
NEW ALGORITHMS FOR SOLVING NONLINEAR EIGENVALUE1

PROBLEMS2

WALTER GANDER∗3

Abstract. To solve a nonlinear eigenvalue problem we develop algorithms which compute zeros4
of detA(λ) = 0. We show how to apply third order iteration methods for that purpose. The necessary5
derivatives of the determinant are computed by algorithmic differentiation. Since many nonlinear6
eigenvalue problems have banded matrices we also present an algorithm which makes use of their7
structure.8

Key words. Nonlinear Eigenvalue Problem, Third Order Methods, Algorithmic Differentiation.9

AMS subject classifications. 11C20, 30C15, 35P30.10

1. Introduction. Let A : λ 7→ Cn×n be analytic on a open set {λ} ⊂ C. We11

consider the problem to find λ such that f(λ) = detA(λ) = 0.12

To compute a zero of f one can consider Newton’s method13

λk+1 = λk −
f(λk)

f ′(λk)
,14

which needs the derivative of the determinant. The formula of Jacobi, well known15

and discussed in linear algebra textbooks, gives an explicit expression for it:16

f ′(λ) = detA(λ) trace(A−1(λ)A′(λ)).17

The Newton correction becomes18

f(λk)

f ′(λk)
=

1

trace(A−1(λk)A′(λk))
.19

An alternative way to compute the derivative, respectively the Newton correction,20

is by algorithmic differentiation (see [1], [11], [4])21

2. Computing Determinants and the Newton Correction. Numerically a22

good method to compute a determinant is applying Gaussian elimination to compute23

the LU -decomposition. If PA = LU where P is the permutation matrix resulting from24

partial pivoting, L is the lower unit triangular matrix and U is the upper triangular25

factor, then26

det(A) = ±u11u22 · · ·unn.27

When overwriting the matrix A by the LU -decomposition, the value of the deter-28

minant is updated in the kth elimination step by multiplying with the pivot element29

f := f × akk. Determinants tend soon to over- or underflow, therefore it is better to30

compute their logarithm: logf := logf + log(akk).31

Note that the derivative of the logarithm32

d

dλ
log f(λ) =

f ′(λ)

f(λ)
33

is the inverse Newton correction. Thus if we compute the derivative of the logarithm34

by algorithmic differentiation,35

logf := logf + log(akk) =⇒ logfp := logfp +
a′kk
akk

,36

∗ETH Zurich and HKBU Hong Kong (gander@inf.ethz.ch, http://people.inf.ethz.ch/gander/)

1

This manuscript is for review purposes only.

mailto:gander@inf.ethz.ch
http://people.inf.ethz.ch/gander/

the inverse ffp = 1/logfp = f(λ)/f ′(λ) is the Newton correction we need. This has37

been used in the following program in [11]:38

function ffp=deta(A,Ap)39

% DETA compute determinant of A and derivative40

% Given A=A(lambda) and Ap=A’(lambda), DETA(A,Ap)41

% computes Newton correction ffp=f/f’ where f=det(A).42

n=length(A); logfp=0;43

for j=1:n44

[amax,kmax]= max(abs(A(j:n,j))); % partial pivoting45

if amax == 0,ffp=0; return, end46

kmax=kmax+j-1;47

if kmax ~= j % interchange rows48

h=Ap(kmax,:); Ap(kmax,:)=Ap(j,:); Ap(j,:)=h;49

h=A(j,:); A(j,:)=A(kmax,:); A(kmax,:)=h;50

end51

logfp=logfp + Ap(j,j)/A(j,j);52

Ap(j+1:n,j)=(Ap(j+1:n,j)*A(j,j)-A(j+1:n,j)*Ap(j,j))/A(j,j)^2;53

A(j+1:n,j)=A(j+1:n,j)/A(j,j);54

Ap(j+1:n,j+1:n)=Ap(j+1:n,j+1:n) - Ap(j+1:n,j)*A(j,j+1:n)- ...55

A(j+1:n,j)*Ap(j,j+1:n);56

A(j+1:n,j+1:n)=A(j+1:n,j+1:n) - A(j+1:n,j)*A(j,j+1:n);57

end58

ffp=1/logfp;59

3. Suppression Instead of Deflation. With the function deta we can com-60

pute a solution of detA(λ) = 0 by Newton’s method. In order to avoid recomputing61

already computed zeros λ1, . . . , λk, we suppress them by working with the function62

fk(λ) :=
f(λ)

p(λ)
,63

where p(λ) = (λ− λ1) · · · (λ− λk). Then64

p′(λ) =

k∑
j=1

k∏
i = 1
i 6= j

(λ− λi) = p(λ)s(λ), where s(λ) =

k∑
j=1

1

λ− λj
.65

The derivative of fk is (we omit the argument λ):66

f ′k =
pf ′ − psf

p2
=
f ′ − sf

p
.67

The Newton correction fk/f
′
k expressed in terms of f and f ′ becomes68

(3.1)
fk
f ′k

=
f/p

(f ′ − sf)/p
=

f

f ′ − sf
=

f

f ′
1

1− f

f ′
s

.69

The resulting iteration70

λj+1 = λj −
fk(λj)

f ′k(λj)
= λj −

f(λj)

f ′(λj)

1

1− f(λj)

f ′(λj)

k∑
j=1

1

λ− λj

71

2

This manuscript is for review purposes only.

is called Newton-Maehly iteration [7].72

In [11] we computed two mass-spring examples from [2] and the cubic example73

in [1]. The Matlab program to compute the first mass-spring example is74

n=50, tau=3, kappa=5, % nonoverdamped75

e=-ones(n-1,1);76

C=(diag(e,-1)+diag(e,1)+3*eye(n)); K=kappa*C; C=tau*C;77

lam=-0.5+0.1*i; lamb=[]; % start78

for k=1:2*n79

ffp=1;80

while abs(ffp)>1e-1481

Qp=2*lam*eye(n)+C; Q=lam*(lam*eye(n)+ C)+K;82

ffp=deta(Q,Qp);83

s=sum(1./(lam-lamb(1:k-1)));84

lam=lam-ffp/(1-ffp*s); % Newton step85

end86

lamb(k)=lam;87

lam=lam*(1+0.01*i); % start for next eigenvalue88

end89

plot(lamb,’o’)90

We start the iteration for the first eigenvalue with some random complex number,91

here λ0 = −0.5 + 0.1 i. As initial value for the following eigenvalues we choose the92

last computed and suppressed eigenvalue λk with some small perturbation: λ0 =93

λk(1 + i/100).94

Similarly we compute the overdamped mass-spring example and the cubic eigen-95

value problem for n = 50. The resulting eigenvalues are plotted in Figure 1.96

nonoveredamped overdamped cubic eigenvalue problem

Fig. 1. Examples solved with Newton Iteration.

It is interesting to display the number of iterations needed for each eigenvalue.97

The bar plots and the mean number of iterations are shown in Figure 2. The initial98

value for the iteration for the first eigenvalue is obviously not well chosen – a large99

number of iterations is needed to converge. For the cubic eigenvalue problem large100

numbers of iterations also occur in between for some other eigenvalues.101

4. Improving Convergence. The reason for many iteration steps needed for102

computing the eigenvalues in the last three examples is because of the rather poor103

global convergence of Newton’s method. Locally, Newton’s method converges quadrat-104

ically to a simple zero, thus after 3 to 4 iterations one should obtain a result to machine105

precision.106

Let f(z) = 0 and λk be an approximation near z. Newton’s iteration replaces f107

at λk by a linear function g such that f(λk) = g(λk), f ′(λk) = g′(λk). Thus g is the108

Taylor-polynomial g(λ) = f(λk)+f ′(λk)(λ−λk) and the next iterate λk+1 is the zero109

of g.110

3

This manuscript is for review purposes only.

mean = 12.0 mean = 22.3 mean= 11.3

nonoveredamped overdamped cubic eigenvalue problem

Fig. 2. Iterations needed.

Halley’s Iteration111

(4.1) λk+1 = λk −
f(λk)

f ′(λk)

1

1− 1

2

f(λk)f ′′(λk)

f ′(λk)
2

112

replaces f locally by a hyperbolic function

g(λ) =
a

λ+ b
+ c

such that f(λk) = g(λk), f ′(λk) = g′(λk) and f ′′(λk) = g′′(λk) and the next iterate113

λk+1 is the zero of g. Halley’s iteration is a third order method which means that it114

converges cubically to a simple zero [10]. Possibly this hyperbolic approximation of f115

leads to better global convergence.116

5. Implementing Halley’s Iteration. We need the second derivative of the117

determinant, more precisely, we need to compute the function118

t(λ) =
f(λ)f ′′(λ)

f ′2(λ)
.119

Note that the derivative of Newton’s correction is120

d

dx

(
f

f ′

)
=
f ′

2 − ff ′′

f ′2
= 1− ff ′′

f ′2
.121

Thus122

t =
ff ′′

f ′2
= 1− d

dx

(
f

f ′

)
,123

and we only need to compute the derivative of the Newton correction in our function124

deta to get t(λ). This can be done by algorithmic differentiation of the function deta.125

The following function det2p needs as input the matrices A, A′ and A′′ and126

computes the Newton correction f/f ′ and its derivative.127

function [ffp,dffp] = det2p(A,Ap,App)128

% DET2P computes Newton correction ffp = f/f’129

% and its derivative dffp = (f/f’)’130

n=length(A);131

logfpp=0; % logfpp = log(f)’’132

logfp=0; % log(f)’133

4

This manuscript is for review purposes only.

for k=1:n134

[amax,kmax]=max(abs(A(k:n,k))); % partial pivoting135

if amax==0 % matrix singular136

ffp=0; dffp=0;return137

end138

kmax=kmax+k-1;139

if kmax~=k % interchange rows140

h=App(k,:); App(k,:)=App(kmax,:); App(kmax,:)=h;141

h=Ap(k,:); Ap(k,:)=Ap(kmax,:); Ap(kmax,:)=h;142

h=A(k,:); A(k,:)=A(kmax,:); A(kmax,:)=h;143

end144

logfpp=logfpp+(A(k,k)*App(k,k)-Ap(k,k)^2)/A(k,k)^2;145

logfp=logfp+Ap(k,k)/A(k,k);146

App(k+1:n,k)=(A(k,k)*App(k+1:n,k)-Ap(k+1:n,k)*Ap(k,k))/A(k,k)^2-...147

(Ap(k+1:n,k)*Ap(k,k)/A(k,k)^2+ ...148

A(k+1:n,k)*App(k,k)/A(k,k)^2-...149

2* A(k+1:n,k)*Ap(k,k)^2/A(k,k)^3);150

151

Ap(k+1:n,k)=Ap(k+1:n,k)/A(k,k)-A(k+1:n,k)*Ap(k,k)/A(k,k)^2;152

A(k+1:n,k)=A(k+1:n,k)/A(k,k); % elimination step153

154

App(k+1:n,k+1:n)=App(k+1:n,k+1:n) -...155

(App(k+1:n,k)*A(k,k+1:n) + Ap(k+1:n,k)*Ap(k,k+1:n)) - ...156

(Ap(k+1:n,k)*Ap(k,k+1:n) + A(k+1:n,k)*App(k,k+1:n));157

158

Ap(k+1:n,k+1:n)=Ap(k+1:n,k+1:n) - Ap(k+1:n,k)*A(k,k+1:n)-...159

A(k+1:n,k)*Ap(k,k+1:n);160

A(k+1:n,k+1:n)=A(k+1:n,k+1:n) - A(k+1:n,k)*A(k,k+1:n);161

end162

dffp=-logfpp/logfp^2; ffp=1/logfp;163

6. Halley-Maehly. As before we want to suppress already computed eigenval-164

ues and consider again165

fk(λ) :=
f(λ)

p(λ)
, p(λ) = (λ− λ1) · · · (λ− λk).166

We now apply Halley’s iteration to fk167

λnew = λ− fk
f ′k

1

1− 1
2

fkf ′′
k

f ′
k
2

,168

and express the iteration in terms of f , f ′ and f ′′. For the Newton correction fk/f
′
k169

we use Equation (3.1). For f ′′k /f
′
k we compute first170

f ′′k =
d

dλ

(
f ′ − sf

p

)
=
p(f ′′ − s′f − sf ′)− p′(f ′ − sf)

p2
171

=
f ′′ − s′f − sf ′ − sf ′ + s2f

p
, p′ = ps, s =

k∑
j=1

1

λ− λj
.172

173

Then dividing with f ′k we get174

f ′′k
f ′k

=
f ′′ − s′f − 2sf ′ + s2f

f ′ − sf
=

f ′′

f ′ − s′ ff ′ − 2s+ s2 ff ′

1− s ff ′

,175

5

This manuscript is for review purposes only.

nonoverdamped overdamped cubic EVP
Newton

max iterations 128 275 90
mean iterations 11.4 20.9 11.3

Halley
max iterations 67 140 46
mean iterations 7 12.1 7.1

Table 1
Comparing Newton and Halley

and by multiplying with fk/f
′
k we obtain176

(6.1) t =
fkf
′′
k

f ′k
2 =

ff ′′

f ′2 + (s2 − s′)
(
f
f ′

)2
− 2s ff ′(

1− s ff ′

)2 .177

Summarizing we compute a Halley-Maehly iteration step as follows:178

1. Compute Newton’s correction for fk:179

fk
f ′k

=
f

f ′
1

1− f
f ′ s

.180

2. Compute t(λ) for fk according to Equation (6.1).181

3. Iterate182

λnew = λ− fk
f ′k

1

1− 1
2 t
.183

We solve the three NEV-problems with Halley and compare the results with those184

of Newton’s iteration, see Table 1. Indeed global convergence has improved, we need185

fewer iterations with Halley.186

7. Laguerre and Ostrowski. Another third order method which is designed187

for zeros of polynomials is Laguerre’s Method. This method uses as approximation for188

a polynomial function f of degree n the polynomial g(λ) = a(λ−λ1)(λ−λ2)n−1. The189

parameters a, λ1 and λ2 are determined such that g interpolates f and its derivatives190

f(λk) = g(λk), f ′(λk) = g′(λk), f ′′(λk) = g′′(λk). The next iteration is the zero of g191

closer to λk:192

(7.1) λk+1 = λk −
f(λk)

f ′(λk)

n

1 +
√

(n− 1)2 − n(n− 1) f(λk)f ′′(λk)

f ′(λk)
2

.193

The degree n is a parameter of Laguerre’s method. If we let n→∞ in Equation (7.1)194

then we get the iteration195

(7.2) λk+1 = λk −
f(λk)

f ′(λk)

1√
1− f(λk)f ′′(λk)

f ′(λk)
2

196

which is Ostrowski’s Square Root Iteration. Note that for both iterations Laguerre197

and Ostrowski we need as for Halley only the two expressions198

f

f ′
and t =

ff ′′

f ′2
.199

6

This manuscript is for review purposes only.

nonoverdamped overdamped cubic EVP
Halley
max iterations 67 140 46
mean iterations 7 12.1 7.1
Laguerre
max iterations 18 36 16
mean iterations 5.3 6.6 5.2
Ostrowski
max iterations 23 43 18
mean iterations 5.5 7.1 5.2

Table 2
Halley, Laguerre and Ostrowski

Since Laguerre’s iteration is designed for zeros of polynomials we can expect a200

good performance on our three examples. Indeed comparing the three methods in201

Table 2 for the three examples shows that this is the case.202

8. Third Order Methods. Halley, Laguerre and Ostrowski are special cases of203

the following theorem204

Theorem 8.1 (Third Order Methods [10]). If s is a simple zero of f , G any
function with G(0) = 1, G′(0) = 1

2 and |G′′(0)| <∞, then

xnew = x− f(x)

f ′(x)
G(t(x)), t(x) =

f(x)f ′′(x)

f ′(x)2

converges at least cubically to s.205

Examples:206

• Halley’s formula: G(t) = 1
1− 1

2 t
= 1 + 1

2 t+ 1
4 t

2 + 1
8 t

3 + . . .207

• Euler’s formula: G(t) = 2
1+
√
1−2t = 1 + 1

2 t+ 1
2 t

2 + 5
8 t

3 + . . .208

• Quadratic inverse interpolation: G(t) = 1 + 1
2 t209

• Ostrowski’s square root iteration: G(t) = 1√
1−t = 1 + 1

2 t+ 3
8 t

2 + . . .210

• Laguerre: G(t) = n

1+
√

(n−1)2−n(n−1)t
= 1 + 1

2 t+ 1
8

3n−2
n−1 t

2 + . . .211

• Hansen-Patrick family [5]: G(t) = α+1

α+
√

1−(α+1)t
= 1 + 1

2 t+ α+3
8 t2 + . . .212

We note that in order to apply these iteration formulas we need only to compute the213

Newton-correction and t = ff ′′/f ′2.214

9. NLEVP – Resources for Nonlinear EV Problems. T. Betcke, N. J.215

Higham, V. Mehrmann, C. Schröder, and F. Tisseur have assembled a remarkable216

collection of nonlinear eigenvalue problems1 (see [8] and [9]). The examples include217

all sorts of matrices.218

Using Laguerre’s method we computed the two quadratic eigenvalue problems219

sign1 and sign2 (dense matrices, n = 81). The results are given in Table 3. sign1220

has the 2n = 162 eigenvalues on the unit circle with two accumulation points at ±1.221

Convergence to zeros of these two clusters is slow as we can see from the bar plot.222

Convergence for sign2 is much better as the eigenvalues are more separated. Using223

1http://www.maths.manchester.ac.uk/our-research/research-groups/
numerical-analysis-and-scientific-computing/numerical-analysis/software/nlevp/

7

This manuscript is for review purposes only.

http://www.maths.manchester.ac.uk/our-research/research-groups/numerical-analysis-and-scientific-computing/numerical-analysis/software/nlevp/
http://www.maths.manchester.ac.uk/our-research/research-groups/numerical-analysis-and-scientific-computing/numerical-analysis/software/nlevp/

Table 3
left: Sign1 – right: Sign2

Matlab’s time measurement tic,toc we needed for sign1 63.92 seconds and for224

sign2 10.82 seconds on my laptop.225

10. Non-polynomial Eigenvalue Problem. TimeDelay is a non-polynomial
non-linear eigenvalue problem from the NLEVP collection with a 3× 3 matrix A(λ):

A(λ) = −λI +A0 +A1e
−λ

Tisseur et al. write for this problem:226

“. . . characteristic equation of a time-delay system with a single delay227

and constant coefficients. The problem has a double non-semisimple228

eigenvalue λ = 3πi”229

The nonlinear equation detA(λ) = 0 has infinitely many solutions. Using Os-230

trowski’s iteration we can e.g. compute the first 20 solutions and get the plot in231

Table 4. On the imaginary axis we get the double eigenvalues (λ2 and λ3 in Ta-232

ble 4) mentioned above and also a single eigenvalue λ4 = 4.5πi. The eigenvalue233

λ1 = 0.705244109106679 + 2.741466762205487i has a positive real part, all the others234

have negative real parts. The double eigenvalue is computed to the precision one can235

expect with IEEE floating point arithmetic.236

11. Gaussian Elimination for Banded Matrices. Many problems in the237

NLEVP collection are banded (e.g. beamsensitivity with 7 or pdde-stabiity with238

32 diagonals). It makes sense to develop an algorithm to compute determinants for239

banded matrices. A Matlab-function for Gaussian elimination for banded matrices240

with partial pivoting is given in [4]. If A has q lower and p upper diagonals we store241

the diagonals as columns in the matrix B. For partial pivoting we add q zero columns242

to B, see Figure 3.243

By adapting the function det2p to this banded structure we obtain the function244

det2pband.245

function [ffp,dffp]=det2pband(p,q,B,Bp,Bpp);246

% DET2PBAND computes Newton-correction and derivative for a banded matrix247

8

This manuscript is for review purposes only.

λ1 = 0.705244109106679 + 2.741466762205487i
λ2 = 0.000000005149180 + 9.424777943433675i
λ3 = −0.000000007679198 + 9.424777969836999i
λ4 = −0.000000000000001 + 14.137166941154069i
λ5 = −0.422996397305027 + 20.485362607960255i
λ6 = −0.693701244038287 + 26.758000106609209i

Table 4
Non-Polynomial EVP: Time Delay Example

A =



x x 0 0 0 0 0 0
x x x 0 0 0 0 0
x x x x 0 0 0 0
0 x x x x 0 0 0
0 0 x x x x 0 0
0 0 0 x x x x 0
0 0 0 0 x x x x
0 0 0 0 0 x x x


B =



0 0 x x 0 0
0 x x x 0 0
x x x x 0 0
x x x x 0 0
x x x x 0 0
x x x x 0 0
x x x x 0 0
x x x 0 0 0



Fig. 3. storing banded matrices

n=length(B); logfpp=0; logfp=0;248

Bpp=[Bpp,zeros(n,q)];249

Bp=[Bp,zeros(n,q)]; B=[B,zeros(n,q)]; % augment B with q columns250

normb=norm(B,1);251

for j=1:n252

maximum=0; kmax=j; % search pivot253

for k=j:min(j+q,n)254

if abs(B(k,j-k+q+1))>maximum,255

kmax=k; maximum=abs(B(k,j-k+q+1));256

end257

end258

if maximum<1e-14*normb; % only small pivots259

ffp=0; dffp=0; return % consider det=0260

end261

if j~=kmax % interchange rows262

ind1=j-kmax+q+1:min(n,j+2*q+p-kmax+1);263

ind2=q+1:min(n,2*q+p+1);264

h=Bpp(kmax,ind1); Bpp(kmax,ind1)=Bpp(j,ind2); Bpp(j,ind2)=h;265

h=Bp(kmax,ind1); Bp(kmax,ind1)=Bp(j,ind2); Bp(j,ind2)=h;266

h=B(kmax,ind1); B(kmax,ind1)=B(j,ind2); B(j,ind2)=h;267

end268

269

logfpp=logfpp+(B(j,q+1)*Bpp(j,q+1)-Bp(j,q+1)^2)/B(j,q+1)^2;270

logfp=logfp+Bp(j,q+1)/B(j,q+1);271

for k=j+1:min(n,j+q) % elimination step272

ind3=j-k+q+1;273

9

This manuscript is for review purposes only.

Bpp(k,ind3)=(Bpp(k,ind3)*B(j,q+1)-Bp(j,q+1)*Bp(k,ind3))/B(j,q+1)^2 ...274

-(Bp(k,ind3)*Bp(j,q+1)+B(k,ind3)*Bpp(j,q+1))/B(j,q+1)^2 ...275

+2*Bp(j,q+1)^2*B(k,ind3)/B(j,q+1)^3;276

Bp(k,ind3)=(B(j,q+1)*Bp(k,ind3)-B(k,ind3)*Bp(j,q+1))/B(j,q+1)^2;;277

B(k,ind3)=B(k,ind3)/B(j,q+1);278

end279

for k=j+1:min(n,j+q)280

for l=j+1:min(n,j+p+q)281

ind4=l-k+q+1; ind5=j-k+q+1; ind6=l-j+q+1;282

Bpp(k,ind4)=Bpp(k,ind4)-Bpp(k,ind5)*B(j,ind6)-Bp(k,ind5)*Bp(j,ind6)...283

-Bp(k,ind5)*Bp(j,ind6)-B(k,ind5)*Bpp(j,ind6);284

Bp(k,ind4)=Bp(k,ind4)-Bp(k,ind5)*B(j,ind6)-B(k,ind5)*Bp(j,ind6);285

B(k,ind4)=B(k,ind4)-B(k,ind5)*B(j,ind6);286

end287

end288

end289

dffp=-logfpp/logfp^2; ffp=1/logfp;290

The Beamsensitivity example is a quadratic eigenvalue problem with a banded291

matrix with 7 diagonals. For n = 200, that is for 400 eigenvalues, using Laguerre,292

measured with Matlab’s tic,toc, we need for the full-matrix algorithm: 83.85293

seconds. Using the banded algorithm the computation time drops to 10.39 seconds.294

12. Damped Beam Example. In [6] Higham et al. write: The standard ap-295

proach to the numerical solution of the QEP is to convert the quadratic Q(λ) =296

λ2M + λD + K into a linear polynomial L(λ) = λX + Y of twice the dimension of297

Q but with the same spectrum. The resulting generalized eigenproblem L(λ)z = 0 is298

usually solved by the QZ algorithm for small- to medium-size problems or by a Krylov299

method for large sparse problems.300

A common choice of L in practice is the first companion form, given by

C1(λ) = λ

(
M 0
0 I

)
+

(
D K
−I 0

)
When K and M, respectively, are nonsingular the two pencils

L1(λ) = λ

(
M 0
0 −K

)
+

(
D K
K 0

)
, L2(λ) = λ

(
0 M
M D

)
+

(
−M 0

0 K

)
are other possible linearizations.301

Using these linearizations Higham et al. compute the eigenvalues of the QEP302

using Matlab’s function eig for the generalized eigenvalue problem. The results are303

rather disappointing, see Figure 4.304

Fan, Lin and Van Dooren showed in [3] that by applying appropriate scalings305

the ill-conditioning of the linearized eigenvalue problems can be cured. Higham et306

al. show and explain in [6] why without the scaling the transformed systems are so307

ill-conditioned. The situation reminds me of an old problem of Jim Wilkinson. Trans-308

forming an eigenvalue problem by computing first the coefficients of the characteristic309

polynomial, then computing the zeros of the polynomial is also not a recommended310

way because the transformation may change the condition of the eigenvalues dramat-311

ically.312

However, if we solve detA(λ) = 0 directly with one of our methods using e.g.313

Laguerre’s iteration then we get correct results without the necessity to scale (see314

Figure 5).315

10

This manuscript is for review purposes only.

C1 L1 L2

Fig. 4. Linearization without scaling

eigenvalues iterations

Fig. 5. Damped Beam solved with Laguerre

13. Conclusions. We have shown how to implement third order iteration meth-316

ods for solving f(λ) = detA(λ) = 0 using algorithmic differentiation. This technique317

produces the exact derivatives, since for computing determinants by Gaussian Elimi-318

nation we only use the four basic arithmetic operations.319

Since we work with the original problem the condition is not changed by trans-320

formations of the problem.321

One could obtain cubic convergence by a multi-step iteration which avoids the sec-322

ond derivative. However, only by using one point iterations, we obtain the algorithm323

det2p which in an elegant way computes the Newton correction and t containing the324

necessary derivatives t = ff ′′/f ′2.325

Computing the second derivative is expensive. For a full n × n matrix we need326

∼ n3 operations per iteration. Since our computers have powerful processors, we can327

solve anyway medium size NEP. The situation is much more favorable for banded328

matrices for which one iteration needs only ∼ n operations.329

Acknowledgments. The author would like to thank Zhong-Zhi Bai and Yu-Mei330

Huang, the two organizers of the 2019 Golub Memorial Workshop in Lanzhou. The331

invitation to participate at this conference was a special motivation for me to develop332

the algorithms discussed in this paper.333

REFERENCES334

[1] Gander Walter Arbenz Peter. Solving nonlinear eigenvalue problems by algorithmic differenti-335
ation. Computing, 36:205–215, 1986.336

[2] Tisseur F. and Meerbergen K. The quadratic eigenvalue problem. SIAM Review, 43:234–286,337
2001.338

11

This manuscript is for review purposes only.

[3] Van Dooren P. Fan H-Y, Lin W-W. Normwise scaling of second order polynomial matrices.339
SIAM Journal on Matrix Analysis and Application, 26:252–256, 2004.340

[4] Kwok Felix Gander Walter, Gander Martin J. Scientific Computing, an Introduction Using341
Maple and Matlab. Springer, 2014.342

[5] E. Hansen and M Patrick. A family of root finding methods. Numer. Math., 27:257–269, 1977.343
[6] Tisseur Françoise Garvey Seamus D. Higham Nicholas J., Mackey D. Steven. Scaling, sensitivity344

and stability in the numerical solution of quadratic eigenvalue problems. Int. J. Numer.345
Meth. Engng, 73:344–360, 2008.346

[7] Maehly H. J. Zur iterativen Auflösung algebraischer Gleichungen. ZAMP (Zeitschrift für347
angewandte Mathematik und Physik), pages 260–263, 1954.348

[8] V. Mehrmann C. Schröder T. Betcke, N. J. Higham and F. Tisseur. Nlevp: A collection of349
nonlinear eigenvalue problems, 2011.350

[9] V. Mehrmann C. Schröder T. Betcke, N. J. Higham and F. Tisseur. Nlevp: A collection of351
nonlinear eigenvalue problems, users guide, 2011.352

[10] Gander Walter. On halley’s iteration method. The American Mathematical Monthly, 92(2),353
February 1985.354

[11] Gander Walter. Zeros of determinants of λ-matrices. In Vadim Olshevsky and Eugene Tyr-355
tyshnikov, editors, Matrix Methods: Theory, Algorithms and Applications, Dedicated to356
the Memory of Gene Golub, pages 238–246. World Scientific Publishers, 2010.357

12

This manuscript is for review purposes only.

	Introduction
	Computing Determinants and the Newton Correction
	Suppression Instead of Deflation
	Improving Convergence
	Implementing Halley's Iteration
	Halley-Maehly
	Laguerre and Ostrowski
	Third Order Methods
	NLEVP – Resources for Nonlinear EV Problems
	Non-polynomial Eigenvalue Problem
	Gaussian Elimination for Banded Matrices
	Damped Beam Example
	Conclusions
	References

