
Computing the SVD

Walter Gander & Johann Joss

November 24, 2024

Abstract

We describe and compare the first algorithms to compute the Singular Value Decomposition
proposed in 1965 by G. H. Golub and W. Kahan, 1967 by G. H. Golub and P. Businger, and
also in 1967 by Ch. Reinsch. We show that the algorithms of Golub-Businger and of Golub-
Reinsch perform the same basic operations. This is not obvious as the implementations and
the data structures are different. The current algorithm used in many software packages is the
one of Golub-Reinsch. We explain the algorithms, analyze the details and run some examples.
Finally we discuss the project “Handbook of Automatic Computation”, the first attempt to
built a reliable software library.

1 Introduction

Let A ∈ Rm×n with m ≥ n. Then there exist orthogonal matrices U ∈ Rm×m and V ∈ Rn×n and
a diagonal matrix Σ = diag(σ1, . . . , σn) ∈ Rm×n with σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0, such that

A = UΣV⊤ (1)

holds. This is the singular value decomposition of A (SVD). The column vectors of U = [u1, . . . ,um]
are called the left singular vectors and similarly V = [v1, . . . ,vn] are the right singular vectors.
The values σi are called the singular values of A. If σr > 0 is the smallest nonzero singular value,
then the matrix A has rank r.

2 The Pioneers

The numerical analysts who were developing the first algorithms to compute the SVD (1) were
Gene H. Golub, William M. Kahan and Christian Reinsch (see Figure 1).

Christian Reinsch (1934–2022) Gene H. Golub (1932–2007) William M. Kahan *1933

TU München Stanford Berkeley

Figure 1: The three pioneers

1

3 Connection to Eigenvalues

The squares of the singular values are the eigenvalues of the matrix A⊤A, and V contains the
eigenvectors, because

A⊤A = (UΣV⊤)⊤UΣV⊤ = V DV⊤, D = Σ⊤Σ = diag(σ2
1 , . . . , σ

2
n). (2)

Similarly
AA⊤ = UΣV⊤(UΣV⊤)⊤ = UΣΣ⊤U⊤, (3)

thus the eigenvalues of AA⊤ are σ2
1 , . . . , σ

2
n plus m− n zeros. U contains the eigenvectors.

Since the eigenvalues of A⊤A are the squares of the singular values, one could consider com-
puting the singular values as σi(A) =

√
λi(A⊤A). However, this is not a good approach as already

mentioned in [4]:

But the calculation ofA⊤A using ordinary floating point arithmetic does serious violence
to the smaller singular values as well as to the corresponding eigenvectors which appear
in U and V .

The following example shows this:

m=10; format long

A=hilb(m); A=A(:,1:7);

E=eig(A’*A); E=sqrt(E(7:-1:1));

[E svd(A)]

format short e

RelError= (E-svd(A))./svd(A)

ans = RelError =

1.703422789369242 1.703422789369242 1.3035e-16

0.303861884355195 0.303861884355195 9.1343e-16

0.027332449735276 0.027332449735275 2.7291e-14

0.001576339549570 0.001576339549570 2.5517e-13

0.000060439432051 0.000060439432540 -8.0919e-09

0.000001483441024 0.000001483519405 -5.2835e-05

0.000000020984384 0.000000020211193 3.8256e-02

We notice that the small singular values have a large relative error.

4 The Algorithm of Golub-Kahan 1965

Golub and Kahan published 1965 an article [4] in which they developed two algorithms for com-
puting the SVD that avoid forming the matrix A⊤A. If A ∈ Rm×n with m ≥ n, they consider the
augmented matrix

Ã =

(
0 A
A⊤ 0

)
∈ R(m+n)×(m+n). (4)

If µ is an eigenvalue of Ã then (
0 A
A⊤ 0

)(
x
y

)
= µ

(
x
y

)
.

It follows that Ay = µx and A⊤x = µy and therefore

A⊤Ay = A⊤µx = µ2y.

Thus if λ is an eigenvalue of A⊤A then µ = ±
√

λ(A⊤A), which means that the eigenvalues of Ã
are the singular values ±σk of A plus m− n zeros.

The singular values remain the same when we transform the matrix by multiplying with or-
thogonal matrices: {σi(A)} = {σi(P

⊤AQ)} if P⊤P = Im and Q⊤Q = In.

We can choose P and Q to bidiagonalize A:

P⊤AQ =

(
J

0

)
, J =


a1 b1

. . .
. . .

an−1 bn−1

an

 .

Furthermore we may replace all elements of the bidiagonal matrix J by their absolute value without
changing the singular values, as the change of signs can be performed by an orthogonal transfor-
mation.

Thus we can replace Ã (4) by the 2n× 2n matrix Ā

Ā =

(
0 J
J⊤ 0

)
and the eigenvalues of Ā are λk(Ā) = ±σk.

Let P be the permutation matrix that transforms

P



1
2
3
4
...

2n− 1
2n


=



n+ 1
1

n+ 2
2
...

n+ n
n


.

Then applying the transformation to Ā we obtain

S = P

(
0 J

J⊤ 0

)
P⊤ =



0 a1
a1 0 b1

b1 0 a2
. . .

. . .
. . .

an−1 0 bn−1

bn−1 0 an
an 0


(5)

and the problem is reduced to compute the non-negative eigenvalues of a special symmetric tridi-
agonal matrix S.

Golub-Kahan note in [4]:

There are a number of methods for obtaining the eigenvalues of a tridiagonal symmetric
matrix. One of the most accurate and effective methods is to use Sturm sequences; an
ALGOL program is given by Wilkinson.

They refer here to the publication of J. Wilkinson of 1962 [7], which later also was published in the
Handbook [8]. In order to compare the algorithms we translated the procedure tridibisection

to Matlab.

function [w,NormInf,m1]=tridibisection(c,b,gu,go)

% TRIDIBISECTION computes the m1 Eigenvalues of symmetric tridiagonal

% matrix with diagonal c and lower/upper diagonal b laying between gu

% and go. The eigenvalues are computed in decreasing order using

% Sturm sequences and bisection and stored in w.

% TRIDIBISECTION is a translation of Wilkinson’s tridibisection1 from

% ALGOL to MATLAB by W. Gander, May 2019.

% Changes in ALGOL tridibisection:

% eliminate t=number of bisection steps,

% instead compute EV to machine precision

gamma=eps^2; % square of machine precision

n=length(c); % no need to be in parameter list.

% function [q1,a1]=sturmssequence(c,p,lambda)

% with parameters, no global variables

b(n)=0; % add zero for same length as c

NormInf=abs(c(1))+abs(b(1));

for i=2:n

l=abs(b(i-1))+abs(c(i))+abs(b(i));

if l>NormInf, NormInf=l; end

end

if nargin==2 % added by W. Gander:

go=1.5*NormInf; gu=-go; % if no interval specified

end % compute all eingenvalues

if nargin==3 % compute all lambda>=gu

go=1.5*NormInf;

end

if gu>go, g=gu; gu=go; go=g; end % Rearrangement if gu>go

for i=1:n-1

if b(i)==0, p(i+1)=gamma*NormInf*NormInf;

else p(i+1)=b(i)*b(i);

end

end

p(1)=0;

if gu>NormInf | go<-NormInf

m1=0; error(’noeigenvalue’)

end

lambda=gu; % Determination of required number of EV

[q1,a1]=sturmssequence(c,p,lambda);

a2=a1;

if q1==0, a2=a1+1; end

lambda=go;

[q1,a1]=sturmssequence(c,p,lambda);

m1=a2-a1;

d=a1;

if go>NormInf, go=NormInf; end

if gu<-NormInf, gu=-NormInf; end

w=[];

for k=1:m1

d=d+1;

g=go; h=gu; lambda=(g+h)/2;

while h<lambda & lambda<g % machine independent termination

[q1,a1]=sturmssequence(c,p,lambda);

if a1>=d, h=lambda; else g=lambda; end

lambda=(g+h)/2;

end

w(k)=(g+h)/2;

end

w=w(:);

function [q1,a1]=sturmssequence(c,p,lambda)

n=length(c);

p1=0; q1=1; a1=0;

for i=1:n

y=(c(i)-lambda)*q1-p(i)*p1;

p1=q1; q1=y;

if p1>=0 & q1>=0 | p1<0 & q1<0

a1=a1+1;

end

end

if q1==0 & p1>0, a1=a1-1; end

For the bidiagonalization of A we use the Matlab-function Bidiagonalize.m given in [3]. This
function uses Householder-transformations to compute the bidiagonal matrix:

function [q,e,A]=Bidiagonalize(A)

% BIDIAGONALIZE bidiagonalizes a matrix with Householder reflections

% [q,e,A]=Bidiagonalize(A) computes B=diag(q)+diag(e(2:n),1) such

% that A=P B Q’ using Householder reflexions. A is overwritten with

% the Householder-vectors.

[m,n]=size(A);

for i=1:n

s=norm(A(i:m,i)); % transform A(i:m,i) to

% (q_i,0,...,0)

if s==0, q(i)=0;

else

if A(i,i)>0, q(i)=-s; else q(i)=s; end

fak=sqrt(s*(s+abs(A(i,i))));

A(i,i)=A(i,i)-q(i);

A(i:m,i)=A(i:m,i)/fak;

A(i:m,i+1:n)=A(i:m,i+1:n)-A(i:m,i)*(A(i:m,i)’*A(i:m,i+1:n));

end

if i<n,

s=norm(A(i,i+1:n)); % tranformation A(i,i+1:n) to

% (e_i,0...0)

if s==0, e(i)=0;

else

if A(i,i+1)>0, e(i)=-s; else e(i)=s; end

fak=sqrt(s*(s+abs(A(i,i+1))));

A(i,i+1)=A(i,i+1)-e(i);

A(i,i+1:n)=A(i,i+1:n)/fak;

A(i+1:m,i+1:n)=A(i+1:m,i+1:n) - ...

(A(i+1:m,i+1:n)*A(i,i+1:n)’)*A(i,i+1:n);

end

end

end % insert 0 element in e (see

e=[0 e]; % notation of bidiagonal matrix)

The function tridibisection assumes that the off-diagonal elements are nonzero. The round-
ing errors help that the elements do not vanish as the following example shows. In case an off-
diagonal element happens anyway to be zero, Wilkinson introduces a rounding error by replacing
the zero element by ∥J∥∞ × eps2 (where eps is the machine precision).

Example

Consider the 18× 12 matrix A with rank 6.

>> B =[5 -1 -1 6 4 0

-3 1 4 -7 -2 -3

1 3 -4 5 4 7

0 4 -1 1 4 5

4 2 3 1 6 -1

3 -3 -5 8 0 2

0 -1 -4 4 -1 3

-5 4 -3 -2 -1 7

3 4 -3 6 7 7];

>> A=[B 2*B; 3*B -B];

Using the function Bidiagonalize

>> [a,b]=Bidiagonalize(A)

we obtain the following bidiagonal matrix:

a b

−30.659419433511783 −45.852631656070017
35.249794473507983 52.134575892741985
9.439799374843513 −35.868247122679563

−8.601911783054952 −36.110469925331472
19.528418692750023 −38.856756306376781
−8.575731326097568 28.348270719033149
−1.66142625743e−12 2.4e− 15

3.6e−15 −1.0e−15
4.0e−15 1.7e−15

−3.2e−15 5.9e− 16
−2.9e−15 −1.0e−15
−1.9e−15



(6)

The first column of the matrix (6) is the diagonal a and the second column the off-diagonal b of
the bidiagonal matrix J . If we now apply tridibisection to the matrix S (5) and compute only
the non-negative eigenvalues, we get the first version of the Golub-Kahan Algorithm to compute
the singular values:

function q=SVDGolubKahan1(A)

% SVDGOLUBKAHAN1 singular values by the first Golub Kahan algorithm

% svdgolubkahan1 computes the simgular values of A by applying

% Wilkinson’s TRIDIBISECTION to the matrix S (2n x 2n)

[m,n]=size(A); if n>m, A=A’; [m,n]=size(A);end

[a,b]=Bidiagonalize(A); % Householder bidiagonalization

sk=zeros(2*n-1,1); % form tridiagonal matrix (3.3)

k=1:n; sk(2*k-1)=abs(a(k)); % S on page 213

k=1:n-1; sk(2*k)=abs(b(k+1));

q=tridibisection(zeros(2*n,1),sk,0); % compute all nonnegative EV

Using the above matrix A we compute with SVDGolubKahan1 the singular values:

>> q1=SVDGolubKahan1(A);

>> [q1, svd(A)]

ans =

72.265903120085341 72.265903120085312

49.630339183086051 49.630339183086058

44.288698552845858 44.288698552845830

36.427417335191990 36.427417335191990

30.416324106579545 30.416324106579534

25.017401012828763 25.017401012828767

0.000000000000006 0.000000000000011

0.000000000000005 0.000000000000008

0.000000000000003 0.000000000000006

0.000000000000003 0.000000000000003

0.000000000000003 0.000000000000001

0.000000000000002 0.000000000000000

We note that the singular values compare very well with those computed by Matlab’s function
svd.

Golub-Kahan develop in [4] a second algorithm to compute the singular values of a matrix.
After bidiagonalization they consider

K = J⊤J =



a21 a1b1
a1b1 a22 + b21 a2b2

a2b2
. . .

. . .

. . .
. . . an−1bn−1

an−1bn−1 a2n + b2n−1


and write:

Although the smaller eigenvalues of A⊤A are usually poorly determined, a simple error
analysis shows that all the eigenvalues of K are as well-determined as those of T [the
tridiagonal matrix S]. The reason for this is that the computation of the Sturm se-
quences is algebraically the same for both T and K. Thus to use K is preferable since
the total number of operations in calculating its eigenvalues is certainly less than in
computing the eigenvalues of T .

A Matlab-program for this second algorithm is

function q=SVDGolubKahan2(A)

% SVDGOLUBKAHAN2 singular values by the second Golub Kahan algorithm.

% Applying Wilkinson’s TRIDIBISECTION to matrix K (n x n)

[m,n]=size(A); if n>m, A=A’; [m,n]=size(A);end

[a,b]=Bidiagonalize(A); % Householder bidiagonalization

a=abs(a); b=abs(b);

d=a.^2+b.^2; % form diagonal and

nd=a(1:n-1).*b(2:n); % subdiagonal of K= J’J

q=tridibisection(d,nd); % compute EV of K

q=sqrt(q); % sqrt(lambda_k)=sigma_k

Using SVDGolubKahan2 for the example above we get

>> q2=SVDGolubKahan2(A)

q2 =

72.265903120085326

49.630339183086051

44.288698552845858

36.427417335191997

30.416324106579545

25.017401012828763

0.000000412953092

0.000000000000005

0.000000000000004

0.000000000000003

0.000000000000003

0.000000000000002

Note that the seventh singular value is 0.000000412953092 ̸= 0. It seems that our Matlab
implementation of the second algorithm has a problem with zero eigenvalues though, the nonzero
eigenvalues give correct singular values.

Unfortunately the original algorithms are lost. W. Kahan wrote me in 2018:

My earliest programs to compute singular values were punched into cards for the IBM
7094 that had just replaced the 7090 at the University of Toronto. Those card decks
are long gone.

I used Householder rotations/reflections to reduce a matrix to bidiagonal form, and
then either QR-iteration for all singular values and vectors, or Sturm sequences for
only the extreme singular values, all in Fortran. That was in the spring of 1964.

Then I attended a SHARE meeting in San Francisco; it convenes users of IBM’s main-
frames. I was at that time an active contributor to the SHARE library of numerical
subprograms, but had not yet submitted the SVD programs. I broke away from the
meeting to visit an old friend, Gene Golub, at Stanford; we had met first at the Univer-
sity of Illinois Urbana-Champaign in the summer of 1957. During my visit to Stanford
we discovered that we had both been working on the same SVD problem, and with
similar ideas.

It seemed wasteful for each of us to write things up separately, so I got permission from
the U. of T. to spend two extra days away, and Gene and I wrote the SVD paper over
the weekend plus Monday. Gene’s versions of the program would have been run on
the Stanford 7090, probably in Fortran, rather than in Algol on Stanford’s Burroughs
B5000 next door in Pine Hall. All that stuff has been gone long ago.

I have been throwing stuff away to lighten the load that I must carry to a shared office
soon when I leave my own office to make way for a younger appointee. During that
process I did not see a copy of my old SVD programs that ran on the CDC 6400 here.
So, sadly, I cannot provide you with a copy of the earliest SVD.

5 The Algorithm of Golub-Businger 1967

On July 31, 1967, G. H. Golub and P. Businger published the Stanford Technical Report No.
CS73. The report contains two parts. The first part by Golub has the title Least Squares, Singular
Values and Matrix Computations. The second part is an ALGOL program written by Businger:
An ALGOL Procedure for Computing the Singular Value Decomposition. The report is missing in
the collection of CS-reports at Stanford University. I am indebted to Åke Björck who drew my
attention to it and sent me a copy of the report [6].

We managed to scan/ocr and retype the ALGOL procedure by Businger and we obtained:

procedure singular_values_decomposition
(a, m , n , u_desired, vt_desired, eta) results: (sigma, u, vt);

value m, n, u_desired, vt_desired, eta;
real array a, sigma, u, vt ;
integer m, n ;
boolean u_desired, vt_desired ;
real eta ;

comment Householder’s and the QR method are ùsed to find all singular
values sigma[i] , (i=1, 2,... , n) of the given matrix a[1:m,1:n],
(m>=n). The orthogonal matrices u[1:m, 1:m] and vt[1:n, 1:n] which
effect the singular values decomposition a=u sigma vt are computed
individually depending on whether u desired or vt desired. The input
parameter eta is the relative machlne precision ;

begin
procedure Householder_bidiagonalization

(a, m, n , u_desired, vt_desired) results: (alpha, beta, u, vt);
value m, n, u_desired, vt_desired ;
real array a, alpha, beta, u, vt;
integer m, n ;
boolean u_desired, vt_desired ;

comment Householder transformations applied ln turn on the left and
the right reduce the given matrix a[1 :m, 1 :n], (m>=n) to upper
bi- diagonal form J. The diagonal elements of J are returned as
alpha[i], (i=l, 2, ... , n), the superdlagonal elements as beta [i]
, (1=1, 2, ..., n-1, beta(n]=O. The orthogonal matrices u[1:m,1:m]
and vt[1:n,1:n] which effect the decomposition a=u J vt are
computed indivdually depending on whether u desired or vt desired ;

begin
real procedure inner_product (i, m, n, a, b, c) ;
value m, n, c; real a, b, c ; integer i, m, n ;
begin

for i := m step 1 until n do c:=c+a*b ; inner_product:=c
end inner product ;

real s, b ;
integer i, j, k;
if u_desired then

for i:=1 step 1 until m do
begin

u[i,i] :=1.0 ;
for j:=i+1 step 1 until m do u[i,j]:=u[j,i]:=0.0

end i;
if vt_desired then

for i:=1 step 1 until n do
begin

vt[i,i] :=1.0 ;
for j:=i+1 step 1 until n do vt[i,j]:=vt[j,i]:=0.0

end i ;

for k:=1 step 1 until n do
begin

s:=inner_product(i,k, m, a[i,k], a[i,k], 0.0) ;
alpha[k] :=if a[k,k]<0.0 then sqrt(s) else -sqrt(s) ;
if s != 0.0 then
begin comment transformation on the left;

b:=s-a[k,k]*alpha[k] ;
a[k,k]:=a[k,k]-alpha[k] ;
for j:=k+1 step 1 until n do
begin

s:=inner_product(i,k,m,a[i,k],a[i,j], 0.0)/b ;
for i:=k step 1 until m do

a[i,j]:=a[i,j]-a[i,k]*s
end j ;
if u_desired then

for i:=1 step 1 until m do
begin

s:=inner_product(j,k,m,u[i,j],a[j,k], 0.0)/b ;
for j:=k step 1 until m do

u[i,j]:=u[i,j]-s*a[j,k]
end i

end transformation on the left ;
if k <= n-2 then
begin
s:=inner_product(j,k+1,n, a[k,j], a[k,i], 0.0) ;
beta[k]:=if a[k,k+1]<0.0 then sqrt(s) else -sqrt(s) ;
if s != 0 then
begin comment. transforatlon on the rlght ;

b:=s-a[k,k+1]*beta[k] ;
a[k,k+1]:=a[k,k+1]-beta[k] ;
for i:=k+1 step 1 until m do
begin

s:=inner_product(j,k+1,n, a[k,j], a[i,j], 0.0)/b ;
for j:=k+1 step 1 until n do

a[i,j]:=a[i,j]-a[k,j]*s
end i ;
if vt_desired then

for j:=1 step 1 until n do
begin

s:=inner_product(i,k+1,n, a[k,i], vt[i,j], 0.0)/b ;
for i:=k+1 step 1 until n do

vt[i,j]:=vt[i,j]-a[k,i]*s
end j

end transformation on the rlght
end k from 1 to n-2

else beta[k]:=if k=n then 0.0 else a[k,n]
end k

end Householder bidiagonalizat1on ;

procedure QR_diagonalization
(gamma,m, n, u_desired, vt_desired, eta) result:(sigma)
transients: (u, vt) ;

value m, n, u_desired, vt_desired, eta ;
real array gamma, sigma, u, vt ;
integer m, n ;
boolean u_desired, vt_desired ;

comment The QR algorithm diagonalizes the given symmetric tridiagonal
Matrix T of order 2n by 2n qhose diagonal elements are zero and
whose super- and subdiagonal elements are gamma[i], (i=1,2,...,
2n-1), gamma[0])_gamma[2n]=0. If u desired then the odd numbered
rotations of the QR algorithm are also applied to u[1:m,1:m] from
the right. If vt desired then the even numered rotations are also
applied to vt[1:n,1:n] from the left. The input parameter eta is
the relative machine precision. The nonnegative eigenvalues of T

are returned as sigma[i], (i=1,2,...,n);

begin
real kappa, d, r, sinphi, cosphi, g0, g1, g2, g3, epsilon, rho;
integer i, j, k, s, s0, t, t0, t2 ;
s:=s0:=t0:=0; t:=2*n ;
kappa :=g1:=abs(gamma [1]) ;
for i:=2 step 1 until t do
begin comment find the infinity norm of the tridiagonal matrix T ;

g2:=abs(gamma[i]) ; d:=g1+g2 ; if d>kappa then kappa:=d;
g1:=g2

end i ;
epsilon :=eta*kappa ;

inspect:
comment scan for lower block limit t ;
gamma[s]:=gamma[t]:=0.0 ;
for i:=t-2 while abs(gamma [i])<= epsilon do
begin comment pick up computed value ;

t2:=t div 2 ; sigma[t2]:=abs(gamma[t-1]) ;
if gamma[t-1]<0.0 and vt_desired then

for j:=1 step 1 until n do vt[t2,j]:=-vt[t2,j] ;
t:=i ; gamma[t] := 0.0;
if t=0 then goto return

end ;
s:=t-4 ; comment scan for upper block limit s ;
for i:=s-2 while abs(gamma[s])>epsilon do s:=i ;
comment did block limits s, t change ;
if s != s0 or t != t0 then
begin

zero_shift:
gamma[s] := gamma[s+1] ; d:=gamma[s+2] ; goto QR_sweep

end zero shift

comment does matrix break ;
if abs(gamma[s+1]*gamma[s+2]) <= epsilon then goto zero_shift ;

for i:=s+1 step 2 until t-1 do
if abs(gamma[i])<=epsilon then goto zero_shift ;

comment did bottom value settle down ;
if abs(abs(gamma[t-1])-rho) > 0.1*abs(gamma[t-1]) then

goto zero_shift ;
comment determine the origin shift kappa;
g0:=gamma[t-1]^2+gamma[t-2]^2+gamma[t-3]^2 ;
g1:=gamma[t-1]^2*gamma[t-3]^2 ;
g2:=0.5*(g0+sqrt(g0^2-4.0*g1)) ;
g3:=g1/g2 ;
kappa:=if abs(gamma[t-1]^2-g2)<abs(gamma[t-1]^2-g3) then g2 else g3 ;
gamma[s] :=gamma[s+1]^2-kappa ; d:=gamma[s+1]*gamma[s+2] ;

QR_sweep:
comment save previous block limits and botom element ;
s0:=s ; t0:=t ; rho:=abs(gamma[t-1]) ;
for i:= s step 1 until t-3 do
begin

comment does matrix break ;
if d=0.0 then goto inspect ;
g0:=gamma[i] ; g1 :=gamma[i+1] ;
g2:=gamma[i+2] ; g3:=gamma[i+3] ;
r:=sqrt(g0^2+d^2) ;
sinphi:=d/r; cosphi:=g0/r ;
gamma[i]:=r ;
gamma[i+1]:=g1*cosphi+g2*sinphi ;
gamma[i+2]:=g1*sinphi-g2*cosphi ;
gamma[i+3]:=-g3*cosphi ;
d:=g3*sinphi ;
if u_desired or vt_desired then
begin

k:=i div 2 ;
if i=2*k and vt_desired then
for j:=1 step 1 until n do
begin

g1:=vt[k+1,j] ; g2:=vt[k+2,j] ;
vt[k+1,j]:=g1*cosphi+g2*sinphi ;
vt[k+2,j]:=g1*sinphi-g2*cosphi

end j ;
if i != 2*k and u_desired then
for j:=1 step 1 until m do
begin

g1:=u[j,k+1] ; g2:=u[j,k+2] ;
u[j,k+1]:=g1*cosphi+g2*sinphi ;
u[j,k+2]:=g1*sinphi-g2*cosphi

end j

end if u_desired or vt_desired
end i ;
goto inspect ;
return:
end QR diagonalization ;

real array alpha, beta[1:n], gamma[0:2*n] ;
integer i, j ;

Householder_bidiagonalization
(a, m, n, u_desired, vt_desired, alpha, beta, u, vt) ;

for i:=1 step 1 until n do
begin

gamma[2*i-1] :=alpha[i] ; gamma[2*i]:=beta[i]
end
gamma[0]:=gamma(2*n]:=0.0 ;

QR_diagonalization
(gamma, m, n, u_desired, vt_desired, eta, sigma, u, vt)

end singular values decomposition;

In order to test the program, we first considered to translate the procedure to Matlab. However,
the ALGOL procedure contains goto-statements, even a goto into an if-clause! There are no goto
statements in Matlab, so for a translation we would have to significantly change the the structure
of the procedure and this would no longer represent the original ALGOL procedure.

We therefore looked around to find an ALGOL-compiler. Indeed we were successful: Jan van
Katwijk, a “Retired and hobby programmer” as he calls himself, is “Working on - and interested in
- sdr software. Always in for a new challenge in the field of programming and software design.” His
ALGOL compiler is in public domain and can be obtained by https://github.com/JvanKatwijk/
algol-60-compiler. Using the jff-Compiler, we can test the procedure and compute singular
values.

The idea of Golub is to apply the QR-Algorithm of Francis with implicit shifts to the special
tridiagonal matrix (5) which we denote by K0. We obtain a sequence of matrices Ki with Ki =
MiRi and Ki+1 = RiMi = M⊤

i KiMi.
However, since the eigenvalues of Ki occur in pairs, Golub proposes to consider the QR-

decomposition of
(Ki − siI)(Ki + si) = K2

i − s2i I

so that MiRi = K2
i − s2i I.

Note that if

K =



0 γ1 0 0 0

γ1 0 γ2 0 0

0 γ2 0 γ3 0

0 0 γ3 0 γ4

0 0 0 γ4 0


then

K2 − s2I =



γ1
2 − s2 0 γ1γ2 0 0

0 γ1
2 + γ2

2 − s2 0 γ2γ3 0

γ1γ2 0 γ2
2 + γ3

2 − s2 0 γ3γ4

0 γ2γ3 0 γ3
2 + γ4

2 − s2 0

0 0 γ3γ4 0 γ4
2 − s2


is pentadiagonal. However, since the first diagonal after the main diagonal is zero, the pentadiag-
onal matrix has only three nonzero diagonals. To apply a first Givens-reflection Z1 to annihilate
the (3,1)-element γ1γ2

Z1(K
2 − s2I)

https://github.com/JvanKatwijk/algol-60-compiler
https://github.com/JvanKatwijk/algol-60-compiler

we need to consider the reflection Z1 of the form

Zp =



1
. . .

1
cosΘp 0 sinΘp

0 1 0
sinΘp 0 − cosΘp

1
. . .

1



← p
← p+ 1
← p+ 2

(7)

6 Shift Strategy and First Transformation

The shift s2i used for
(Ki − siI)(Ki + si) = K2

i − s2i I

is chosen as the square of the eigenvalue of the bottom 4× 4 matrix that is closer to γ2
t−1.

M =


0 γt−3 0 0

γt−3 0 γt−2 0

0 γt−2 0 γt−1

0 0 γt−1 0


Forming the characteristic polynomial and equating to zero we get a quadratic equation for λ2:

det(M − λI) = λ4 −
(
γt−3

2 + γt−2
2 + γt−1

2
)
λ2 + γt−3

2γt−1
2 = 0

and the solutions

λ2 =

(
γt−3

2 + γt−2
2 + γt−1

2
)
±
√
(γt−3

2 + γt−2
2 + γt−1

2)2 − 4γt−3
2γt−1

2

2
.

Comparing this with the ALGOL statements

g0:=gamma[t-1]^2+gamma[t-2]^2+gamma[t-3]^2 ;

g1:=gamma[t-1]^2*gamma[t-3]^2 ;

g2:=0.5*(g0+sqrt(g0^2-4.0*g1)) ;

g3:=g1/g2 ;

kappa:=if abs(gamma[t-1]^2-g2)<abs(gamma[t-1]^2-g3) then g2 else g3 ;

we see that the quadratic equation is carefully solved by first solving for the larger solution g2 and
then computing the smaller g3 by the relation of Vieta. The shift kappa is chosen as the solution
that is closer to γ2

t−1. But there is no check weather the discriminant is negative. Also it should
be checked if g2 is zero.

The first Givens-reflection Z1 is determined to annihilate the (3,1)-element of the matrix K2
i −

s2i I. Thus the first column of
Z1(K

2
i − s2i I)

is a multiple of e1.
This first reflection is then applied to the matrix Ki and defines the implicit shift for the

QR-iteration step. It generates a bulge in position (3,1) and (1,3) as we can see in the following
example.

7 Example

We consider the bidiagonal matrix

J =


1 2 0 0
0 1 4 0
0 0 1 6
0 0 0 1

 . (8)

The augmented matrix becomes

K0 =



0 1
1 0 2

2 0 1
1 0 4

4 0 1
1 0 6

6 0 1
1 0


For σ0 = 0 the matrix K2

0 − σ2
0I becomes

K2
0 − σ2

0I =



1 0 2
0 5 0 2
2 0 5 0 4

2 0 17 0 4
4 0 17 0 6

4 0 37 0 6
6 0 37 0

6 0 1


The Givens-reflection Z1 to transform the first column of K2

0 − σ2
0I to a multiple of e1 is

Z1 =



0.4472 0 0.8944
0 1.0000 0

0.8944 0 −0.4472
1.0000

1.0000
1.0000

1.0000
1.0000


This first transformation Z1 is then applied to K0 to give

K1 = Z1K0Z1 =



0 2.2361 0 0.8944
2.2361 0 0 0

0 0 0 −0.4472
0.8944 0 −0.4472 0 4.0000

4.0000 0 1.0000
1.0000 0 6.0000

6.0000 0 1.0000
1.0000 0


The bulge 0.8944 is now chased down by subsequent Givens-reflections of type (7) which preserve
the zero diagonal:

Ki = ZiKi−1Zi, i = 2, 3, . . . , 6

and thus the resulting matrix after this first QR-step is

K6 =



0 2.4083
2.4083 0 −1.4948

−1.4948 0 3.8669
3.8669 0 1.5423

1.5423 0 5.8850
5.8850 0 0.0031

0.0031 0 0.0182
0.0182 0


.

A second QR-step (again with zero shift) gives

0 3.4919
3.4919 0 2.1196

2.1196 0 3.8644
3.8644 0 3.4473

3.4473 0 4.0615
4.0615 0 4.8402e−08

4.8402e−08 0 0.0182
0.0182 0


A third QR-step (this time with shift κ = 3.3292e−04) gives

0 4.5505
4.5505 0 −2.1040

−2.1040 0 5.1932
5.1932 0 1.5867

1.5867 0 2.3192
2.3192 0 8.8827e−18

6.2711e−18 0 0.0182
0.0182 0


Notice that the element γ6 in position (6,7) converges fast to zero

original 6
after QR-step 1 0.0031
after QR-step 2 4.8402e−08
after QR-step 3 8.8827e−18

A first singular value is computed : 0.0182 and the matrix can be deflated by setting n := n− 2.
The above computations were performed in Matlab with full matrices for didactic purposes

to explain the algorithm.

When computing the same example with the Golub-Businger Procedure we obtain the following
results. We print the array gamma after the label inspect. We also print the variables s and t

that define the current block of the tridiagonal matrix being processed. In the ALGOL procedure
the vector gamma is augmented by gamma[0]=0 and gamma[2n]=0.

Note that some signs of elements of gamma differ from the Matlab computation. This does
not matter for the QR-iteration. The elements could be replaced by their absolute values without
changing the singular values of the bidiagonal matrix.

inspect 1
gamma
-1.0000e0 2.0000e0 1.0000e0 4.0000e0 1.0000e0 -6.0000e0 -1.0000e0
inspect 2
gamma
2.4083e0 1.4948e0 3.8669e0 1.5422e0 5.8850e0 -3.1456e-3 1.8246e-2
zero shift
inspect 3
gamma

3.4918e0 2.1196e0 3.8644e0 3.4473e0 4.0614e0 4.8402e-8 1.8246e-2
shift = 3.329227607e-4
inspect 4
gamma
4.5505e0 2.1040e0 5.1932e0 1.5866e0 2.3191e0 -1.0213e-23 1.8246e-2

The results are the same as computed before with full matrices in Matlab. After two QR-
iterations with zero shift and one iteration with shift kappa 3.329227607e-4 the element γ6 =
−1.0213e−23 ≈ 0. We obtain the first singular value σ4 = 1.8246e−2 and the matrix is deflated
by t := t− 2. The deflation is done because |γ6| ≤ eta∥K0∥∞ with eta the machine precision.

The algorithm of Golub-Businger preserves the zeros on the diagonal of the symmetric tridiag-
onal matrix. Thus in fact, the algorithm works only on the secondary diagonal with the elements
γ1, γ2, . . . , γ2n−1.

Let’s compare this Golub-Businger -algorithm with QR-steps on the corresponding bidiagonal
matrix. We consider the matrix (8) and apply QR-steps with the same shifts as before.

A =
1 2 0 0
0 1 4 0
0 0 1 6
0 0 0 1

shift =
0

gamma =
-2.4083e+00 -1.4948e+00 -3.8669e+00 -1.5423e+00 -5.8850e+00 -3.1456e-03 -1.8246e-02

shift =
0

gamma =
-3.4919e+00 -2.1196e+00 -3.8644e+00 -3.4473e+00 -4.0615e+00 -4.8402e-08 -1.8246e-02

shift =
3.3292e-04

gamma =
-4.5505e+00 2.1040e+00 5.1932e+00 1.5867e+00 2.3192e+00 -3.3631e-22 -1.8246e-02

We see that we obtain the same results. This means that the basic Golub-Businger - and the Golub-
Reinsch -Algorithm (as presented in the next section) are the same! They operate on different data
structure (vector with 2n − 1 elements versus bidiagonal n × n matrix). The shift-strategy, the
exception handling and the termination criteria are different. But mathematically they operate
basically in the same way.

The Golub-Businger -Procedure was not accepted for the Handbook [8], because sometimes the
algorithm failed. We show here a few examples.

8 Successful Examples

• For the 18× 12 matrix A of Example 4, Golub-Businger produces in 18 iterations perfectly
correct results:

7.226590312008532e1
4.963033918308604e1
4.428869855284583e1
3.642741733519196e1
3.041632410657953e1
2.501740101282876e1
5.861665712052792e-15
4.488399943021106e-15
3.445807702749013e-15
2.802195408089914e-15
2.351807372845660e-15
2.226465746728873e-15

• Consider the transposed of the n × (n + 1)- matrix, the third example on page 150 of the
Handbook [8]:

for i=1:n

for j=1:n

if i==j, a(i,j)=1;

elseif j>i, a(i,j)=0;

else a(i,j)=-1;

end

end

end

for i=1:n

a(n+1,i)=-1;

end

For n = 6 we get

A =



1 0 0 0 0 0
−1 1 0 0 0 0
−1 −1 1 0 0 0
−1 −1 −1 1 0 0
−1 −1 −1 −1 1 0
−1 −1 −1 −1 −1 1
−1 −1 −1 −1 −1 −1


For n = 30 Golub-Businger needs 66 QR-steps to compute the singular values. This means
a singular value is computed in about two QR-steps. The singular values are

18.8357 1.6996 1.5223
6.4243 1.6603 1.5171
4.0239 1.6296 1.5127
3.0466 1.6052 1.5091
2.5374 1.5855 1.5062
2.2360 1.5694 1.5039
2.0426 1.5562 1.5022
1.9114 1.5453 1.5010
1.8186 1.5362 1.5002
1.7507 1.5287 1.4142

The results compare well with those of Matlab. When comparing the norm of the vectors
of the singular values we obtain

∥svdMatlab − svdGB∥
∥svdMatlab∥

= 6.6867e−16.

The ALGOL Procedure of Golub-Reinsch which we scanned from the Handbook [8] gives
the same results with only 40 iterations.

• By replacing the unit diagonal by

aii = n+ 1− i, j = 1, . . . , n

we get an explicit expression for the singular values

σn+1−k =
√
k(k + 1), k = n, n− 1, . . . , 1.

For this case Golub-Businger and Golub-Reinsch are very effective. E.g. for n = 150 both
procedures compute with only one QR-step all 150 singular values to full machine precision!

9 Close and Multiple Singular Values

The Golub-Businger algorithm has problems with matrices with multiple or close singular values.

1. The following bidiagonal matrix

B1 =

1.614874172816116 9.264623902779769e−01
1.238486644745703 2.131595816650056e−07
1.926281858121494 4.598199463754764e−01
1.038269760777829


has the singular values

2.000000100000000
2.000000000000000
1.000000100000000
1.000000000000000

.

There are two clusters with two singular values with a gap of 10−7. We print intermediate
results using Golub-Businger and obtain

inspect 1
gamma
-1.6148e0 9.2646e-1 1.2384e0 2.1315e-7 1.9262e0 -4.5981e-1 -1.0382e0 0
zero shift
s and t: 0 8
inspect 2
gamma
1.9611e0 3.3759e-1 1.0198e0 7.4224e-7 1.9950e0 -1.2203e-1 1.0024e0 0
kappa=1.000000179
s and t: 0 8
inspect 3
gamma
2.0000e0 8.7751e-8 1.9611e0 3.3742e-1 1.0198e0 -7.4612e-9 1.0000e0 0
kappa=1.000000199
s and t: 0 8
inspect 4
gamma
2.0000e0 8.5471e-8 2.0000e0 2.3202e-8 9.9999e-1 -1.0219e-11 1.0000e0 0
kappa=1.000000198
s and t: 0 8
inspect 5
gamma
2.0000e0 8.5471e-8 2.0000e0 1.5378e-15 9.9999e-1 -5.9455e-14 1.0000e0 0
kappa=1.000000199
s and t: 0 8
inspect 6
gamma
2.0000e0 8.5471e-8 2.0000e0 1.0250e-22 9.9999e-1 -1.1886e-17 1.0000e0 0

After the first QR-iteration with zero shift we obtain γ6 = −1.2203e−1. In the next step
with shift κ = 1.000000179 it decreases nicely to γ6 = −7.4612e−9.
However, the next steps with same shift show linear convergence:

−1.0219e−11,−5.9455e−14,−1.1886e−17.

We also observe simultaneously convergence of γ4:

7.4224e-7 , 3.3742e-1 , 2.3202e-8 , 1.5378e-15 , 1.0250e-22 .

Thus two singular values are computed, the matrix can be deflated and computation contin-
ues with the smaller matrix.

zero shift
s and t: 0 4
inspect 7
gamma
2.0000e0 -8.5471e-8 2.0000e0 0
kappa=4.000000011
s and t: 0 4
inspect 8
gamma
2.0000e0 -3.3341e-9 2.0000e0 0
kappa=4.000000011
s and t: 0 4
inspect 9
gamma
2.0000e0 -9.8840e-11 2.0000e0 0
kappa=3.999999993
s and t: 0 4
inspect 10
gamma
2.0000e0 1.5748e-12 2.0000e0 0
kappa=3.999999993
s and t: 0 4
inspect 11
gamma
2.0000e0 -2.5092e-14 2.0000e0 0
kappa=3.999999993
s and t: 0 4
inspect 12
gamma
2.0000e0 3.9981e-16 2.0000e0 0

After a zero shift iteration, 5 QR-iterations with shift κ = 4 are performed to reduce with
linear convergence the element γ2 = 3.9981e−16 and all singular values are computed.

sigma
2.000000099999999e0
2.000000000000000e0
1.000000099999999e0
9.999999999999994e-1

The results are correct, but it is obvious that the algorithm has problems with close singular
values.

2. Consider the bidiagonal matrix

B2 =

1.614874124853175 9.264623389167206e−01
1.238486628039565 2.131595964078222e−08
1.926281841828408 4.598199397802367e−01
1.038269674236179


with the singular values (the gap is now 1e−8)

2.000000010000000
2.000000000000000
1.000000010000000
1.000000000000000

For this matrix the Golub-Businger Procedure produces an infinite loop. The reason is that
after QR-step 9, the shift is assigned the value NaN, as we can see in the intermediate output:

inspect 1
gamma
-1.6148e0 9.2646e-1 1.2384e0 2.1315e-8 1.9262e0 -4.5981e-1 -1.0382e0 0
zero shift
s and t: 0 8
inspect 2
gamma
1.9611e0 3.3759e-1 1.0198e0 7.4224e-8 1.9950e0 -1.2203e-1 1.0024e0 0
determine shift
kappa=1.000000017
s and t: 0 8
inspect 3
gamma
2.0000e0 8.7751e-9 1.9611e0 3.3742e-1 1.0198e0 -7.4612e-10 1.0000e0 0
determine shift
kappa=1.000000019
s and t: 0 8
inspect 4
gamma
2.0000e0 8.5471e-9 2.0000e0 2.3202e-9 9.9999e-1 -1.0216e-12 1.0000e0 0
determine shift
kappa=1.000000009
s and t: 0 8
inspect 5
gamma
2.0000e0 8.5471e-9 2.0000e0 7.7340e-18 9.9999e-1 -1.0216e-12 1.0000e0 0
zero shift
s and t: 4 8
inspect 6
gamma
2.0000e0 8.5471e-9 2.0000e0 9.9999e-1 9.9999e-1 1.0216e-12 1.0000e0 0
determine shift
kappa=1.000000009
s and t: 4 8
inspect 7
gamma
2.0000e0 8.5471e-9 2.0000e0 9.9999e-9 9.9999e-1 1.0216e-12 1.0000e0 0
determine shift
kappa=1.000000009
s and t: 4 8
inspect 8
gamma
2.0000e0 8.5471e-9 2.0000e0 9.9999e-9 9.9999e-1 1.0216e-12 1.0000e0 0
determine shift
kappa=1.000000024
s and t: 4 8
inspect 9
gamma

2.0000e0 8.5471e-9 2.0000e0 2.4901e-8 9.9999e-1 -2.0108e-13 1.0000e0 0
determine shift
kappa= nan
s and t: 4 8
inspect 10
gamma
2.0000e0 8.5471e-9 2.0000e0 0.0000e0 0.0000e0 0.0000e0 0.0000e0 0.0000e0
determine shift
kappa= nan
s and t: 4 8
inspect 11
gamma
2.0000e0 8.5471e-9 2.0000e0 0.0000e0 0.0000e0 0.0000e0 0.0000e0 0.0000e0
determine shift
kappa= nan
s and t: 4 8
inspect 12
gamma
2.0000e0 8.5471e-9 2.0000e0 0.0000e0 0.0000e0 0.0000e0 0.0000e0 0.0000e0

Why is NaN assigned? The shift is computed by solving a quadratic equation

g2:=0.5*(g0+sqrt(g0^2-4.0*g1))

and the expression in the square root, the discriminant, becomes negative: −8.881784197e−16

The Procedure of Golub-Reinsch has no problems with this example.

3. The bidiagonal matrix

B3 =

1.546667895215945 9.673182260019585e − 01
1.293102421137901 1.845276169487005e − 15
1.984647769311140 2.136408344093210e − 01
1.007735493887760


has the singular values [2, 2, 1, 1]. The Golub-Businger Procedure needs 11 QR-steps to
produce the correct result

1.999999999999999e0

1.999999999999999e0

1.000000000000001e0

1.000000000000000e0

4. We now augment the multiplicity. The bidiagonal matrix

B4 =


1.666426845302032e 8.846508172580001e − 01
1.200172696232285e 2.323234527365937e − 15
1.927953055087120e 4.548199770714277e − 01
1.037369657276030e 1.265849009056839e − 15
1.994732361709430e 1.255160648047072e − 01
1.002640774467638e


has singular values [1, 1, 1, 2, 2, 2]. The Golub-Businger Procedure produces an infinite loop:

.

.

.
inspect 10
gamma
2.0000e0 -7.7715e-16 1.9999e0 0
determine shift
kappa=3.999999999
s and t: 0 4
inspect 11
gamma
2.0000e0 -7.7715e-16 1.9999e0 0
determine shift
kappa=3.999999999
s and t: 0 4
.
.
.

This happens because of the termination criterion when scanning

for i:=t-2 while abs(gamma [i])<= epsilon do

The value of epsilon=5.664412841e-16 is smaller than
abs(gamma[2])=7.7715e-16. Since gamma[2] remains constant the iteration never ends.

The Golub-Reinsch Procedure has no problems with this example and produces the results

2.000000000000000e0
2.000000000000000e0
1.999999999999999e0
1.000000000000001e0
1.000000000000000e0
9.999999999999998e-1

5. Finally we consider a Wilkinson matrix. The matrix is tridiagonal with diagonal

[100, 90, . . . , 20, 10, 0, 10, 20, . . . , 90, 100]

and the secondary diagonals have ones:

100 1
1 90 1

1
. . .

. . .

. . . 80 1
1 90 1

1 100


For this matrix we have n = 21 and the augmented matrix is 2n = 42. After 27 QR-steps
Golub-Businger has computed 7 eigenvalues

3.000000082849189e1
2.999999917290396e1
2.000049662325264e1
1.999950657441164e1
1.009659543859793e1
9.900494253375482e0
1.970928910340472e−1

.

They are all correct; however, before the next shift the discriminant is −1.862645149e−9,
again negative, and an infinite loop results.

Golub-Reinsch and Matlab deliver the same results

Golub− Reinsch Matlab

1.000995057466245e2 1.000995057466245e+02
1.000995057466244e2 1.000995057466245e+02
9.000049342558835e1 9.000049342558840e+01
9.000049342558833e1 9.000049342558833e+01
8.000000082709604e1 8.000000082709602e+01
8.000000082709600e1 8.000000082709597e+01
7.000000000069067e1 7.000000000069073e+01
7.000000000069064e1 7.000000000069072e+01
6.000000000000036e1 6.000000000000036e+01
6.000000000000031e1 6.000000000000033e+01
5.000000000000036e1 5.000000000000034e+01
4.999999999999966e1 4.999999999999965e+01
4.000000000069121e1 4.000000000069121e+01
3.999999999930925e1 3.999999999930925e+01
3.000000082849191e1 3.000000082849191e+01
2.999999917290397e1 2.999999917290398e+01
2.000049662325266e1 2.000049662325265e+01
1.999950657441164e1 1.999950657441164e+01
1.009659543859792e1 1.009659543859793e+01
9.900494253375477e0 9.900494253375475e+00
1.970928910340454e−1 1.970928910340456e−01

10 The Algorithm of Reinsch, 1967

Independently of the Golub-Businger Algorithm, Reinsch developed his algorithm at the same
time in parallel. The first step is again to bidiagonalize the matrix A = PBQ⊤. P and Q are
orthogonal and

B =



q1 e2
q2 e3

. . .
. . .

. . . en
qn


Since λk(B

⊤B) = σk(B)2 Reinsch considers applying the QR-Algorithm with implicit shift σ
to

T = B⊤B =



q21 q1e2
q1e2 e22 + q22 q2e3

q2e3
. . .

. . .

. . . e2n−1 + q2n−1 qn−1en
qn−1en e2n + q2n


The first QR-transformation uses the Givens rotation G1 such that(

c s
−s c

)⊤ (
q21 − σ

q1e2

)
=

(
r

0

)
.

Applying G1 and G⊤
1 to T = B⊤B yields

G⊤
1B

⊤BG1 =


x x x
x x x
x x x x

x x x
. . .

. . .
. . .

 ,

and subsequent Givens transformations would chase the bulge x till the tridiagonal form is restored.
Reinsch now had the clever idea to work with B alone! He considered

BG1 =


x x
x x x

x x
x x

. . .
. . .


and removed the bulge x by Givens-rotations to restore bidiagonal form:

P⊤
1 BG1 =


x x x

x x
x x

x x
. . .

. . .

 ,

P⊤
1 BG1G2 =


x x

x x
x x x

x x
. . .

. . .


This process to restore the bidiagonal form B̃ = P⊤

n−1 · · ·P⊤
1 BG1 · · ·Gn−1 is known as “chasing

the bulge”. Cleve Moler made already in 1976 a movie showing this iteration. It can be found on
YouTube:

https://www.youtube.com/watch?v=R9UoFyqJca8.

Moler also wrote a blog about this topic:

https://blogs.mathworks.com/cleve/2012/12/10/1976-matrix-singular-value-decomposition-film/

It can be proved by the implicit Q-Theorem [3] that the transformation B → B̃ is mathemati-
cally the same process as a QR-step for the tridiagonal matrix T = B⊤B → B̃⊤B̃.

During the iterations an off-diagonal element ei or a diagonal element qi may vanish. We
distinguish therefore
Splitting: If ei = 0 then B splits in two bidiagonal matrices:

B =

(
B1 0
0 B2

)
, svd(B) = svd(B1) ∪ svd(B2).

The singular values of B1 and B2 can be computed independently (even in parallel).
If the split is for i = n then B2 = qn and qn is a singular value. The computation is continued

with with B1.
Cancellation: If qi = 0 then one of the singular values is zero. One can split B using a sequence

of Givens rotations of the form

(
c −s
s c

)(
x
y

)
=

(
0
r

)
to annihilate ei+1

G⊤
i,i+1


q1 e2

. . .
. . .
qi−1 ei

0 ei+1
qi+1

. en
qn

 =


q1 e2

. . .
. . .
qi−1 ei

0 0 b
q̃i+1

. en
qn

 .

and to remove the bulge b by further Givens rotations G⊤
i,k , k = i + 2, . . . , n. Thus because ei+1

is rotated to zero, the matrix splits again in two submatrices.

https://www.youtube.com/watch?v=R9UoFyqJca8
https://blogs.mathworks.com/cleve/2012/12/10/1976-matrix-singular-value-decomposition-film/

Convergence: We cannot expect ei or qi to become exactly zero. Therefore we need a thresh-
old to decide when an element is zero. Golub-Reinsch recommend (with ε=machine precision)
|ei+1|, |qi| ≤ εmaxi(|qi|+ |ei|) = ε∥B∥1.
Deflation: If en is negligible then qn is a singular value. Continue with the iteration with the
submatrix of order n− 1.

The ALGOL procedure [5] is based on these considerations:

We compute again the singular values of our example matrix A. After 15 iterations Golub-Reinsch
obtains

ALGOL GolubReinsch Matlab SVD

7.226590312008532e1 7.226590312008531e+01

4.963033918308604e1 4.963033918308606e+01

4.428869855284587e1 4.428869855284583e+01

3.642741733519198e1 3.642741733519199e+01

3.041632410657953e1 3.041632410657953e+01

2.501740101282877e1 2.501740101282877e+01

1.454503113945855e-14 1.109916271779696e-14

5.111683456877152e-15 7.702896935587551e-15

4.035934999064047e-15 5.518876944731536e-15

3.703390246973525e-15 2.522335374801936e-15

3.236570651837828e-15 1.461831916547074e-15

1.763400919991642e-15 5.592859153401258e-17

The results compare very well with those of Matlab’s SVD.

11 Computing the singular vectors

It is easy to compute the singular vectors with the Algorithms of Golub-Businger or Golub-Reinsch.
The Householder- and Givens-Transformations have to be accumulated. As mentioned in [6] on
page 11, Jim Wilkinson noticed that by accumulating the Givens reflections in Golub-Businger
with even numbers to form the matrix X and similarly forming Y by accumulating the Givens
reflections with odd numbers, the bidiagonal matrix J is diagonalized: Σ = XJY⊤.

Changing the Matlab function SVDGolubReinsch.m in [3] to also compute the singular vectors
is presented as an exercise in [3]. Applying SVDGolubReinschVec.m to our example we obtain

>> [U,S,V]=SVDGolubReinschVec(A);

>> [u,s,v]=svd(A);

>> [norm(U*S*V’-A) norm(u*s*v’-A)]

ans =

1.0e-14 *

0.1491 0.1098

which again compares very well with Matlab’s SVD.
Computing the singular vectors with the two Algorithms of Golub-Kahan is more difficult.

Golub-Kahan propose in [4] several methods based on inverse iteration. The main concern is to
obtain orthogonal matrices, which is not easy.

12 Historical remarks

The Algorithm of Reinsch, though also developed in 1967, was only published 1970 [5]. This delay
is explained in the commentary of Ch. Reinsch in [2], Milestones in Matrix Computation: Selected
Works of Gene H. Golub, with Commentaries, a book commemorating the 75th anniversary of
Gene Golub.

The Handbook Project in the sixties was a first attempt to build a reliable software library
for numerical computations. The editors of this multi-volume book project were F. L. Bauer, A.

S. Householder, H. Rutishauser and K. Samelson. The first volume was intended to describe the
reference language and its implementation: Volumes I Part a Description of ALGOL 60 by H.
Rutishauser appeared together with Volume I Part b Translation of ALGOL 60 by A. A. Grau, U.
Hill and H. Langmaack in 1967. Volume II with the title Linear Algebra was supposed to contain
procedures by several authors for solving systems of linear equations and eigenvalue problems.
Before a contribution would be accepted by the editors, it had to be refereed and prepublished in
the journal Numerische Mathematik. Volume II of the Handbook was edited by J. H. Wilkinson
and Ch. Reinsch and appeared in 1971.

Reinsch writes about his algorithm in [2]:

The evaluation process of the Handbook series with approval from several international
editors was a very slow process, the Internet did not exist at that time, snail mail had to
be used, which forth and back across the Atlantic would take more than two weeks in the
most favorable cases. Thus, the Handbook article, although finished in 1967, did appear
in print not before 1970. The complex version (the reduction A ∈ Cm,n 7→ B ∈ Rm,n)
was programmed in FORTRAN by Businger and Golub and needed communication
paths just within the Stanford University Campus to reach the ACM Communications
editor. Therefore it overtook the Handbook article and appeared earlier in print.

Reinsch refers here to the publication by Businger and Golub [1].

Gene Golub submitted also an algorithm for the Handbook, namely the ALGOL-Procedure of
Businger in [6]. This algorithm is based on the augmented matrix by the Golub-Kahan algorithm.
Reinsch writes about it in [2]:

To this matrix [= S] Golub and Kahan applied the symmetric version of the QR-
transformation with a special shift-strategy: a conventionally chosen shift s for one
QR-step and the shift with −s for the next QR-step, which restores the zero-diagonal.
At that time the insight into the convergence properties of the QR-iteration with shifts
was not yet fully developed, so that it was overlooked how disastrous this shift technique
is for a special class of tridiagonal matrices frequently occurring in physical applications.
It was easy to find sample matrices with unsatisfactory convergence rate and in some
cases the algorithm would not converge at all.

Reinsch writes that after the development of his SVD-algorithm it became very popular. Reinsch
continues in [2]:

The editors of the mentioned Handbook series Linear Algebra had now the choice
between two proposals for a SVD routine: Gene Golub had submitted in 1967 a program
based on the Golub-Kahan algorithm (1965) and there was my routine with its proven
convergence properties. Their wise decision let them choose my algorithm under a joint
authorship.

This has to be specified. It is true that Golub “submitted in 1967 a program based on the
Golub-Kahan algorithm”; it was the Algol program of Businger [6], which uses the Golub-Kahan
transformation of the tridiagonal matrix (5).

The submission was not accepted because the program failed sometimes as we have shown
earlier. Since the Golub-Businger-algorithm and the Reinsch-algorithm compute basically the
same iteration, the editors of the Handbook [8] made the wise proposal to Golub and Reinsch to
publish the Golub-Reinsch-algorithm as a common paper [5].

The Golub-Reinsch-algorithm for computing the singular value decomposition is one of the
best, most elegant and most reliable algorithms in numerical linear algebra. The article [5] has
been cited over 3000 times (as of June 2019).

Acknowledgments

I wish to thank

• Christian Reinsch TUM, for many discussions and many e-mails. He is a real genius.

• Jan van Katwijk, J.vanKatwijk@gmail.com Lazy Chair Computing. Jan did a wonderful
work to produce this jff-algol program which compiles the Algol sources to C code. By doing
so he revives old ALGOL procedures and made it possible for us to experiment.

• Johann Joss, my old fellow student from ETH. He is a gifted mathematician and computer
scientist. With his help we got rid of all problems and finally we had running ALGOL
procedures.

• Å. Björck. I am indebted to Åke for sending me a paper copy of the Stanford CS Report
#73. This paper by Golub and Businger is not well known and it is hard to get hold of this
report.

References

[1] Peter A. Businger and Gene H. Golub. Algorithm 358: singular value decomposition of a
complex matrix [f1, 4, 5]. Communications of the ACM, 12:564–565, 1969.

[2] Raymond H. Chan, Chen Greif, and Dianne P. O’Leary eds. Milestones in Matrix Computation:
Selected Works of Gene H. Golub, with Commentaries. Oxford University Press, 2007.

[3] Walter Gander, Martin J. Gander, and Felix Kwok. Scientific Computing, an Introduction
Using Maple and Matlab. Springer, 2014.

[4] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix.
SIAM. J. Numer. Anal., 2:202–224, 1965.

[5] G. H. Golub and C. Reinsch. Singular value decomposition and least squares solutions. Numer.
Math., 14:403–420, 1970.

[6] Gene H. Golub and P. Businger. Least squares, singular values and matrix approximations.
Stanford Technical Report No. CS73, 1967.

[7] J. H. Wilkinson. Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method
of bisection. Numerische Mathematik, 4:362–367, 1962.

[8] J. H. Wilkinson and Chr. Reinsch. Handbook for Automatic Computation, Volume II: Linear
Algebra. Springer, 1971.

	Introduction
	The Pioneers
	Connection to Eigenvalues
	The Algorithm of Golub-Kahan 1965
	The Algorithm of Golub-Businger 1967
	Shift Strategy and First Transformation
	Example
	Successful Examples
	Close and Multiple Singular Values
	The Algorithm of Reinsch, 1967
	Computing the singular vectors
	Historical remarks

