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Combinatorial problems

Problem:

Check that the boolean knapsack polytope is nonempty:

B1
a = {x ∈ {0, 1}n : 〈a, x〉 = b} 6= ∅,

where b ∈ Z and a ∈ Zn.

Different approaches:

1. Check positivity:

(〈a, x〉 − b)2 +
n∑

i=1
[x(i)(1− x(i))]2 ≥ 1 ∀x ∈ Rn.

• Representation as a sum of squares?

• Computational complexity?

2. Direct methods:

Complete enumeration related to a certain grid.

Advantage: Simple complexity bounds.
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Approximation by points from a grid

Problem:

fd(x) → min : x ∈ ∆n(1),

∆n(k) = {x ∈ Rn :
n∑

i=1
x(i) = k,

x(i) ≥ 0, i = 1, . . . , n},
where f (x) is a homogeneous polynomial of degree d ≥ 2.

Case d = 2:

1. Nesterov 1999. Take f̂ = min
x∈Tn

f2(x) with

Tn = {x =
ei+ej

2 , i, j = 1, . . . , n}.
Then f̂ − f∗ ≤ 1

2 · ( max
1≤i≤n

f2(ei)− f∗).

(Based on Linear Matrix Inequalities.)

2. Bomze, de Klerk 2002. Take

Tn(k) = {x = 1
ky, y ∈ ∆n(k) ⋂ Zn}.

Then f̂ − f∗ ≤ 1
k · ( max

x∈∆n(1)
f2(x)− f∗).

(Based on representations of sums of squares.)
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Random walk in a simplex

Let us fix some vector of probabilities p ∈ ∆n(1).

Denote by ζ(p) a discrete random variable distributed as

Prob{ζ(p) = i} = p(i), i = 1, . . . , n. (1)

Consider the following process:

x0(p) = 0 ∈ Rn,

xk+1(p) = xk(p) + eζk(p), k ≥ 0,
(2)

where all ζk(p) are distributed as (1).

Note: all xk(p) ∈ ∆n(k). Hence, the process

yk(p) = 1
kxk(p), k ≥ 1, (3)

is a random walk in the simplex ∆n(1).

A direct implementation of yk(p) is as follows:

y0(p) = 0 ∈ Rn,

yk+1(p) = k
k+1yk(p) + 1

k+1eζk(p), k ≥ 0.
(4)
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Expectations

Note: xk(p) ∈ ∆n(k) ⋂ Zn and for any α ∈ ∆n(k) ⋂ Zn

we have
Prob (xk(p) = α) = k!

α! · pα,

where
α! =

n∏

i=1
α(i)!, pα =

n∏

i=1
(p(i))α

(i)
.

Therefore, for i, j = 1, . . . , n, we have

E(xk(p)(i)) = kp(i),

E([xk(p)(i)]2) = kp(i) + k(k − 1)
(
p(i)

)2
,

E(xk(p)(i)xk(p)(j)) = k(k − 1)p(i)p(j).

Version for yk(p):

E(yk(p)(i)) = p(i),

E([yk(p)(i)]2) = 1
kp

(i) +
(
1− 1

k

) (
p(i)

)2
,

E(yk(p)(i)yk(p)(j)) =
(
1− 1

k

)
p(i)p(j).
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Quadratic optimization

Problem:
Find f∗ = min

x
{f2(x) ≡ 〈Qx, x〉 : x ∈ ∆n(1)}, (5)

where Q is a symmetric n× n-matrix. Define

f̂k = min
α

{
1
k2f2(α) : α ∈ ∆n(k) ⋂ Zn

}
, k ≥ 1.

Theorem 1 For any k ≥ 1 we have

0 ≤ f̂k − f∗ ≤ 1
k


 max
1≤i≤n

Q(i,i) − f∗

 . (6)

Proof: Indeed, f∗ ≤ f̂k. Let us choose p = x∗. Then

f̂k = min
α
{f2

(
α
k

)
: α ∈ ∆n(k) ⋂ Zn}

≤ E[f (yk(p))] = E[〈Qyk(p), yk(p)〉]
=

n∑

i,j=1
Q(i,j)E

[
y

(i)
k (p) · y(j)

k (p)
]

=
n∑

i=1
Q(i,i)E




(
y

(i)
k (p)

)2

 + ∑

i 6=j
Q(i,j)E

[
y

(i)
k (p)y

(j)
k (p)

]

= 1
k

n∑

i=1
Q(i,i)p(i) +

(
1− 1

k

) n∑

i,j=1
Q(i,j)p(i)p(j)

≤ 1
k max

1≤i≤n
Q(i,i) +

(
1− 1

k

)
f∗. 2

Corollary 1 If f2(ei) ≤ 0 ∀i, then f∗ ≤ 0 and

f̂k − f∗ ≤ 1
k(−f∗). (7)
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Complexity:

1. We need to compute f2(x) in all nodes of ∆n(k) ⋂ Zn

with
|∆n(k) ⋂ Zn| =

(
n+k−1
n−1

)
.

2. For x ∈ ∆n(k) ⋂ Zn, k ≤ n, the number of non-zero
elements is at most k. Thus

Computation of f (x) ⇔ k(k+1)
2 operations.

Examples:

k = 3 : n(n + 1)(n + 2) operations,

k = 4 : 5
12n(n + 1)(n + 2)(n + 3) operations.
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Problems on a polytope

Consider the problem

Find f∗ = min
x
{f2(x) ≡ 〈Q̂x, x〉 : x ∈ P}, (8)

where P = Conv {ui ∈ Rn, i = 1, . . . , N}.
Denote U = (u1, . . . , uN). Define

f̂k = min
α

{
1
k2f2(Uα) : α ∈ ∆N(k) ⋂ Zn

}
, k ≥ 1,

f ∗ = max
1≤i≤N

f2(ui).

Theorem 2 For any k ≥ 1 we have

0 ≤ f̂k − f∗ ≤ 1
k [f ∗ − f∗]. (9)

If f ∗ ≤ 0, then the relative accuracy of approximation
f ∗k is at least 1

k.

Proof: The problem (8) is equivalent to (5) with

Q = UT Q̂U.
2

Random walk in polytope P : p ∈ ∆N(1),

y0(p) = 0 ∈ Rn,

yk+1(p) = k
k+1yk(p) + 1

k+1uζk(p), k ≥ 0,
(10)

where Prob[ζk(p) = i] = p(i), i = 1, . . . , N .

8



Computing the integer volumes

Denote by N (Q) the number of integer points in

the set Q (N (∅) = 0).

Def. Consider a finite parametric family of discrete sets
̂R ≡ {R(b)}b∈Z+.

We assume that R(b) = ∅ for all b large enough.

The generating function of this family is defined as

fR̂(t) =
∞∑

b=0
N (R(b)) · tb, t ∈ R.

Note: In many cases fR̂(t) has a short form.
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Knapsack problems

Main object:

Bu
a(b) =



 x ∈ n∏

i=1
{0, . . . , u(i)} : 〈a, x〉 = b



 ,

the bounded knapsack polytope.

For Bu
a = {Bu

a(b)}b∈Z+. Its generating function is

fBu
a
(t) =

∞∑
b=0
N (Bu

a(b)) · tb, t ∈ R. (11)

That is a polynomial of degree 〈a, u〉.

Lemma 1

fBu
a
(t) =

n∏

i=1




u(i)∑

k=0
tka(i)


 . (12)
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Multiplication of polynomials

Lemma 2 Let polynomial f (t) be represented as a
product of several polynomials:

f (t) =
n∏

i=1
pi(t).

Then its coefficients can be computed by FFT in

O(D(f ) ln D(f ) ln n)

arithmetic operations.

Proof: Multiplication by pairs. 2

(Consecutive multiplication gives O(nD).)

Theorem 3 All 〈a, u〉 coefficients of the polynomial
fBu

a
(t) can be computed by FFT in

O(〈a, u〉 ln〈a, u〉 ln n)

arithmetic operations. 2
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Unbounded knapsack

Consider now the generating function

fB∞a (t) =
∞∑

b=0
N (B∞

a (b)) · tb. (13)

It can be represented in a short form:

fB∞a (t) ≡ n∏

i=1

1

1− ta
(i) , |t| < 1. (14)

Theorem 4 The coefficients of polynomial

g(t) =
n∏

i=1
(1− ta

(i)
)

can be computed by FFT in

O(‖a‖1 ln ‖a‖1 ln n) a.o. (15)

Then, the first b+1 coefficients of fB∞a (t) can be com-
puted in

O(b min{ln2 b, ln2 n}) a.o.

Note:

The standard (Dynamic Programming) approach needs

O(nb) a.o.
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Characteristic functions

Let us fix a cost vector c ∈ Rn.

For a finite set of R ⊂ Rn, the characteristic function
is defined by:

gR(c) =
∑

x∈R
e〈c,x〉,

If R = ∅, we set gR(c) ≡ 0.

Note: for R = R1
⋃R2 we have

gR(c) = gR1(c) + gR2(c).

The potential function of R is given by

ψR(c) = ln gR(c).

Define the support function of the set R:

ξR(c) ≡ max
x∈R 〈c, x〉 ≤ ψR(c) ≤ ξR(c) + lnN (R).

Potential and support functions can be as close as needed:

ξR(c) ≤ µψR(c/µ) ≤ ξR(c) + µ lnN (R),

where µ > 0.
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Augmented generating functions

Definition:

FR̂(c, t) =
∞∑

b=0
gR(b)(c) · tb, t ∈ R.

Note that FR̂(0, t) ≡ fR̂(t).

Short form:

Bounded knapsack: FBu
a
(c, t) =

n∏

i=1




u(i)∑

k=0
ekc(i)tka(i)


.

Unbounded knapsack:

FB∞a (c, t) =



n∏

i=1
(1− ec(i)ta

(i)
)



−1

,

with |t| < min
1≤i≤n

e−c(i)/a(i)
.
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Optimizing the knapsack

Problem:

Find f ∗ = max
x∈Zn

+

{〈c, x〉 : 〈a, x〉 = b}, (16)

Strategy:

1. Choose µ small enough.

2. Compute coefficients of f (t) =
n∏

i=1
(1− ec(i)/µ · ta(i)

).

3. Compute the first b + 1 coefficients of g(t) = 1
f(t).

(17)

Theorem 5 The optimal value of problem (16) can
be found by (17) in

O(‖a‖1 · ln ‖a‖1 · ln n + b · ln2 n)

operations of exact real arithmetics.
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Multidimensional parameters

Consider a parametric family of sets in Zn:

X = {X(y), y ∈ ∆} ⊂ Zn,

where ∆ is a finite subset of Zm. As before,

ψX(y)(c) =





∑

x∈X(y)
e〈c,x〉, if X(y) 6= ∅,

0, otherwise,
(c ∈ Rn).

Hence, ψX(y)(0) = N (X(y)).

Define (augmented) generating function as

gX ,c(v) =
∑

y∈∆
ψX(y)(c) · vy, v ∈ Cm, (18)

where vy =
m∏

i=1
(v(i))y

(i)
.

Note: all numerical computations with polynomials are
very unstable.

Suggestion: restrict the argument onto the unit circle

Sm = {v ∈ Cm, |v(i)| = 1, i = 1, . . . , m}.
Then gX ,c(v) becomes a trigonometric polynomial.
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Main advantage:

the system of monomials {vy}y∈Zm, v ∈ Sm, becomes
orthogonal.

Lemma 3 Denote j =
√−1, and for ϕ ∈ Rm denote

e jϕ = (e jϕ(1)
, . . . e jϕ(m)

)T ,

and dϕ = dϕ(1) . . . dϕ(m). Then

ψX(y)(c) = 1
(2π)m

2π∫

0
. . .

2π∫

0
e− j 〈y,ϕ〉gX ,c(e

jϕ) dϕ. (19)

Note: In (19) we need to integrate a polynomial.

The value of this integral can be computed by exact cu-
bature formulaes.

Theorem 6 For L ∈ Zm
+ define the following grid

GL = {ϕ ∈ Rm : ϕ(i) = 2π
L(i)ki, ki ∈ Z,

0 ≤ ki ≤ L(i) − 1, i = 1, . . . , m},
|GL| =

m∏

i=1
L(i).

Let L(i) > |y(i)|, i = 1, . . . , m, for any y ∈ ∆. Then

ψX(y)(c) = 1
|GL|

∑

ϕ∈GL
gX ,c(e

jϕ)e− j 〈y,ϕ〉, y ∈ ∆.

(20)
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Application example

For u ∈ Zn
+ and y ∈ Zm denote

B(u) = {x ∈ Zn : 0 ≤ x ≤ u}
Xu(y) = {x ∈ B(u) : Ax = y},

X = {Xu(y), y ∈ ∆ def= AB(u)}.
where A is an m× n-matrix with integer coefficients.

Let us introduce the trigonometric generating function:

gX ,c(v) = ∑

y∈∆
ψXu(y)(c) · vy, v ∈ Sm. (21)

Lemma 4

gX ,c(e
jϕ) =

n∏

j=1


1 +

u(j)∑

k=1
ek·(c(j)+ j 〈aj,ϕ〉)


 , ϕ ∈ Rm,

=
n∏

j=1

e
(u(j)+1)·(c(j)+ j 〈aj,ϕ〉)−1

e
c(j)+ j 〈aj,ϕ〉−1

.

(22)
where aj is the jth column of matrix A.

Thus, the value gX ,c(e
jϕ) can be computed in

O(mn) a.o.
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Complexity analysis

1. Size of ∆ = AB(u). Assume that

|A(i,j)| ≤ α, i = 1, . . . , m, j = 1, . . . , n,

and that the box B(u) is uniform:

u(i) = β, i = 1, . . . , n.

Then, for any x ∈ B(u) we have

| n∑

j=1
A(i,j)x(j)| ≤ αβ · n. i = 1, . . . , m.

Hence, we can take

L(i) = 1 + αβ · n, i = 1, . . . , m,

and computation of value ψX(y)(c) by (20) takes

O (mn · (1 + αβ · n)m) a.o. (23)

For fixed m, this dependence is polynomial in n.

Alternative: A direct inspection of all x ∈ B(u), and
checking Ax = b takes

O (mn · (1 + β)n) a.o.

(Exponential in n.)

Note: we can solve optimization problems by bisection.
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