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Combinatorial problems

Problem:

Check that the boolean knapsack polytope is nonempty:

B, ={z €{0,1}": (a,x) = b} # 0,
where b € Z and a € Z".

Different approaches:
1. Check positivity:
((a,2) = b2+ S [20(1 — 2?2 >1 VzeR"

e Representation as a sum of squares?

e Computational complexity?

2. Direct methods:

Complete enumeration related to a certain grid.

Advantage: Simple complexity bounds.



Approximation by points from a grid

Problem:
fax) — min: x € A,(1),
AM@:{xEszgﬂ) k,

2D >0i=1,...,n},

where f(z) is a homogeneous polynomial of degree d > 2.

Case d = 2:

1. Nesterov 1999. Take f = min fo(x) with

= {z = eﬁ—e‘? i,j=1,...,n}.
Then f — f. < 5+ (max fa(er) — f)

(Based on Linear Matrix Inequalities.)

2. Bomze, de Klerk 2002. Take
To(k)={z =1y, y € N(k)nZ"}.
Thenf fe < _E ( max f2< ) = fi)-

€A

(Based on representations of sums of squares. )
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Random walk in a simplex

Let us fix some vector of probabilities p € A, (1).

Denote by ((p) a discrete random variable distributed as

Prob{¢(p) =i} =p¥, i=1,...,n

Consider the following process:

ro(p) = 0 € R",

Trir(p) = 2k(p) +eg )y k20,
where all (i(p) are distributed as (1).

Note: all zx(p) € A, (k). Hence, the process
ye(p) = j2n(p), k=1,

is a random walk in the simplex A, (1).

A direct implementation of yi(p) is as follows:

yo(p) = 0 € R",

Yer1(p) = k_kﬁlyk(p) + ]{;_1|_16Ck(p)7 k> 0.

(1)



Expectations

Note: z(p) € A, (k)nZ" and for any a € A, (k)nZ"

we have "
Prob (zx(p) = o) = 5 - p°,
where ) ) 0
| — (4)1 o _ (1))
al = o, po = fi (p)
Therefore, for 7,7 = 1,...,n, we have

E(zi(p)?V) = kp®,
E(lex(p)?]?) = kp + k(k — 1) (p0)°,
E(x(p)Yzr(p)Y) = k(k —1)pWpl).

Version for y;(p):
E(ye(p)?) = p",



Quadratic optimization

Problem:
Find f. = min{ fo(x) = (Qz,z) : x € A,(1)}, ()
where () is a symmetric n X n-matrix. Define

fr = mm{ﬁfg( ) aeNy(k)nZ", k>1.

Theorem 1 For any k > 1 we have

0< fr— fe <1]max QU f*]- (6)

1<i<n

Proof: Indeed, f, < fk. Let us choose p = z*. Then
fr = min{fg (O‘> e Ayk)nZ™}

< E[f(y(p))] = E[(Qui(p), ys(p))]
= £ QWE[ ) v )

1,7=1
—~ EQ“E{(yZ ]ﬂ% <w>E[y;§i)(p)yzij)<p)]
— liélQ( )p(Z) (1—)2]21622]
< fpax QU+ (1-F) . O

Corollary 1 If fg(ez) <0 Vz then f, <0 and
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Complexity:

1. We need to compute fo(x) in all nodes of A, (k)nZ"
with
An(k)n 2z = ("4

n—1

2. For x € A(k)nZ", k < n, the number of non-zero
elements is at most k. Thus

k(k+1)

Computation of f(x) < 5 operations.
Examples:
k=3: n(n+1)(n+2) operations,

k=4: 2n(n+1)(n+2)(n+3) operations.



Problems on a polytope

Consider the problem
Find f. = min{ fo(x) = (Qz,z): z € P}, (8
where P = Conv{u, € R", i=1,...,N}.
Denote U = (uy, ..., uy). Define
fr = min {5 fo(Ua): aeAyk)nZ"}, k>1,

f* = max_ fao(u;).

1<i<N

Theorem 2 For any k£ > 1 we have

0< fo — fe <G = £ (9)
If f* <0, then the relative accuracy of approximation
fr s at least ]1

Proof: The problem (8) is equivalent to (5) with

Q=UTQU.
[
Random walk in polytope P: p e Ay(1),
w(p) = 0 € R",
(10)

Yrr1(p) = ;ﬁyk(p) T kj_lugk(p)a k>0,
where Prob[¢.(p) =i =p¥,i=1,...,N.
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Computing the integer volumes

Denote by A (Q) the number of integer points in
the set @ (N(0) = 0).

Def. Consider a finite parametric family of discrete sets
R={R()}rez, -
We assume that R(b) = ) for all b large enough.

The generating function of this family is defined as

Jr(t) = EON(R(I?)) . teR.

Note: In many cases fz(t) has a short form.



Knapsack problems

Main object:
Bﬂ@::{xEjﬁﬁQ.“,M“}:Q%x>:b},

the bounded knapsack polytope.

For B! = {BY() }yez, . Its generating function is
fag(t) = S N(BO) -1 teR (11

That is a polynomial of degree (a, u).

Lemma 1

fartt) = fi 5,27, 12)
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Multiplication of polynomials

Lemma 2 Let polynomial f(t) be represented as a
product of several polynomials:

£(t) = 11 pift)
Then its coefficients can be computed by FFT in
O(D(f) nD(f) lnn)

arithmetic operations.

Proof: Multiplication by pairs. O

(Consecutive multiplication gives O(nD).)

Theorem 3 All {(a,u) coefficients of the polynomial
fBu(t) can be computed by FFT in

O({a,u) In{a,u) Inn)

arithmetic operations. O
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Unbounded knapsack

Consider now the generating function

fex(t) = > N(BX() - 1" (13)

[t can be represented in a short form:

S (t) =

S

, |t < 1. (14)

Theorem 4 The coefficients of polynomial
n @)
g(t) = I (1 —1"")
can be computed by FFT in

O(||la|ly In|lally Inn) a.o. (15)

Then, the first b+1 coefficients of fpx(t) can be com-
puted in

O(b min{ln®b,In*n}) a.o.

Note:

The standard (Dynamic Programming) approach needs

O(nb) a.o.
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Characteristic functions

Let us fix a cost vector ¢ € R".

For a finite set of R C R", the characteristic function
is defined by:

If R =10, we set gr(c) = 0.

Note: for R = R{UR, we have
9R<C> — 9731(0) + 9732(0)'

The potential function of ‘R is given by

Yr(c) =1Ingr(c).
Define the support function of the set R

Er(c) = max{c, x) < Yr(c) < &r(c) + InN(R).

TER
Potential and support functions can be as close as needed:

Erlc) < wprlc/u) < &rlc) + pInN(R),
where 1 > 0.

13



Augmented generating functions

Definition:

F%@J%=£#m@@ﬁiﬂ t € R.

Note that Fi5(0,t) = f5(%).

Short form:

:13

@) @) g
Bounded knapsack: Fgu(c,t) = (:ZO ghe”pha >).
’L_ =

Unbounded knapsack:

[Neuf

l%ﬂqﬂ:{ (1— e M%ra

1=1

with [¢] < min e /al?,
1<i<n
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Optimizing the knapsack

Problem:
Find f* = max{{c,z) : {(a,z) = b}, (16)
AYAl
Strategy:

1. Choose p small enough.
2. Compute coefficients of f(t) = f{l(l — e ta@).

3. Compute the first b + 1 coefficients of g(t) = f(lt)

(17)

Theorem 5 The optimal value of problem (16) can
be found by (17) in

O(|lally - In]|a|ly - Inn + b- In? n)

operations of exact real arithmetics.
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Multidimensional parameters

Consider a parametric family of sets in Z":
X = {X(y), ye A} € 2"
where A is a finite subset of Z™. As before,

s eler) if X 0,
x () = | veX) it X(y) # (ce R").
0, otherwise,

Hence, vx(,)(0) = N(X (y)).

Define (augmented) generating function as

QX,C@) = 2 ¢X(y)(c> ) vyv (IS Cma (18>
yeA

where v¥ = .Trrfl(v(i))y(z).
1=

Note: all numerical computations with polynomials are
very unstable.

Suggestion: restrict the argument onto the unit circle
—{vec™, PY=1i=1,...,m}.

Then gy .(v) becomes a trigonometric polynomial.
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Main advantage:

the system of monomials {v¥},ezm, v € S, becomes
orthogonal.

Lemma 3 Denote j =+/—1, and for ¢ € R™ denote

' i o) i o(m)
eI = (¥, eI

and dp = doV ... dp™ . Then

2T 2T . .
xy)(c) = (zi)m Jooed eI gy (eI¥) dp.  (19)

Note: In (19) we need to integrate a polynomial.

The value of this integral can be computed by exact cu-
bature formulaes.

Theorem 6 For L € Z'" define the following grid
Gr = {p e R": o) = 2Lk, k; € Z,

0<k<LW_—-14i=1,....,m},

Let LW > |y@D| i =1,....m, for anyy € A. Then
1

xlc) = \gwgngx,c(e”’)e‘j we) oy e A

(20)
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Application example

For uw € Z" and y € Z™ denote
Bu) ={zxeZ": 0<zx<u}
Xuly) = {z € B(u) . Az =y},
X = {Xuly), y € A AB(u)}.

where A is an m X n-matrix with integer coefficients.

Let us introduce the trigonometric generating function:

g;(,c(v) — ygA ,Qqu(y)(C) . ’ij V& Sm (21)

Lemma 4
. () ()1 s
iy — 1§ U0 ek (4] (aj,0)) m
gx(e1?) pis 1+k:16 ., pw€eR™
_ o e<u<f>+1)-<c<f>+J<aj o) _q
j=1 Wtjlaje)

(22)
where a; is the jth column of matriz A.

Thus, the value gy .(e??) can be computed in

O(mn) a.o.
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Complexity analysis

1. Size of A = AB(u). Assume that
AW <o, i=1,....m, j=1,...,n,
and that the box B(u) is uniform:
W =38 i=1,... n.
Then, for any « € B(u) we have

| ,%1 AWiz0)l <aB-n. i=1,...,m.
iz

Hence, we can take
LY =14aB-n, i=1,...,m,
and computation of value 1y, (c) by (20) takes
O(mn-(1+af-n)") ao. (23)

For fixed m, this dependence is polynomial in n.

Alternative: A direct inspection of all z € B(u), and
checking Ax = b takes

O(mn-(1+3)") ao.

(Exponential in n.)

Note: we can solve optimization problems by bisection.
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