t(M ; x, y) =
∑

A⊆E

(x− 1)r(M)−rM (A)(y − 1)|A|−rM(A)

It satisfies the following deletion/contraction inductive
relations.

(i) if e ∈ E is neither an isthmus nor a loop of M , then

t(M ; x, y) = t(M \ e; x, y) + t(M/e; x, y)

(ii) if e ∈ E is an isthmus of M , then

t(M ; x, y) = xt(M \ e; x, y)

(iii) if e ∈ E is a loop of M , then

t(M ; x, y) = yt(M \ e; x, y)

(iv) t(∅; x, y) = 1

Theorem [W.T. Tutte 1954]

Suppose the set E linearly ordered. Then

t(M ; x, y) =
∑

B basis of M

xιM (B)yεM (B)

where ι(B) resp. ε(B) denotes the internal resp. external
activity of B.

Zürich - 18/05/2006 32



Activities of orientations and Tutte polynomial

Let M be an oriented matroid on a linearly ordered set E.

An element e ∈ E is orientation active - or, O-active - if it
is the smallest element of some positive circuit of M , it is
dual-orientation active - or, O∗-active - if it is the smallest
element of some positive cocircuit of M .

Let o(M) resp. o∗(M) denote the number of O-active
resp. O∗-active elements of M . (definitions introduced by
M. Las Vergnas circa 1980). The orientation activities do
not depend on the ordering.

Theorem [M. Las Vergnas 1982]

t(M ; x, y) =
∑

A⊆E

(
x

2
)o∗(−AM)(

y

2
)o(−AM)

This theorem generalizes results of R. Stanley (1973),
R.O Winder (1966), T. Zaslavsky (1975), M. Las Vergnas
(1975) on counting acyclic orientations of graphs, regions
of (pseudo)hyperplane arrangements, acyclic reorienta-
tions of oriented matroids.

In each case, quoted in increasing order of generality, the
number is the evaluation t(2, 0) of the Tutte polynomial
of a suitable matroid.
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2

minimal basis : 124

in blue, cocircuits beginning by 1
(vertices at finite distance, i.e. not in 1)

in green, cocircuits beginning by 2
(vertices at simple infinity: in 1, but not in 2)

in red, cocircuits beginning by 4
(vertices at double infinity: in 1 ∩ 2)

The activity of a region is the number of different types
its vertices with respect to infinity.
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2

linear version of the previous figure

simple infinity= non vertical points at infinity

double infinity = vertical points at infinity
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The active reorientation-to-basis mapping

Comparing the two expressions of the Tutte polynomial,
we get the relation

oij = 2i+jbij

valid for all integers i, j ≥ 0, between the number oij of
reorientations with O∗-activity i and O-activity j, and the
number bij of bases with internal activity i and external
activity j.

Fully optimal bases provide a bijective interpretation of
the relation

o1,0 = 2b1,0

between the number of bounded regions 1
2o1,0 and the

number of uniactive internal bases (real case T. Zaslavsky
1975, o.m. M. Las Vergnas 1977). The number b1,0, also
the coefficient of x in t(M ; x, y), is the β invariant of M .

A question arises to generalizes this bijection (actually
a 1-2 mapping) to a natural 1 − 2i+j mapping from
all reorientations of an oriented matroid to its bases,
compatible with the above relations.

Theorem

A mapping with these properties can be constructed.

One construction of the active mapping is by reducing to
the case of (1, 0) activities by means of decompositions of
activities, both for orientations and for bases in internal
or external uniactive parts. Matroid duality reduces the
external case to the internal case.
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Decompositions of activities

We sketch roughly this rather technical development.

Decomposing orientation activities is a simple matter.

Farkás Lemma for oriented matroids - an element is either
in a positive circuit or in a positive cocircuit, but not in
both - provides a bipartition of the set of elements, reducing
the general case to the acyclic case (no positive circuit,
or, equivalently, the set of elements is a union of positive
cocircuits).

Let a be the greatest O∗-active element. We denote by
A the union of all cocircuits activated by a - i.e. of
smallest element - a. Set M ′ = M \ A, and proceed
inductively. We get in this way, the active partition
E = A1 + A2 + . . . + Aι(M). The restriction of M to
each part is a uniactive acyclic oriented matroid.

Decomposing basis activities is more involved. An algo-
rithm in terms of fundamental circuits and cocircuits has
to be used (see next slide). We also get active partitions
in terms of bases, each part being activated by its smallest
element.

Theorem

- A basis, image of a reorientation by the active mapping,
has the same active partition

- The 2i+j reorientations mapped on a same basis by
the active mapping are obtained from anyone of them
by reorienting an arbitrary union of parts of the active
partition.

Zürich - 18/05/2006 37



Decomposition of basis activities (details)

Let M be a matroid on a linearly ordered set E, and B be
a basis of M . For X ⊆ E we set

f1(X) = f(X) = X ∪
⋃

e∈E\B

C<(B;e)⊆X

C(B; e)

f i+1(X) = f(f i(X)), et f̂(X) =
⋃

i≥1 f i(X)

Then, we define F = f̂(∅). The set F ∗ is defined dually..
We set B′ = B ∪ F M ′ = M(F ) B′′ = B \ F M ′′ = M/F

Proposition 1 [MLV - G. Etienne 1998)

We have E = F + F ∗

ιM ′(B′) = 0, εM ′(B′) = εM (B)

et ιM ′′(B′′) = ιM (B), εM ′′(B′′) = 0.

Let B be an external basis of M , i.e. such that ιM (B) = 0,
and a1 < a2 < . . . < a` be the active elements of B. For
1 ≤ k ≤ `, we define F̂k as F̂ , just replacing ’e ∈ E \ B’
by ’e ∈ E \B and e ≥ ak’ in the definition of f1(X).

We have F1 = E ⊃ F2 ⊃ . . . ⊃ F`. Writing Ak =
Fk \ Fk+1, we obtain E = A1 + A2 + . . . + A`. Set
Bk = B ∩ Ak and Mk = M/

∑

i<k Ai \
∑

i>k Ai

Proposition 2

Bk is a uniactive external basis of the matroid Mk

on Ak.
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The braid arrangement and the complete graph

The braid arrangement Bn can be defined in Rn by the
(

n
2

)

hyperplanes hij with equation −xi + xj = 0 for
1 ≤ i < j ≤ n. The intersection of these hyperplanes
is the line x1 = x2 = . . . = xn.

The arrangement Bn is related to the complete graph Kn:
with the hyperlane hij is associated the directed edge
i → j. The regions of Bn correspond then bijectively
to the acyclic orientations of Kn, themselves in bijection
with permutations of the vertex-set. Actually, an acyclic
orientation of Kn defines a linear ordering of the vertices,
associated with a unique path through all vertices a1 →
a2 → . . . → an, i.e. to the permutation a1a2 . . . an, and
conversely.

A geometrical point of view is obtained by considering
the first barycentric subdivision of the regular n-simplex
of Rn−1. The hyerplanes of the arrangement are the
mirrors of symmetry of theedges of the simplex. The
permutation a1a2 . . . an is associated with the face a1,
a1a2, . . . , a1a2 . . . an, where the vertex a1a2 . . . ai is the
barycenter of the vertices a1 a2 . . . ai of the simplex.

A standard ordering of the hyperplanes of Bn is the
colexicographic ordering:

h12 < h13 < h23 < h14 < h24 < h34 < . . .

and, generally, hij < hk` if and only if either j < ` or j = `
and i < k.
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The active mapping for the complete graph

Let p = a1a2 . . . an be a permutation of 12 . . . n, n ≥ 2.
If n is firs or last in p, set t(p) = h1n. Otherwise, let
m be the letter next to n on the opposite side of 1, i.e.
such that p = . . . 1 . . . nm . . . or p = . . .mn . . . 1 . . ., and
set t(p) = hmn.

Proposition 1

The active mapping for the braid arrangement with
respect to the colexicographic ordering is given by α(p) =
{t2, t3, . . . , tn}, where for 2 ≤ i ≤ n, we have ti = t(p′) for
the permutation p′ obtained from p by removing all letters
> i.

As easily checked, the bases α(p) internal and uniactive
are associated with the increasing trees of Kn.

Let p[a] denote the smallest interval of p containing all
letters ≤ a. We say that a letter a is active in p if all
letters smaller than a are either all to the left or all to
the right of a, i.e. if and only if p[a] = a . . . p[a − 1] or
p[a] = p[a− 1] . . . a.

Proposition 2

Two permutations have a same image under α if
and only if one is obtained from the other by reversing of
intervals p[a] for active letters a.

It follows that there is exactly one permutation
beginning resp. ending by 1 in each class of α−1.
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By Proposition 2, the active mapping restricted to the re-
gions of Bn is equivalent to the classical bijection between
(n− 1)-permutations and increasing forests on n− 1 ver-
tices by the correspondence

a1a2 . . . an−11←→ a′
1a

′
2 . . . a′

n−1

avec a′
i = ai − 1 pour i = 1, 2, . . . , n− 1.

Other applications

- the hyperoctahedral arrangement and signed permuta-
tions

- activity preserving bijection between the internal span-
ning trees of a graph and the acyclic orientations with a
unique sink at a given vertex
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