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Abstract. We determine the easy points of the 3-variable Tutte polynomial of a matroid perspective. It
turns out that all but one of the sporadic easy points of the 3-variable Tutte polynomial proceed from
the 8 sporadic easy points determined in the seminal paper of Jaeger-Vertigan-Welsh on the computational
complexity of the Tutte polynomial of a matroid. The exceptional easy point, namely (—1,—1,—1), can be
evaluated with polynomial complexity for binary matroid perspectives by a previous result of the author.
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1. INTRODUCTION

The Tutte polynomial of a matroid - introduced by W.T. Tutte in 1954 for graphs - is a self-dual form
of the generating function for cardinality and rank of subsets of elements. We have introduced in 1975
the Tutte polynomial of a matroid perspective, as a similar self-dual form of the generating function for
cardinality and ranks in two matroids [6]. The Tutte polynomial of a matroid perspective is a 3-variable
polynomial with non negative coefficients. For a general pair of matroids the 3-variable Tutte polynomial is a
Laurent polynomial in Z[z,y, z, 2], equivalent to the linking polynomial recently considered by Welsh and
Kayibi [11]. Moreoften, the properties of the 3-variable Tutte polynomial of a matroid perspective generalize
and unify properties of the usual 2-variable Tutte polynomial of a matroid. For instance, the evaluation
t(M,M';0,0,1) of an oriented matroid perspective M — M’ contains as particular cases both the counting
of acyclic orientations of a graph and the counting of orientations with unique source and unique sink, and
generalizations to hyperplane arrangements and oriented matroids [7].

The seminal paper of Jeager-Vertigan-Welsh on the computational complexity of the Tutte polynomial
contains a wide range of results on the general intractability of the evaluation of the Tutte polynomial of
a matroid except for a few listed special points and curves [5]. In the present note, we determine the easy
points of the Tutte polynomial of a matroid perspective. It turns out that all but one of the sporadic easy
points of the 3-variable Tutte polynomial proceed from the easy points of the 2-variable Tutte polynomial.
The exceptional easy point, namely (—1, —1, —1), has a polynomial evalution for represented binary matroid
perspectives by a previous result of the author [3].

2. THE TUTTE POLYNOMIAL OF A MATROID PERSPECTIVE

Let M, M' be two matroids on a set E. The following properties (i)-(v) are equivalent (see [10] Section
7.3) :
(i) every flat of M' is a flat of M
(ii) every circuit of M is a union of circuits of M’
(iii) for every circuit C' of M and cocircuit D’ of M' we have |CND'| # 1
() ra (X)) —rar (V) <7y (X)) —ry(Y) foral Y CX CE
(v) there is a matroid N on a set E'U A such that M = N\ A and M' = N/A

We write M — M' when these equivalent properties hold, and say that M — M’ constitutes a
matroid perspective. A matroid perspective is the particular case of a strong map of matroids when both
matroids are on a same set. Note that no significant generality is lost, since it can easily be shown that
any strong map is reducible to a perspective up to a bijection and adding loops and parallel elements. The
matroid M’ is often called a quotient of M in the literature [10]. Standard examples of matroid perspectives
are obtained by identification of vertices in graphs or by embeddings of graphs in surfaces, and more generally
from linear maps between vector spaces.

A matroid N as in (v) is called a major of M — M'. A matroid perspective is said to begraphic resp.
binary if it has a graphic resp. binary major. Let M be a matroid on a set E. We denote by 0 the rank zero
matroid on E, and by 1 the free matroid of rank | £ | on E. Then M — M, M — 0 and 1 — M are
matroid perspectives on E. As is easily seen, if M is graphic, these matroid perspectives are also graphic.
We will use them in Section 3.

The Tutte polynomial of a matroid perspective defined in [6][8][9] is a variant of the rank generating
function of two matroids. We have
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In general, the function ¢(M,M') is a Laurent polynomial in Z[z,y,z,2 "], and its coefficients may be
positive or negative integers. In the case of a matroid perspective M — M’ the function ¢(M,M’) is
a polynomial in z,y,z with non negative integer coefficients (proof by deletion/contraction), and many
fundamental properties of the usual Tutte polynomial generalize [6][8][9].

Another variant of the rank generating function of two matroids, a 4-variable polynomial called the link-
ing polynomial, has been recently considered by D.J.A. Welsh and K.K. Kayibi [11]. The linking polynomial
is equivalent to the Tutte polynomial of two matroids [11] (see Property (14) p. 394) [12]. By this equiva-
lence, properties can be stated in terms of either polynomials. On an expression of the Tutte polynomial of
a strong map in terms of activities, Th. 6.1 in [8] and Th. 8.1 in [9], see the acknowledgement [12].

When M — M’, the polynomial ¢(M, M') can also be considered as the Tutte polynomial of a matroid
pointed by a subset of elements [6][8][9]. With notation of (v) in the equivalences defining a matroid
perspective, we have t(M, M';z,y,2) = t(N; A;z,y, ) (see details in [9] section 3). When r(M) = r(M')+1,
or, equivalently, when A is reduced to one element, say A = {e}, the polynomial ¢t(M,M') = t(N;{e}) is
equivalent to the 4-variable polynomial introduced by T. Brylawski in [1]. Generalizations of certain results
of Brylawski to Tutte polynomials of set-pointed matroids are studied in [2].

3. EASY POINTS
Two results of the literature will be used in the proof of Theorem 1.

Theorem A (F. Jaeger, D. Vertigan, D.J.A. Welsh [5])

The problem of evaluating the Tutte polynomial of a graph at a point in the (x,y)-plane is #P-hard
except when (z — 1)(y — 1) = 1 or when (z,y) equals (1,1) (—1,-1) (0,—1) (=1,0) (i,—i) (—i,4) (j,4%)
(52,7) where j = 2™/3,

We refer the reader to [5] for the interpretation of the special points in Theorem A (see also [4] for (j,j?)
and (52, 7)).

Theorem B (G. Etienne, M. Las Vergnas [3] Th. 6.2)

Let M — M' be a binary matroid perspective, i.e. such that M = S(V) and M' = S(V') for binary
subspaces V.C V' C GF(2)¥, where S(V') denotes the matroid on E whose circuits are the inclusion-minimal
supports of non zero vectors of V. We have

. . Jo iflp gV +V'+
t(M,M, L,-1, 1)_{(_1)|E|—dim(VﬂVJ‘)2dim(VﬂV’l) iflEEV-i-Vll

Extending definitions of Jaeger-Vertigan-Welsh, we say that a point (a,b,c) of the complex 3-space is
an easy point of the 3-variable Tutte polynomial of a matroid perspective if there is a polynomial algorithm
to evaluate (M, M';a,b,c) on graphic matroid perspectives M — M.

Theorem 1
The easy points of the 3-variable Tutte polynomial of a matroid perspective are
(i) all points of the curve (t+ 1,1/t + 1,1t)

(i) 15 points obtained from the 8 sporadic easy points of the 2-variable Tutte polynomial of a matroid,
namely for each (a,b) in the list of Jaeger-Vertigan- Welsh the points(a,b,a — 1) and (a,b,1/(b—1)) if b # 1

(iii) (-1, —1,-1).
Proof
Let M be a graphic matroid. Then M — 0 and 1 — M are graphic matroid perspectives. By straight-
forward substitutions we have t(M,0;z,y,z) = t(M;z+1,y) and t(1, M; z,y, 2) = 2 MI=rMD(M:2,1/2+1)
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([9] (5.4) (5.5)). It follows that if (a,b,c) is an easy point of the 3-variable Tutte polynomial then (¢ + 1,b)
and (a,1/c+ 1) are easy points of the 2-variable Tutte polynomial. By Theorem A, we have ¢(b—1) =1
or (c+1,b) € £ = {(1,1),(-1,-1),(0,-1),(=1,0), (i, =), (—i,4), (4, %), (%,4)}, and (a — 1)/ec = 1 or
(a,1/c + 1) € L. Therefore either ¢(b — 1) = 1 and (@ — 1)/e = 1 - case (i),or ¢(b — 1) = 1 and
(a,1/c + 1) € L, equivalently (a,b) € £ and ¢ = 1/(b—1),or (a —1)/c = 1 and (¢ + 1,b) € L, equiv-
alently (a,b) € £ and ¢ = a — 1 - case (ii),or (a,1/c + 1) € L and (¢ + 1,b) € L - case (iii). If
(a,1/c+1) € L then c € {-1/2,-1,-1/2+i/2,-1/2—i/2,—-1/3 +j/3,—1/3 + j?/3}and if (c+ 1,b) € L
then ¢ € {0,—-2,—1,—1+41i,—1 —i,—1+ j,—1+ j2}. The intersection of the two lists is ¢ = —1, and then
a=b=-1

We prove that conversely each point in (i)-(ii)-(iii) is easy. Let M — M’ be a matroid perspective on a
set E.

(i) We have t(M, M';t4+1,1/t+1,t) = M) —r(M) S~ 3= AL = gr(M)=r(M")=1B] ‘hence (t41,1/t+1,t)
is easy for any matroid perspective. -

(ii) By straightforward substitutions in the formula defining ¢(M, M') we have t(M,M';z,y,z — 1) =
t(M;z,y) and t(M,M";z,y,1/(y—1) = (y — 1)*("(M)*"(M’))t(M’; z,y). It follows that the 15 points of case
(ii) amount to easy points of 2-variable Tutte polynomials, hence are easy by Theorem A.

(iii) With notation of Theorem B, if V' and V' are defined by bases, all necessary computations to
evaluate t(M, M'; —1,—1,—1) can be made by means of polynomial algorithms. It follows that (—1,—1,—1)
can be polynomially evaluated for binary matroid perspectives with a succint presentation in the sense of
[5], hence is an easy point for the 3-variable Tutte polynomial of a matroid perspective.c

An alternate proof of Theorem 1 is obtained by using the perspective M — M in place of M — 0
resp. 1 — M.

When (a,b) = (1,1), the point (a,b,1/(b — 1) is not in the complex 3-space. However since (y —
1) =r(M)y (M M 2,y,1/(y — 1)) = t(M'; z,y), we may consider that the limit evaluationat (1,1,00) is
also an easy point, dual to the evaluation at (1,1,0). This limit is equal to the evaluation at (1,1) of the
2-variable polynomial coefficient of z"(M)=(M") in t(M, M';z,y, z). With this convention there are 16 easy
points in case (ii).
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