
AUTOMATIC IMPLEMENTATION AND PLATFORM

ADAPTATION OF DISCRETE FILTERING AND

WAVELET ALGORITHMS

A Dissertation

Presented to the Faculty of the Graduate School

of Carnegie Mellon University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Aca Gačić

December 2004

c© 2004 Aca Gačić

ALL RIGHTS RESERVED

Acknowledgements

I owe my deepest gratitude to my advisors José M. F. Moura and Markus Püschel for their

continuous support and their encouragement at critical stages during my Ph.D. studies. Their dedi-

cation and clear vision provided me with the constant source of inspiration and guidance throughout

my research and helped me regain focus during challenging times.

The writing of a Ph.D. dissertation is often a lonely experience; however, I was incredibly for-

tunate to work with a team of unselfish, dedicated, and curious people involved in the SPIRAL

project. My special thanks go to Franz Franchetti and Yevgen Voronenko for their tremendous

help in making this thesis possible. Both Franz and Yevgen helped me stay focused and spent long

nights, weekends, and even holidays doing everything they can to ensure that this thesis is improved

with compelling experimental results. My sincere thanks are extended to my friends and officemates

David Sepiashvili and Marek Telgarsky for their patience and kindness.

I would further like to thank the members of my committee: Jeremy Johnson, Jelena Kovačević,

Tsuhan Chen, and my M.Sc. program advisor at the University of Pittsburgh Marwan A. Simaan

for fruitful discussions and honest feedback.

I am proud to have studied at Carnegie Mellon University, in most part because of all the kind

and helping people I have met here. At times, I felt a need for a second Ph.D. degree to resolve

many administrative issues, but Carol Patterson, Lynn Philibin, and Elaine Lawrence made that

other part of my academic life much easier. I am grateful to them and to all other CMU staff. I

would also like to thank all of my CMU friends for making the days (and nights) spent in the office

more fun, and my other friends in the area for making Pittsburgh my true home.

Over a great distance, I extend my love to my parents Danilo and Štefica whose patience and

courage I can never forget. I wish I could have shared the whole experience with you day by day as

always before. Saša, thank you for being tough on me when I needed it most and kind to me all the

time. That’s what big brothers are for.

Iva, I sincerely believe I could not have come this far without you on my side. I only wish I could

have been there for you more often during this process. Thank you for holding on and being brave.

iii

TABLE OF CONTENTS

1 Introduction 1

1.1 Motivation . 1

1.1.1 Automatic performance tuning systems . 2

1.1.2 Digital filtering and wavelet kernels . 4

1.1.3 Existing software packages for digital filtering and wavelet applications 5

1.2 Problem Statement . 7

1.2.1 Challenges . 8

1.3 Organization of the Thesis . 10

2 SPIRAL Code Generator 12

2.1 SPIRAL System Overview . 12

2.2 SPIRAL’s Mathematical Framework . 15

2.2.1 Key concepts . 15

2.2.2 Algorithm space . 21

2.2.3 Formula optimization . 22

2.3 Translation Into Code . 23

2.4 Verification and Runtime Measurements . 26

2.5 Search . 27

2.5.1 SPIRAL’s optimization techniques . 28

2.5.2 Practical considerations . 31

2.6 FIR Filters and the DWT in SPIRAL: Challenges 31

3 Discrete FIR Filters and Wavelets and Their Algorithms 34

3.1 FIR filters . 34

3.1.1 Signal representations . 34

3.1.2 Convolution . 35

3.1.3 Generalized convolutions as multiplications in polynomial algebras 36

3.1.4 Embedding one convolution type into another 39

3.1.5 Reducing long convolutions to multiple short convolutions 40

3.1.6 Divide-and-conquer methods . 43

3.1.7 Short convolution algorithms . 46

3.1.8 Transform domain filtering algorithms . 48

3.2 Discrete Wavelet Transforms . 51

3.2.1 Multiresolution analysis . 52

3.2.2 Discrete wavelet transform . 54

3.2.3 Polyphase representation . 60

3.2.4 Lattice factorization . 62

3.2.5 Lifting scheme factorization . 64

3.3 Summary . 66

iv

4 Mathematical Preliminaries 68

4.1 Matrices . 68

4.1.1 Basic definitions . 68

4.1.2 Special matrices . 70

4.2 Constructs . 71

4.2.1 Basic matrix constructs . 71

4.2.2 Subspace decomposition constructs . 73

4.2.3 Overlapped constructs . 74

4.3 Operators . 77

4.3.1 Permutations . 77

4.3.2 Gather and scatter operators . 81

4.3.3 Extension and reduction operators . 83

4.4 Summary . 91

5 Filter Transforms and Rules 92

5.1 FIR filter transforms . 92

5.1.1 Filter and convolution transforms . 92

5.1.2 Filters with signal extension . 95

5.1.3 Filter banks and polyphase matrices . 99

5.1.4 Composition of filters and convolutions . 101

5.2 Breakdown rules for filter and convolution transforms 103

5.2.1 Basic identities and rules . 104

5.2.2 Block convolution rules . 106

5.2.3 Multidimensional rules . 106

5.2.4 Embedding rules . 108

5.2.5 Karatsuba rules . 109

5.2.6 Transform-domain rules . 111

5.2.7 Blocking rules . 111

5.3 Concluding remarks . 112

6 Discrete Wavelet Transforms and Rules 115

6.1 Discrete Wavelet Transforms . 115

6.1.1 Nonperiodic DWT . 116

6.1.2 Inverse Nonperiodic DWT . 118

6.1.3 Finite DWT and IDWT of infinite and extended signals 120

6.1.4 Periodic DWT and IDWT . 124

6.2 Breakdown Rules for DWT Algorithms . 126

6.2.1 Mallat recursive rules . 127

6.2.2 Polyphase rules . 129

6.2.3 Lattice factorization rules . 131

6.2.4 Lifting scheme rules . 133

6.3 Concluding Remarks . 134

v

7 Experimental Results 137

7.1 Overview of Experiments and Platforms . 137

7.2 Runtime Performance Benchmarks . 141

7.3 FIR Filter Methods Across Multiple Platforms . 147

7.3.1 Setup of experiments . 148

7.3.2 Time-domain methods . 148

7.3.3 Karatsuba methods . 150

7.3.4 Transform-domain methods . 151

7.3.5 Comparison of all methods for FIR filters . 156

7.4 DWT Methods on Multiple Platforms . 157

7.4.1 Evaluation of DWT implementation methods 157

7.5 Compiler Issues . 159

7.5.1 Compiler vectorization . 160

7.6 Concluding Remarks . 160

8 Conclusion 163

8.1 Major Contributions . 164

8.2 Limitations of the Current Framework . 165

8.3 Future Work . 166

A Lifting scheme factorizations 168

A.1 Euclidean Algorithm . 168

A.2 Division of Laurent polynomials . 169

A.3 Lifting scheme factorizations . 170

B Generalized Karatsuba Methods 173

B.1 Standard Radix-n Karatsuba Algorithm . 173

B.2 Radix-n Karatsuba Cost Analysis . 175

C Results of FIR Filter Transform and DWT Experiments 178

Bibliography 183

vi

LIST OF FIGURES

2.1 The architecture of Spiral . 14

2.2 Rule trees = formulas = algorithms. 21

2.3 A DFT16 rule tree . 22

2.4 Rule tree manipulation for evolutionary search . 31

3.1 Filtering interpreted as polyphase filtering with two channels. 44

3.2 Radix-2 divide-and-conquer single step filter decomposition 45

3.3 Filter bank interpretation of the DWT. 57

3.4 Filter bank representation of the inverse DWT. 57

3.5 Wavelet packet trees: full (left); pruned (center); DWT (right). 58

3.6 Haar scaling function and the wavelet. 59

3.7 Noble identities (top); Efficient filtering using the Noble identity (bottom). 61

3.8 Polyphase representation of one filter bank stage. 61

3.9 Lattice decomposition of an orthogonal filter bank. 64

3.10 Lifting scheme for one stage of the forward DWT. 66

6.1 Computing channel filters using the Noble identities. 117

6.2 Computing synthesis channel filters using Noble identities. 120

7.1 Comparison of different filtering methods and IPP FIR function on Athlon-1.7 (lower

is better). 143

7.2 Comparing the best found DWT implementation and IPP code on Athlon-1.73 (lower

is better) . 144

7.3 Comparing the best found filter code and IPP filter code on P4B-3.0-win 145

7.4 Comparing the best found DWT code and IPP DWT code on P4B-3.0-win for three

wavelets: rational 5/3, Daubechies 9/7, and Daubechies 30 146

7.5 Performance of the best found FIR filter code in MFLOPS 147

7.6 Performance of the best found DWT code in MFLOPS (higher is better) 147

7.7 Comparison of the time-domain methods on Xeon-1.7 (lower is better) 149

7.8 Blocking methods for gcc-O6-3.2 and gcc-O1-3.2 on Xeon-1.7 150

7.9 Performance in MFLOPS for best found time-domain method. 151

7.10 Comparison of Karatsuba methods and the best blocking/nesting strategy. 152

7.11 Comparison of the best found time-domain and transform-domain methods. 154

7.12 Comparison of time-domain and transform-domain methods for circulant matrices. 155

7.13 Comparison of run times for time-domain and Karatsuba methods compiled by icc-

8.0-lin and by gcc-O1-3.3 compilers on P4-1.6-lin platform 159

7.14 Effect of compiler options gcc-mac-O1 and gcc-mac-O3 on the run time of: (a) time-

domain methods, and (b) Karatsuba methods for filters on Macintosh platform. . . 160

7.15 SSE3 vectorization speedup for FIR filters obtained by Intel-SSE3 compiler 161

7.16 Run times of randomly generated rule trees for: (a) FIR filter transform of size 128

and 17 filter taps on P4C-3.2, and (b) Daubechies 9-7 DWT of size 64 on Xeon-1.7. 162

vii

C.1 Runtime comparison of all lifting scheme factorizations for Daubechies 9/7 wavelet

transform . 178

C.2 Comparison of Mallat, Lifting and Polyphase rules on P4B-3.0-win. 179

C.3 Comparison of Mallat, Lifting and Polyphase rules on Athlon-1.73. 180

C.4 Comparison of Mallat, Lifting and Polyphase rules on Macintosh. 181

C.5 Performance of DWT algorithms on different platforms. 182

viii

LIST OF TABLES

2.1 Rule examples . 19

4.1 Table of mathematical objects. 91

7.1 Computer platforms used for experiments. 140

7.2 Compilers and compiler options. 141

7.3 Two rule tree examples for Karatsuba method found by search 152

7.4 Best found methods for FIR filter transform of various lengths on different platforms. 156

ix

Abstract

Automatic Implementation and Platform Adaptation of Discrete Filtering and Wavelet Algorithms

Aca Gačić

José M. F. Moura, Markus Püschel

Carnegie Mellon University 2004

Moore’s law, with the doubling of the transistor count every 18 months, poses serious challenges

to high-performance numerical software designers: how to stay close to the maximum achievable per-

formance on ever-changing and ever-faster hardware technologies? Up-to-date numerical libraries

are usually maintained by large teams of expert programmers who hand-tune the code to a spe-

cific class of computer platforms, sacrificing portability for performance. Every new generation of

processors reopens the cycle of implementing, tuning, and debugging.

The SPIRAL system addresses this problem by automatically generating and implementing al-

gorithms for DSP numerical kernels and searching for the best solution on the platform of interest.

Using search, SPIRAL adapts code to take optimal advantage of the available platform features,

such as the architecture of the memory hierarchy and register banks. As a result, SPIRAL gen-

erates high-performance implementations for DSP transforms that are competitive with the best

hand-coded numerical libraries provided by hardware vendors.

In this thesis, we focus on automatic implementation and platform adaptation of filtering and

wavelet kernels, which are at the core of many performance-critical DSP applications. We formulate

many well-known algorithms for FIR filters and discrete wavelet transforms (DWT) using a concise

and flexible symbolic mathematical language and integrate it in the SPIRAL system. This enables

automatic generation and search over the comprehensive space of competitive algorithms, often

leading to complex solutions that are hardly ever considered by a human programmer.

Experimental results show that our automatically generated and tuned code for FIR filters and

DWTs is competitive and sometimes even outperforms hand-coded numerical libraries provided by

hardware vendors. This implies that the richness and the extent of the automatically generated

search space can match human ingenuity in achieving high performance. Our system generates

high-quality code for digital filtering and wavelet kernels across most current and compatible future

computer platforms and frees software developers from tedious and time-consuming coding at the

machine level.

CHAPTER 1

INTRODUCTION

Since the very early days of numerical data processing using computers, high-performance computing

has been the topic of research and steady improvement. For numerically intensive tasks, it is

important to get the most out of the available hardware. Development of high-level programming

languages, such as C and Fortran, and compiler technologies has made it possible to avoid coding

at the machine level and still utilize many features of the computing platform. However, even

today, for applications with the highest demand for speed, programmers hand tune code in assembly

to unveil the full power of the target computer architecture. The implementations become ever

more dependent on the specific features of the target platform, whose complexity increases with the

advances in design and manufacturing technology. It is desirable to automate the most difficult and

time-consuming coding tasks, first at the level independent of the underlying architecture, and then

tuning to the specific platform.

One of the most important practical problems in high-performance computing is the design of

efficient implementations of digital signal processing (DSP) operations. The goal of this thesis is to

automate the design of implementations for ubiquitous digital filters and increasingly more popular

wavelet processing systems across a spectrum of computer platforms. In this chapter, we discuss

the context and the scope of this work and the possible contribution to the larger area of automatic

performance tuning for DSP kernels.

1.1 Motivation

Numerical computing problems at hand have grown in size and complexity following the increased

capability of computer hardware. However, with the growing complexity and diversity of computer

platforms, it becomes increasingly more difficult to stay close to the achievable performance. Nu-

merical software libraries need to be tuned to rapidly changing compiler technologies, processor

designs, and machine architectures on one side, and to new numerical kernels on the other. To

fully exploit available hardware resources, the designers of efficient implementations need a compre-

hensive knowledge of the capabilities of the specific microarchitecture with all of its intricacies, as

well as a deep understanding of numerical algorithms and how to manipulate them to get the most

out of the available architecture. Thus, optimization of implementations for any given computer

platform is time and resource consuming. Furthermore, the performance of the tuned solution is

strongly correlated with the hardware for which it is targeted and typically falls far below the peak

1

performance when ported.

Having both portability and high performance are often two conflicting goals. The tuning process

has to be repeated for any new target platform and any new numerical problem. Moore’s law,

with the doubling of the transistor count every 18 months, thus, poses serious challenges to high-

performance software designers since new and more complex architectures are arriving at a fast rate.

Up-to-date numerical libraries are usually maintained by large teams of expert programmers who

hand-tune the code to a specific class of computer platforms. Every new generation of processors

reopens the cycle of implementing, tuning, and debugging.

To avoid hand coding and porting, the tuning of numerical libraries should be automated. This

is addressed by research efforts commonly known as automatic performance tuning for numerical

kernels. Ideally, general purpose compilers should provide a seamless transition between conceptual

programming techniques and high performance. In reality, compiler technology has not been able to

keep up with the complexity of the problem of tuning the software to computer architectures. There

are several reasons for the underachievement of general purpose compilers for numerical software:

• The process of code optimization is not well understood and performs well only on very simple

code segments;

• Most numerical algorithms exhibit highly complex data flow patterns that can dramatically

affect the performance on multi-level memory hierarchies found on most modern computer

architectures;

• To achieve the peak performance of numerical processors, implementations have to make use of

specialized instruction sets, such as single instruction multiple data (SIMD) and fused multiply-

add (FMA). Compilers can usually perform code optimizations only for very simple structures

to make full use of the available instructions.

• Compilers have the disadvantage of operating at the code level where much of the structural

information about the algorithms is destroyed when represented by a high-level programming

language.

The goal is to overcome limitations of general purpose compilers by automatic tuning systems.

These systems use domain-specific knowledge to generate a set of competitive algorithms, either at

installation time or at compilation time. They sometimes probe the hardware system for informa-

tion that can be used in the optimization and search for the best solution in the restricted set of

candidates, either by measuring the actual run time or using performance models. Because of the

complexity of the problem, most performance tuning systems implement only basic functions that

are used as building blocks in more complex applications.

1.1.1 Automatic performance tuning systems

At the core of performance-critical applications are linear algebra and digital signal processing

(DSP) kernels. There have been several projects designing performance tuning systems for specific

computational kernels.

2

In the domain of linear algebra computations, ATLAS (Automatically Tuned Linear Algebra

Software) and PHiPAC (Portable High Performance ANSI-C) are software packages that provide a

library of platform-optimized linear algebra routines called BLAS (Basic Linear Algebra Subroutines)

[1, 2, 3]. ATLAS focuses on optimizing dense matrix-vector and matrix-matrix multiplications.

ATLAS uses flexible blocking and loop unrolling strategies, low-level code scheduling, and removal

of unnecessary dependencies in blocks of code to achieve the desired performance. The blocking

strategies are searched to improve cache and register locality in order to minimize cache misses and

register spills. Besides blocking, ATLAS performs ordering of floating point operations to utilize the

pipelined floating point units. The scheduling is performed in order to overcome the delays caused

by latencies associated with floating point operations and prevent pipeline stalls by removing data

and instruction dependencies. ATLAS focuses specifically on BLAS routines since they have simple

structure and provide the numerical building blocks for the comprehensive linear algebra library of

routines LAPACK [4]. Porting of LAPACK is achieved by regenerating the BLAS routines for the

target platform.

Sparse matrix multiplications are used in numerous scientific computing applications. Two re-

lated projects Sparsity and BeBOP investigate automatic generation of algorithms tuned to memory

hierarchies with multi-level cache memories [5, 6]. Sparsity focuses on sparse matrix-vector multipli-

cation kernels and uses dynamic register and cache blocking methods. It profiles the target platform

using a set of measurements on a dense matrix to establish the lower bound on performance. It

then uses this information together with the approximation of the performance of a blocked sparse

matrix with a similar structure of non-zero elements to determine the optimal blocking strategy.

Automatic tuning for both dense and sparse matrices is summarized in [7].

In the area of DSP kernels, the discrete Fourier transform (DFT) tuning package FFTW has

achieved considerable success [8, 9]. FFTW provides a portable library of C subroutines for the

DFT, carefully designed to match most platforms and current compilers. FFTW uses a library

of pre-generated, highly optimized “codelets” for smaller size transforms and a flexible plan to

recursively compute larger size transforms from their smaller counterparts. This plan is flexible in

order to adapt the implementation to the target platform through search. The newest release of

FFTW also includes implementations of DCTs, DSTs, and the DHT [9]. Another package called

UHFFT uses an approach similar to FFTW to generate, search, and optimize multidimensional

FFTs with the added support for the prime factor and split-radix algorithms [10].

The SPIRAL system automatically tunes implementations for many DSP transforms to the

chosen platform [11, 12, 13]. SPIRAL automatically generates fast algorithms for DSP transforms

on the mathematical level using a computer algebra system. Algorithms are represented in an

elegant mathematical language based on a small set of carefully designed rules. Rules are applied

recursively to generate mathematical formulas that specify the data flow and the order of operations

in the algorithm. SPIRAL provides a compiler of formulas into a high-level language (C or Fortran)

to create actual implementations. At this level, the compiler provides additional implementation

options such as the degree of loop unrolling. SPIRAL then searches the space of available algorithms

and implementations using different optimization techniques to find the best solution. There is no

code library prior to the optimization. SPIRAL generates code on the run, evaluates the current

implementation, and uses the run time to navigate the search space. Besides the DFT, SPIRAL

3

includes a comprehensive set of linear transforms such the discrete sine and cosine transforms (DCTs

and DSTs), the real DFT, the Walsh-Hadamard transform (WHT), the discrete Hartley transform

(DHT), and many others.

1.1.2 Digital filtering and wavelet kernels

Digital filters are the backbone of most digital signal processing (DSP) systems. In the most general

sense, a linear digital filter is any discrete linear system identified by its transfer function. Such

systems are important as they can be realized using a small set of computational building blocks

such as adders, multipliers, and delays (memory units). However, in practice, filters are regarded

as linear systems that in one way or the other shape the spectral characteristics of a signal. Of

special importance are so-called finite impulse response (FIR) filters that can be realized as discrete

systems without feedback loops which makes them stable under any conditions. Another advantage

of FIR filters is that they can be designed to have linear phase transfer characteristics using simple

methods — a feature important in many phase sensitive DSP applications such as audio and speech

processing. For these properties and the straightforwardness of their design and implementation,

FIR filters have a widespread use in signal processing. Example applications include multi-path

echo cancelation in wireless communications, speech synthesis, image enhancement, and biomedical

signal processing, among many others.

In real-time systems, the design of FIR filter is limited to causal filters, i.e., to filters whose

response cannot occur before the excitation; however, off-line software implementations do not have

this restriction since the dimension of time becomes a simple shift in memory that can be performed

in any direction. A notion of time, however, might need to be preserved to correctly handle boundary

conditions when finite linear operators are applied to infinite signals.

Most DSP hardware platforms provide processing units that specialize in implementing multiply-

accumulate operations that occur in digital filtering. The hardware is optimized to implement filters

by using high-level parallelism and instruction pipelining and can process signals at very high rates.

Even general purpose platforms sometimes include specialized instructions, such as fused multiply-

add instructions, that allow efficient implementation of digital filters. However, implementing filters

in software is a nontrivial problem because of the complex architecture of modern computers, mul-

tilevel memory hierarchy, and deficiencies of modern compilers. The latter is a serious problem

for high-performance software developers since standard code optimization techniques are not well

suited to take advantage of the regular structure of the filtering operation. One example where gen-

eralized optimization techniques can hurt filter implementation is the case when the filter coefficients

are repeated as in the case of linear phase filters. Multiplication of the signal samples by the same

coefficient then happens at different points in time. Compilers apply common subexpression elimi-

nation to store the intermediate results for later use and avoid excessive computations. However, on

modern platforms, it is often more efficient to repeat the same operation than to store the result as

a temporary variable and then retrieve it later; this can cause costly register spills and even cache

misses. Filtering can also be performed in the frequency domain using transform-based methods.

These methods typically reduce the computational cost from O
(
n2
)
to O (n log n) but destroys the

regular structure of the computations so their advantage is size dependent.

4

Digital filters are also used for multirate signal processing, which started as a technique used

in speech processing about three decades ago. Today, multirate filter banks find applications in

image compression, audio signal processing, numerical solutions of differential equations, statistical

signal processing, and many others. Furthermore, multirate filter banks are used to implement

wavelet systems, which expand signals into subspaces providing different levels of detail in time

and frequency. Wavelet-based signal processing has become an exciting problem-solving tool in

many applications. In digital hardware, the discrete wavelet transform (DWT) implemented using

multirate filter banks provides means to apply wavelet signal processing techniques to discrete signals

[14, 15, 16]. Different DWTs have found application in image compression, detection, denoising,

communication theory, statistical estimation, numerical solutions to partial differential equations,

scientific computing, biomedical signal processing, and elsewhere.

Even though the definition of the DWT is not unique, since it can be constructed using different

wavelet bases and signal extensions, the basic structure of DWT computations is similar across

different definitions. The DWT is computed as a recursive bank of filters, so convolution is the basic

computational block. However, different factorization techniques are available, such as the lifting

scheme and lattice factorization that we discuss in Chapter 3, which reduce the computational cost at

the expense of increased critical path. Using the polyphase representation of multirate filter banks,

DWTs are converted into basic filtering blocks for which all above-mentioned filtering methods apply.

Two-dimensional filtering and 2-D DWTs are important for image processing applications. If

2-D filters are separable, they can be implemented using a Kronecker product of 1-D filters used

for construction, i.e., applied separately to rows and columns of the image. Special computational

kernels are needed for the non-separable case.

For performance-critical applications, filtering and DWT kernels often present one of the most

computationally intensive blocks. An example is the image compression coding standard JPEG2000

where the DWT is used to localize details of the image prior to quantization [17]. Providing highly

optimized portable implementations for a family of filtering and wavelet transforms has a significant

impact on the overall efficiency of these applications.

1.1.3 Existing software packages for digital filtering and wavelet applica-

tions

Due to the widespread use of filtering techniques and wavelet tools in DSP applications, there are

many available software libraries. Most of these libraries focus on providing a range of analysis

and design tools in a GUI environment and are less dedicated to achieving high performance. The

mathematical software system MATLAB provides a library of routines for wavelet system imple-

mentation and many wavelet processing and analysis tools [18]. MATLAB makes use of a library

of optimized and platform tuned subroutines for the BLAS kernel and the DFT by mainly relying

on ATLAS optimization tools and the FFTW package [7, 9]. However, it is not even clear whether

MATLAB provides optimized implementations for filters, much less for the DWT. It is possible that,

in MATLAB the transform domain methods utilize optimized FFTW libraries for real and complex

DFTs; however, the transform-domain approach might not provide the most efficient filter imple-

mentations for all filter and input signal lengths. We will extensively explore the tradeoffs between

5

speed and computational cost in this thesis. In MATLAB, the DWT is implemented in independent

stages (levels) where at each stage the input signal is filtered and then followed by downsampling

operations. MATLAB uses a straightforward implementation of Mallat’s algorithm [14] almost with

practically no optimization stages to improve performance. Further, Mallat’s algorithm is only one

of many competing alternatives, such as the lifting steps (LS) implementation [19]. The lifting

scheme reduces the arithmetic cost and provides in-place computations, which makes it a preferred

choice for numerical computation of the DWT in many problems, e.g., in the image compression

coding standard JPEG2000 [17]. The software package LIFTPACK provides C routines for fast

computation of 1D and 2D biorthogonal wavelet transforms using the lifting scheme [20].

At this point, we mention several other popular software packages for wavelet-based signal pro-

cessing:

• Wavelet Extension Pack from Math Soft;

• Mathematica Wavelet Explorer from Wolfram Research [21];

• WaveLab — a library of Matlab routines for wavelet analysis and wavelet packets from Stan-

ford [22];

• LastWave — free (GNU) signal processing software in C [23];

• QccPack, an open-source package that provides routines for wavelet based signal processing,

including the DWT, among many other compression, quantization, and coding methods [24]

• JasPer, a reference C-implementation of JPEG2000 that uses the two-dimensional DWT [25].

We emphasize that none of these software libraries provides direct solutions for automatic tuning

of filtering and wavelet kernels to different platforms. The code, at best, includes subroutines that

most likely have been hand coded, or, as in the case of MATLAB, use existing platform adaptation

packages as building blocks for constructing implementation methods.

Breitzman [26], in his Ph.D. thesis, developed a software package that automatically generates

and implements a large class of linear and circular convolution algorithms based on the Chinese

remainder theorem (CRT) and multi-dimensional convolution techniques that nest smaller convolu-

tions inside larger convolutions to reduce the operation count. MAPLE package is used to represent

and manipulate algorithms on a symbolical mathematical level and generate a large space of alter-

native solutions. Further, a proprietary compiler is used to automatically translate the algorithms

into code. Breitzman provides a detailed cost analysis for CRT-based and split-nesting algorithms

for convolutions of sizes up to 1024. The focus of this work is to provide an automatic generator of

a comprehensive space of CRT-based algorithms for smaller convolutions and analyze performance

in terms of the computational cost with respect to FFT-based algorithms.

On the other hand, hardware vendors like Intel provide hand-optimized libraries for a set of

filtering routines and wavelet transforms. Intel maintains these libraries through a large team of

expert programmers who most probably hand-tune the code in assembly to adapt it to the family of

Intel processors. Intel provides the Math Kernel Library (MKL) and Intel Performance Primitives

(IPP), libraries of routines for a variety of DSP functions. The IPP includes support for FIR and IIR

6

filters, the DWT, and other multirate filter banks. Libraries are tuned for a set of Intel processors

such as: Itanium (IA-64), Pentium 4 and Xeon (IA-32), XScale, and StrongARM.

We conclude that the existing software libraries for FIR filters and wavelet transforms are either:

• portable but not optimized and tuned to the host platform, or

• hand-optimized for a specific platform, but not portable.

To close this gap, we provide a system that will automatically generate platform-adapted code for

FIR filters and the DWT. We expect our automatically generated code to be competitive with the

best available hand-coded implementations including vendor libraries that are available for the target

platform.

1.2 Problem Statement

Automatic performance tuning systems are designed to avoid the costly cycle of re-implementing and

re-tuning implementations for numerical kernels. They try to address these two important problems:

1. Designing high-performance implementations of DSP algorithms is a complex and difficult task

that involves tuning at both the algorithmic and the implementation level.

2. Rapid evolution of computing platforms makes hand-tuned code quickly obsolete and the

tuning process has to be repeated.

Because of the growing number of performance-critical DSP applications, automatic tuning for

DSP kernels, especially DSP transforms and filters, becomes increasingly more important for scien-

tists. Despite the success achieved for the discrete Fourier transform and for several other trigono-

metric transforms (e.g., [13, 9]), digital filtering and wavelet kernels are still not automatically

tuned, although a considerable effort has been made to investigate optimization techniques for a set

of chosen platforms (see, e.g., [27, 28, 29]).

The SPIRAL system provides a set of functional blocks that enables efficient automatic generation

and translation of algorithms into C code, as well as an intelligent search module for optimization

of the implementations based on the measured run time. In addition, SPIRAL offers its own set of

verification and debugging tools that facilitate testing.

What we are trying to achieve. There are several important objectives we hope to accomplish

in this thesis. Using the current SPIRAL system and integrating filtering and wavelet kernels, we

would like to be able to

• Automatically generate a comprehensive space of competitive algorithms for FIR filters and

DWTs using a suitable and concise mathematical language;

• Automatically generate code from the algorithms represented as mathematical formulas;

• Adapt code to the target platform using available search techniques;

• Outperform or be competitive with the available hand-coded implementations and vendor

libraries.

7

Using SPIRAL, we propose to automatically generate high-performance software implementations

for FIR filters and a class of DWTs that will be competitive with the best available hand-coded

libraries.

The goal of this thesis is to design a new framework for representing and manipu-

lating existing filtering and wavelet algorithms, and incorporate this framework in

the SPIRAL system to automatically generate and tune software implementations

for FIR filters and discrete wavelet transforms (DWTs) across a wide range of plat-

forms. In other words, this thesis tries to close the gap between: 1) existing software

implementations that provide portability; and 2) hand-tuned libraries that achieve

high performance by specializing for specific architectures.

Problems we do not address. To further clarify our goals and avoid misleading implications,

we list problems that we are not addressing in this thesis.

• We do not derive new filtering and wavelet algorithms. We borrow existing algorithms avail-

able in the literature and formulate them using our symbolic mathematical language in order

to automatically represent, manipulate, and generate the space of possible alternative algo-

rithms. To achieve this, we expand the signal processing language (SPL) in SPIRAL with

additional constructs and primitives and express a comprehensive collection of existing filter-

ing and wavelet algorithms in SPL — a non-trivial task as we will show in chapters 5 and 6.

• We are not trying to optimize algorithms to run on specific architectures, nor do we attempt

to draw general conclusions on the efficiency of specific methods for FIR filter and DWT

implementations.

• We do not design and implement specific filters and wavelet systems. We enable the SPIRAL

system to automatically implement filtering and wavelet kernels as numerical building blocks,

where high performance is achieved automatically through search over a comprehensive space

of implementations.

• We do not provide a highly-efficient source code or any pre-compiled libraries for FIR filters

and DWTS. Our system generates code “from scratch” on the platform of choice by installing

the system and searching for the best adapted solution.

To meet these objectives, we need to solve several important problems and overcome several

challenges to enable SPIRAL to generate high-performance filter and wavelet implementations. We

address these challenges next.

1.2.1 Challenges

Our goal is to enable the automatic generation of high-performance implementations for FIR filters

and an entire class of discrete wavelet transforms using SPIRAL. There are several stages in the

8

process that need to be addressed and solved.

1. Define different discrete operations for FIR filtering and wavelet signal processing and identify

existing fast algorithms for their implementation;

2. Select a subset of algorithms that have properties suitable for implementation on modern

computer platforms;

3. Develop a mathematical language that will enable: i) the efficient representation of the set of

algorithms and methods; ii) easy manipulation of these representations to efficiently generate

different algorithms; and iii) preserving enough structural information to allow the machine

to interpret the mathematical formulas as programming structures;

4. Capture a comprehensive class of algorithms for FIR filters and DWTs using the developed

mathematical language;

5. Define and implement new mathematical objects in the system. Implement all algorithms

and methods using the defined objects. Verify the algorithms represented as mathematical

formulas for correctness;

6. Design templates for translating the mathematical formulas into the programming language;

7. Verify if the generated code produces the correct outputs and whether the program structure

(code schedule, loops, etc.) is as expected and designed by templates;

8. Use the existing search engine provided by SPIRAL and adjust the search techniques to suit

the specific characteristics of the mathematical description for FIR filter and DWT algorithms;

9. Enable search over the space of algorithms and implementations and ensure that the search

converges in reasonable time. If the search space is too large, determine the effective heuristics

to restrict the space of possibilities.

The above steps should enable us to use SPIRAL to generate the space of implementations,

evaluate their performance, and search for the optimized one on the target platform.

We first identify a class of discrete-time signal processing operations that represent FIR filtering,

such as the linear and the circular convolutions and the filtering operation for infinite and infinitely

extended signals on a finite number of outputs. We also define the discrete wavelet transforms in a

similar manner by using different signal models. Next, we find the existing fast algorithms for these

operations in the literature. The algorithms are usually represented in the form of mathematical

formulas with summations or even only as verbal descriptions, which are all unsuitable for machine

representation and automatic algorithm generation. The first challenge is to capture all algorithms

as mathematical formulas using a small set of constructs and operators that exhibit the structure of

the computations in a concise form, manageable from the perspective of automatic generation and

manipulation by a computer.

The next challenge is to integrate the new framework into the existing SPIRAL’s framework

initially designed for generation of DSP trigonometric transforms, test it, and use it to automati-

cally generate fast implementations. Since the filtering and wavelet algorithms have a considerably

9

different structure, many concepts and assumptions have to be revised to accommodate new trans-

forms and algorithms. For example, since the convolution operation has a very regular structure,

it is conceivable that it might sometimes be advantageous to do a more expensive straightforward

implementation of the convolution than to implement an algorithm with a lower arithmetic cost but

a more complex data flow pattern. For that reason, the assumption often used for trigonometric

transforms that a lower cost algorithm usually yields faster run times can be severely violated for fil-

ters. Furthermore, code scheduling and the standard compiler optimization techniques can adversely

affect the regular structure of computations as we mentioned in Section 1.1.2. For these reasons, the

algorithms for FIR filters and the DWTs have to be carefully analyzed, properly represented using

mathematical constructs, and optimized using the right implementation choices, such as compiler

and loop unrolling options, in order to achieve high performance.

In the following chapters of this thesis, we develop all required concepts, implement the new

framework, and demonstrate the effectiveness of the approach by conducting a set of carefully

chosen experiments. We address many practical issues as they arise and discuss the approach to

solve them. We also mention the limitations of the developed framework and the system as a whole.

1.3 Organization of the Thesis

In Chapter 3, we provide a brief overview of the SPIRAL system. The focus will be on SPIRAL’s

mathematical framework and the basic concepts on which it is built. This will provide the foundation

for the framework we develop for FIR filters and DWTs in this thesis. We also review other important

modules of the SPIRAL system and focus on properties and functions that will enable us to conduct

our experiments in Chapter 7. In this part of the thesis, we introduce the reader to the concepts

of automatic tuning of software implementations to computer platforms through efficient algorithm

generation, translation, evaluation, and optimization.

In Chapter 3, we introduce the concepts of digital signal processing, digital filters, wavelet ex-

pansions, and discrete wavelet transforms. We review the most important classes of algorithms for

efficient implementation of FIR filters and DWTs found in the literature. For most of the methods we

present only the material required for understanding the basic principles of the covered algorithms,

the notation, and the equations we will be using later to construct the computational kernels. We

provide references for readers who wish to get into more details. When necessary, we elaborate on

some of the algorithmic issues in the appendixes, mostly when the topic is not well covered in the

literature.

Chapter 4 introduces basic mathematical definitions, properties, and identities that we use to

develop the framework for FIR filters and the DWTs. For completeness, we cover some of the

well known matrix operations and overview their properties. We introduce new matrices, matrix

constructs, and operators that we need for developing the mathematical formalism for representing

the algorithms.

We develop the mathematical framework for FIR filters in Chapter 5. First, we introduce the

definitions of FIR filter transforms, the notation we use to represent them, and their properties.

Examples are used to clarify these definitions. We introduce useful transforms derived from the

basic definitions, such as circulant transforms and filter bank transforms. Using the mathematical

10

language we developed in Chapter 4, we capture all the reviewed algorithms from Chapter 3 in a set

of formal rules that spans the algorithm space.

We follow the same pattern in Chapter 6 for the DWTs. Depending on the chosen signal model,

we provide several definitions of the DWT, the exact matrix forms using the developed language,

and the inverse DWT definitions that enable perfect reconstruction. For each of the DWTs, we

capture a set of rules for their implementation, based on the algorithms covered in Chapter 3.

We set the experiments and present a selection of relevant results in Chapter 7. We choose a set

of different platforms to demonstrate the effects of platform adaptation for filter and wavelet imple-

mentations. We compare a set of frequently used methods for speed and computational cost. Several

benchmarks tests are performed on the best found filtering and DWT implementations both against

the theoretical peak performance on the host platform, and against reference implementations.

Finally, in Chapter 8 we discuss our results and identify issues that demand further investigation.

We suggest the direction of future research, extensions of the current approach, and provide pointers

for improvement of the given solutions.

11

CHAPTER 2

SPIRAL CODE GENERATOR

Performance-critical software routines typically require careful tuning of code to take full ad-

vantage of specific features of the target computer platform. In the previous chapter, we discussed

automatic performance tuning systems whose goal is to automatically tune software libraries to

continuously changing computer architectures and compiler technologies. Their purpose is to avoid

tedious and time-consuming hand coding that require architecture and algorithm experts and employ

teams of programmers.

In Section 1.1.1, we mentioned several examples of automatic performance tuning systems that

focus mainly on basic linear algebra kernels and a few signal processing transforms. These systems

use domain-specific knowledge to search for the optimal blocking or recursion strategies mostly to

tune the implementations to match the memory hierarchy of the target computer platform.

The SPIRAL system focuses on the domain of linear digital signal processing (DSP) algo-

rithms [11, 12, 13]. Instead of searching over different coding solutions to adapt to the underlying

architecture, SPIRAL formulates the problem as an optimization problem over the space of differ-

ent algorithms and implementations for the chosen task. Tuning to the platform is achieved by

automatic algorithm generation, implementation, and search over the space of efficient candidates.

Many alternative solutions and optimization techniques are represented at a very high mathematical

level, which allows SPIRAL to use the algorithmic knowledge, independent of the specific platform

features. This approach ensures high portability across current and future computer platforms, and

unifies the optimization techniques that appear common to many known algorithms in the DSP

domain. Our goal in this thesis is to integrate the mathematical knowledge about FIR filters, dis-

crete wavelet transforms, and applicable efficient algorithms into the SPIRAL framework and use

SPIRAL’s code generator and search engine to automatically find and create code optimized for

the given computer platform. In this chapter, we introduce the SPIRAL system and cover basics

of the major system components including the mathematical framework used for efficient algorithm

representation and generation, compiler techniques for mapping the mathematics into executable

code, and search strategies that produce optimized solutions given a reasonable amount of time.

2.1 SPIRAL System Overview

The SPIRAL system generates optimized platform-adapted implementations for a variety of im-

portant DSP transforms. SPIRAL takes a conceptually different approach from other performance

12

tuning systems. Different DSP algorithms are represented using concise mathematical formulas built

recursively to enable efficient generation and manipulation. The formulas are further used to per-

form general optimizations at the structural level of the algorithms, preparing them for translation

into code. SPIRAL then employs a domain-specific compiler to turn the mathematical formulas

into target code. Many standard compiler optimization techniques tailored to utilize the special

structure of DSP algorithms are performed at this level. The target code is then compiled using a

generic compiler into an executable, which is measured for performance. The process of generating

implementations is repeated for a large number of algorithms to minimize the run time. The gen-

eration of new algorithms and the choice of implementation parameters is controlled by SPIRAL’s

search engine, which efficiently navigates the space of algorithms and implementations in search for

the optimized code. Thus, SPIRAL’s approach to automatic performance tuning can be seen as

an optimization problem in the space of algorithm and implementation alternatives, where the cost

function is typically the run time at execution [13]. The optimization technique is determined by the

choice of search strategy. We now briefly explain each step of the optimization process individually.

The architecture of SPIRAL is schematically shown in Figure 2.1. We discuss each block in

the figure starting from the top. At the algorithm level, the formula generator uses a small set of

mathematical constructs and primitives to symbolically represent algorithms for DSP transforms.

The main idea behind this approach relies on the fact that many DSP algorithms exhibit highly

structured data flow patterns and recursive computation. It turns out, as we will shortly see, that

the algorithm structure can be captured in a form of decomposition rules that govern different data

flow patterns. The rules can be combined and applied recursively to provide many different ways

to decompose a transform, giving rise to numerous alternative algorithms. Due to the very regular

structure of computations in DSP algorithms, most of the decomposition rules can be represented

using a relatively small set of carefully chosen constructs. The rules are applied recursively as

many times as desired or possible, which creates mathematical formulas that express the exact

structure of the algorithm. This rule formalism enables efficient generation of the whole space

of algorithms whose extent depends on the number of rules included in the system and the size

of the problem. The algorithms that are generated and represented as mathematical formulas

in the formula generator undergo additional optimizations using formula manipulation rules. The

optimizations are performed strictly at the mathematical level to fully exploit the available structural

information and prepare the formulas for translation. The adapted formulas already provide hints

about their actual implementations, such as loop index mappings for composed permutations, but

more specific choices, such as the size of the loop body, are left to lower decision levels. The formulas

are expressed in a domain-specific language called SPL (signal processing language) and sent to the

SPL compiler that takes over the algorithm at the implementation level.

The job of the SPL compiler is to translate an SPL formula into C or Fortran code. The com-

piler uses a library of translation templates for all mathematical constructs and formula atoms and

matches them with the given formula. At this stage, the compiler employs specific implementa-

tion strategies, controlled by the search engine, such as the degree of loop unrolling on the global

and local levels. Implementation level optimization is performed to further improve code including

standard compiler optimization techniques such as common subexpression elimination, dead code

elimination, constant folding, and others, and code scheduling strategies to localize computations

13

Algorithm Generation

Algorithm Optimization

Implementation

Code Optimization

Compilation

Performance Evaluation

DSP transform (user specified)

optimized/adapted implementation

S
ea

rc
h

/L
ea

rn
in

g

controls

controls

performance

algorithm in
�����

language

C/Fortran
implementation

Algorithm
Level

Implementation
Level

Evaluation
Level

Figure 2.1: The architecture of Spiral

to match the memory hierarchy of the computing platform. Even though these optimizations are

handled by standard C or Fortran compilers, additional preparation is required for automatically

generated code that typically contains large portions of straightline code. To summarize, given a

formula, the SPL compiler produces code based on additional implementation options.

The source code is then compiled using, for example, a standard C compiler and the executable is

run and timed for performance in the evaluation module. SPIRAL invokes an outside compiler using

either a set of predefined platform-specific flags or searches for the optimal set of flags if desired. A

special timing package is used to accurately measure the run time across a variety of platforms.

The execution run time is used by the search engine to guide the generation of the next algorithm

based on some search strategy. The search engine also controls implementation options in the

formula translator, which expands the search space to a product of the algorithm space and the

implementation strategies. Thus, for a given transform, the search engine navigates through the

space of possible algorithms and their possible implementations to find the code best matched to

the target platform. Given that the search space is finite, exhaustive search could conceivably yield

the optimal platform-adapted implementation; however, in most cases, exhaustive enumeration is

not feasible in a reasonable amount of time. To overcome this limitation, SPIRAL employs various

search techniques, including dynamic programming, random search, and evolutionary search [30].

SPIRAL allows the user to specify whether the search strategies should be interleaved and whether

the search should be terminated after a period of time or let run until a terminating condition is

reached.

To summarize, SPIRAL generates an extensive space of implementations where not only dif-

ferent algorithms are tested for best performance, but also different programming constructs and

implementation strategies are used to find the ones that are best supported on the host platform.

14

The broad space of competitive implementations is efficiently searched by SPIRAL’s search engine.

The best found implementation usually contains intricate programming structures and large por-

tions of unrolled code, unlikely to be chosen by a human programmer. Searching this space of fast

alternatives ensures highly optimized, platform-adapted code for a given DSP transform.

We first introduce the fundamental concepts of SPIRAL’s mathematical framework, explain the

rule formalism and relation to the space of different algorithms, and set the ground for developing

a framework to enable SPIRAL to produce highly-optimized code for filtering and wavelet kernels.

2.2 SPIRAL’s Mathematical Framework

At the core of the SPIRAL system is the mathematical framework developed to allow efficient

representation and manipulation of DSP algorithms. Since SPIRAL focuses on the domain of linear

DSP operations, such as linear transforms and linear filtering, all objects are represented in matrix

form. Algorithms for efficient computation of DSP transforms are symbolically represented by

mathematical equations generated by a library of specific rules, much like the role of grammar rules

used to build formal languages [31].

Most of the well-known and widely used fast DSP algorithms rely on structural decompositions of

a DSP transform into smaller size transforms and mathematical primitives using the universal divide-

and-conquer approach. Algorithms can be very complicated and typically have an inherent recursive

structure that is difficult to express using standard mathematical tools. Fortunately, the structure of

most DSP algorithms is remarkably regular and conveniently expressed using mathematical operators

with nice properties and clear interpretations in terms of needed programming constructs.

To accomplish full automation of code generation and adaptation, the mathematical framework

has to provide not only the precise and concise description of DSP algorithms, but also enable easy

generation of the full spectrum of admissible algorithms and their easy manipulation and modifica-

tion. Furthermore, the mathematical description of algorithms has to be clear and unambiguous so

that a computer is able to effectively translate it into desired code. This is exactly what SPIRAL’s

framework provides and precisely what enables automated algorithm generation and search through

the space of alternative solutions.

The next sections introduce and explain several key concepts of SPIRAL’s framework that allow

the generation of the space of algorithms from the core library of mathematical rules.

2.2.1 Key concepts

In SPIRAL, all linear DSP operators are treated as matrices represented either symbolically or

explicitly by their elements. The goal in SPIRAL is the automatic implementation of important

DSP operators such as DSP transforms and linear filters, all simply referred to as transforms.

SPIRAL represents algorithms for fast implementation of transforms as matrix equations. So, the

matrix formulation of a DSP transform is the starting point of our discussion.

Transform. A transform in SPIRAL is a class of parameterized and typically highly structured

matrices. To compute the transform T or to apply the transform T to the signal x = (x0, . . . , xn−1)

means to compute the matrix-vector product y = Tx. The main goal of SPIRAL is to compute

15

a transform T as efficiently as possible. To differentiate transforms from other matrices, we write

them in bold face T. We provide a few important examples of DSP transforms.

The discrete Fourier transform (DFT) of size n is defined as

DFTn =
[

e−2πjk`/n
]

k,`=0,...,n−1
j =
√
−1. (2.1)

We say that y = DFTx is the DFT transform of the input sequence x.

The discrete cosine transform (DCT) of type 2 is given by

DCT-2n =
[

cos πk(2`+1)
2n

]

0≤k,`<n
. (2.2)

The discrete Hartley transform (DHT) is defined as

DHTn =
[
cos 2πk`

n + sin 2πk`
n

]

0≤k,`<n . (2.3)

The linear convolution is represented by the convolution transform

Convn(h) =


















h−r
...

. . .

hl · · · h−r
. . .

. . .

hl · · · h−r
. . .

...

hl


















︸ ︷︷ ︸

n columns

, h =







h−r
...

hl






. (2.4)

Transforms can be defined also recursively. For example, the Walsh-Hadamard transform is

defined as

WHTn =

[

WHTn
2
WHTn

2

WHTn
2
−WHTn

2

]

, WHT2 = DFT2 =

[

1 1

1 −1

]

. (2.5)

Constructs and Operators. There are several matrix constructs that are indispensable in

representing DSP transforms and their algorithms. As an illustration, we provide a few examples

in this section. We shall go into much more detail in Chapter 4 where we define all required

mathematical objects.

The Kronecker or the tensor product is at the top of the list of useful constructs. Consider the

m×n matrix A = [ai,j] and r× s matrix B = [bi,j]. The tensor product is the mr×ns block matrix

C of the following form

C = A⊗B =







a0,0B . . . a0,nB
...

. . .
...

am,0B . . . am,nB






. (2.6)

For example, if In is the n × n identity matrix then the tensor product C = (Is⊗ A) is a block

diagonal matrix with the matrix A repeated s times on the diagonal.

As we will shortly see, the tensor product has a pervasive presence in systematic analysis and

representation of DSP algorithms; however, its importance reaches far beyond the realm of DSP

transforms [32].

16

Another well-known and useful construct is the direct sum of matrices. For matrices A and B

defined above, the direct sum is defined as

A⊕B =

[
A
B

]

. (2.7)

We also define new matrix constructs specialized for representation of filters and wavelets. The

column overlapped tensor product, for example, is given by

Is⊗kA =










A
A

A
· · · ·

A










, (2.8)

where s is the number of times matrix A is repeated, and k is the number of overlapping rows.

We provide just this single example at this point. More will be said in Chapters 4 and 5 when

we introduce other constructs and transforms.

Besides matrix constructs, we define many matrix operators. Operators in SPIRAL are special

parameterized matrices that do not represent transforms, i.e., the matrices that are not indepen-

dently implemented, and are used as auxiliary elements in transform algorithms. The most often

encountered examples are various permutation matrices whose purpose is to reorder the processed

data. An example is the so-called stride permutation matrix that performs the following mapping

of indices:

lrss :







{0, . . . , n− 1} 7→ {0, . . . , n− 1}
i 7→ i · s modn, i = 0, . . . , n− 2

i 7→ n− 1, i = n− 1

. (2.9)

In matrix form, the stride permutation is, e.g.,

L4
2 =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






, (x0, x2, x1, x3)

T = L4
2 x. (2.10)

Rules. Decomposition or breakdown rules are mathematical identities that specify how to factor

a transform into matrices that are either sparser, have lower complexity, or exhibit a structure that

has some advantage for implementation. A typical rule exploits the redundancies of the transform

computations and implicitly uses common subexpression elimination to reduce the computational

cost. Fast algorithms rely on such “good” rules for transform decomposition where the term “fast”

refers to the reduced arithmetic cost. However, sometimes, the purpose of breakdown rules is not

to reduce the cost but to improve the data access for locality or to simply provide a bridge to other

transforms and rules.

We illustrate the concept of rules with a familiar example. It can be easily verified that the DFT

of size 4 can be decomposed using the following factorization:

DFT4 =







1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j






=







1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1













1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 j













1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1













1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1







(2.11)

17

where j =
√
−1. If we regard multiplication with j and the sign change as no operations, the

original DFT4 requires 12 complex additions whereas in the decomposed form (2.11) there is a need

for only 8 additions. The original matrix is decomposed into a product of sparse matrices by taking

advantage of repeated patterns in the DFT matrix. At this point we emphasize that, not only are

the matrices sparse, but they are also highly structured. We observe that the first matrix from the

right is precisely the permutation matrix L4
2 in (2.10). The second matrix from the right is a block

diagonal matrix with blocks being DFT2 defined in (2.5). Using the tensor product (2.6), we can

write this matrix as I2⊗DFT2. Similarly, we represent the first matrix from the left as DFT2⊗ I2.

We can now write the decomposition in (2.11) as

DFT4 → (DFT2⊗ I2) T
4
2 (I2⊗DFT2) L

4
2 (2.12)

The diagonal matrix T4
2 will be defined shortly. It turns out that the above decomposition is a special

case of the famous divide-and-conquer approach for computing the DFT, first invented by Cooley

and Tukey, known as the fast Fourier transform (FFT) algorithm [33]. The decomposition can be

generalized to any DFT of composite size n = p · q and represented using the same notation [34].

Cooley-Tukey Rule

DFTn → (DFTp⊗ Iq) T
n
q (Ip⊗DFTq) Lnp . (2.13)

The twiddle matrix Tn
q is a diagonal matrix of complex roots of unity defined as

Tn
q =

p−1
⊕

i=0

diag(1, wi·1n , . . . wi·(q−1)
n)

where wkn = e2πj
k
n [35].

The identity (2.13) is a breakdown rule. Whenever we use rules, we denote them using the arrow

sign instead of the equality sign. In the most general form, a rule is denoted as

Tn → Rtype

{

T′r,T
′′
s , . . . ,T

(n)
t

}

, (2.14)

which states that the rule Rtype is applied to the transform Tn and decomposes it into either smaller

transforms of the same type or other transforms of the same or smaller size. The Cooley-Tukey (CT)

rule (2.13) can thus be seen as

DFTn → RCT {DFTp,DFTq} .

It should be obvious that rules can be applied recursively. In the above example, if the sizes p and

q are composite p = r · s, q = u · v, then we have

DFTn → RCT {RCT {DFTr,DFTs} ,RCT {DFTt,DFTu}} . (2.15)

The recursion can be continued as many times as possible, leading, in this example, to all possible

mixed-radix Cooley-Tukey FFT algorithms, as we will discuss shortly.

We now compare the rule (2.13) with the standard double-sum notation of the same decompo-

sition usually found in the literature

yk1+qk2
=

p−1
∑

n2=0

q−1
∑

n1=0

(
xpn1+n2

wk1n1
q

)
wk1n2
n wk2n2

p . (2.16)

18

Some of the major advantages of the rule notation that arise from the above comparison can be

summarized in the following list.

1. The representation is very concise and the computational stages are clearly separated and

ordered going from right to left;

2. The recursive structure is obvious since the rule can be applied again to the transforms on the

right side of the identity;

3. The rule captures important structural information essential for designing the actual imple-

mentation. For example, the construct Ip⊗DFTq suggests that the DFT of size q has to be

applied in parallel p times after reordering of the input data using the stride permutation Lnp .

After scaling the result with the twiddle matrix, one need to apply the DFTs of size p to the

data reordered at stride q as suggested by DFTp⊗ Iq.

Every transform has a set of associated decomposition rules that can be used freely as long

as the conditions, such as the size of the transform, are satisfied. In that case, we say that the

rule is applicable and by applying the rule we mean substituting the transform with (2.14). As an

illustration, Table 2.1 lists some of the rules for the transforms we defined in this section. The

operators P and Q are permutations and S are summation matrices. For more details, the reader

is referred to [13, 35, 36, 37].

Table 2.1: Rule examples

Trigonometric Rule DFTn → CosDFTn+
√
−1 · SinDFTn

Good-Thomas Rule DFTn → Pn (DFTp⊗DFTq)Qn, n = p · q, gcd(p, q) = 1

Cosine-DCT Rule CosDFTn → Sn ·
(
CosDFTn/2⊕ DCT-2n/4

)
S′n · Ln2

Sine-DCT Rule SinDFTn → Sn ·
(
SinDFTn/2⊕ DCT-2n/4

)
S′n · Ln2

DCT 2-4 Rule DCT-2n → Pn · (DCT-2n/2 ⊕ (DCT-4n/2)
P ′n) · (In/2⊗F2)

P ′′n

Overlap-Add Rule Convn(h(z))→ Is⊗l+rConvn/s(h(z)) , s |n

Iterative WHT Rule WHT2k → ∏s
i=1

(
I2k1+···+ki−1 ⊗WHT2ki ⊗ I2ki+1+···+ks

)

Rule trees and formulas. In the example involving the Cooley-Tukey rule (2.13), we have

seen how to recursively apply rule (2.15). It is clear that rules can be applied recursively as long as

there exists a transform on the right side of (2.14), and as long as there is at least one rule in the

library for that particular transform. To make sure a transform has at least one applicable rule, we

define the terminal rules or the base case rules which take the form

Tn → Rtype {} . (2.17)

19

The terminal rules apply only if specific conditions are satisfied and cannot be followed by any other

rules. After a terminal rule is applied, the recursion stops. For example, the base case rule for the

DFT is simply

DFT2 →
[

1 1

1 −1

]

, (2.18)

which means that the recursion can be terminated only after the size 2 DFT is reached.

The recursive application of rules can be naturally represented using tree structures we refer to

as rule trees. Rule trees are determined by the root transform to be decomposed and by the type

and the order of applied rules. We explain this concept using an example.

Consider again the Cooley-Tukey rule (2.13) and apply it to the DFT8. Since we can factor 8

as either 8 = 4 · 2 or 8 = 2 · 4, there are two ways to apply the rule. For example,

DFT8 → (DFT2⊗ I4) T
8
4 (I2⊗DFT4) L

8
2 . (2.19)

After we apply the same rule again on DFT4, we obtain

DFT8 → (DFT2⊗ I4) T
8
4

(
I2⊗ (DFT2⊗ I2) T

4
2 (I2⊗DFT2) L

4
2

)
L8

2 . (2.20)

As the final step, we apply the terminal rule (2.18) to the DFT2.

DFT8 →
([

1 1

1 −1

]

⊗ I4

)

T8
4

(

I2⊗
([

1 1

1 −1

]

⊗ I2

)

T4
2

(

I2⊗
[

1 1

1 −1

])

L4
2

)

L8
2 . (2.21)

The recursion terminates at this point since there are no more transforms on the right side of the

identity. The formula we obtained represents one of the possible algorithms based on the Cooley-

Tukey approach.

When a formula is fully expanded, such as the formula above, it uniquely represents an algorithm.

In the rule tree representation, this means that the leaves are terminals, i.e., there are no transforms

in the leaf nodes. We call such a tree a fully expanded rule tree, which graphically represents an

algorithm for computing the transform at the root node, whereas the corresponding formula is a

mathematical description of the same algorithm. This description is obtained using similar principles

used to construct formal languages [31]. For that reason, the whole mathematical framework for

representation of the DSP algorithms is called the signal processing language (SPL).

Let us go back to our example. The recursive application of the Cooley-Tukey rule led to

formula (2.21). The recursion can be represented by the rule tree shown to the left in Figure 2.2.

The root node is the DFT8 transform that is decomposed using the Cooley-Tukey rule into the

DFT2 and DFT4, where the latter is further decomposed using the same rule into two DFT2

transforms. At that point, all DFT2 transforms are terminated using rule (2.18) resulting in the

fully expanded rule tree.

A rule tree is determined by the order of rules that are applied to transforms that represent the

nodes of the tree. The types of rules applied at each node are denoted on each level of the rule tree.

In this example, the only applied rule was the Cooley-Tukey rule. The terminal rules applied to

each leaf node are omitted from the tree graph to save space.

As we show in Figure 2.2, there is one more way to expand the rule tree from theDFT8 using just

the Cooley-Tukey rule, by decomposing it into the DFT4 to the left and DFT2 to the right. These

20

Rule Trees
DFT8

´
´́+

Q
QQs

Cooley-Tukey

DFT2 DFT4

´
´́+

Q
QQs

Cooley-Tukey

DFT2 DFT2

DFT8

´
´́+

Q
QQs

Cooley-Tukey

DFT2 DFT4

´
´́+

Q
QQs

Cooley-Tukey

DFT2 DFT2

Formulas

(DFT2⊗ I4) T
8
4 (I2⊗ DFT4) L8

2 (DFT4 ⊗ I2) T
8
2 (I4⊗DFT2) L

8
4

³³
³1

PP
Pi

(DFT2⊗ I2) T
4
2 (I2⊗DFT2) L

4
2

Algorithms

rrrrrrrr

rrrrrrrr

rrrrrrrr

rrrrrrrr

x0

x4

x2

x6

x1

x5

x3

x7»»
»»»

»:
-

XXXXXXz
-

»»»
»»»:
-

XXXXXXz
-

»»»
»»»:
-

XXXXXXz
-

»»»
»»»:
-

XXXXXXz
-

w2
8

w2
8

©©
©©

©©*

-
©©

©©
©©*

-
HHHHHHj

-
HHHHHHj

-
©©

©©
©©*

-
©©

©©
©©*

-
HHHHHHj

-
HHHHHHj

-

¡
¡
¡
¡
¡
¡µ

-
¡
¡
¡
¡
¡
¡µ

-
¡
¡
¡
¡
¡
¡µ

-
¡
¡
¡
¡
¡
¡µ

-@
@
@
@
@
@R

-@
@
@
@
@
@R

-@
@
@
@
@
@R

-@
@
@
@
@
@R

-

w3
8

w2
8

w1
8

y0

y1

y2

y3

y4

y5

y6

y7

rrrrrrrr

rrrrrrrr

rrrrrrrr

rrrrrrrr

x0

x4

x1

x5

x2

x6

x3

x7»»
»»»

»:
-

XXXXXXz
-

»»»
»»»:
-

XXXXXXz
-

»»»
»»»:
-

XXXXXXz
-

»»»
»»»:
-

XXXXXXz
-

w3
8

w2
8

w1
8

©©
©©
©©*

-
©©

©©
©©*

-
HHHHHHj

-
HHHHHHj

-
©©

©©
©©*

-
©©

©©
©©*

-
HHHHHHj

-
HHHHHHj

-

w2
8

w2
8¡

¡
¡
¡
¡
¡µ

-
¡
¡
¡
¡
¡
¡µ

-
¡
¡
¡
¡
¡
¡µ

-
¡
¡
¡
¡
¡
¡µ

-@
@
@
@
@
@R

-@
@
@
@
@
@R

-@
@
@
@
@
@R

-@
@
@
@
@
@R

- y0

y1

y2

y3

y4

y5

y6

y7

Figure 2.2: Rule trees = formulas = algorithms.

two trees are very similar but their formulas, shown below the trees, are different, proving that they

lead to different algorithms. To illustrate the difference, we also include the data flow diagram for

each of the two algorithms at the bottom of the figure. The diagrams show that the computational

cost of both algorithms is exactly the same but the data flow patterns differ considerably.

2.2.2 Algorithm space

The rule trees, formulas, and algorithms are therefore tightly related. For each algorithm, there is

exactly one rule tree and the corresponding mathematical formula that is obtained by substituting

transforms with the specified rules going from the root node all the way down the rule tree. This

way, even the most complicated algorithms can be represented by a simple tree data structure where

only the applied rules and the nodes are needed to fully specify the algorithm. Furthermore, the

modifications and variations of similar algorithms can be easily obtained by changing the order of

the applied rules and substituting and swapping the subtrees. This is a remarkable advantage of

the rule tree representation because it allows efficient generation of a large number of algorithms

by properly choosing the right set of rules. As we have seen in our example, different instantiations

21

DFT16»»»»»»»»9

XXXXXXXXz
Trigonometric

CosDFT16 SinDFT16

´
´́+

Q
QQs

Sine-DCT

SinDFT8 DCT-24

¡¡ª @@R
SinDFT4 DCT-22

¡¡ª @@R
DCT 2-4

DCT-22 DCT-42

´
´́+

Q
QQs

Cosine-DCT

CosDFT8 DCT-24

¡¡ª @@R
Cosine-DCT

CosDFT4 DCT-22

¡¡ª @@R
DCT 2-4

DCT-22 DCT-42

Figure 2.3: A DFT16 rule tree

of the Cooley-Tukey rule (2.13) can be applied in different combinations, all of which generate rule

trees that represent all possible mixed-radix FFT algorithms.

The number of rule trees and the corresponding algorithms generated using the rule mechanism

depends on the transform size and the number of applicable rules at each decomposition stage. Even

though there are typically only a few rules per transform, the number of algorithms is still excessively

large even for moderate size transforms because rules often cross over to other transforms so that

many more rules for other transforms participate in the expansion. For the DFT, there are many

other rules besides the Cooley-Tukey rule, e.g., the Good-Thomas and the trigonometric rule shown

in Table 2.1. As an example, by combining the rules from the table, we can derive a very large

number of rule trees. One such rule tree is shown in Figure 2.3. In general, the number of different

algorithms grows exponentially with the size of the transform and the number of applicable rules.

SPIRAL, for example, reports more than 1019 different algorithms for the DCT-264.

As a final note, we mention that in some cases the transforms are related to one another by a

simple transposition. In that case, the rules that apply to one transform apply also to another by

simply transposing them. For example, since the DFT transform is symmetric then DFT = DFTT

and every DFT rule that we transpose will also apply to the DFT. Thus, the transposed Cooley-

Tukey (CT) rule

DFTn → Lnq (Ip⊗DFTq) Tn
q (DFTp⊗ Iq) , (2.22)

will also be valid. For our DFT8 example, this means that we can have additional rule trees by

invoking the transpose RT
CT instead of the regular RCT . It is interesting to also note that the left

rule tree in Figure 2.2 is, in fact, the decimation-in-time (DIT) radix-2 FFT algorithm for theDFT8,

whereas the right rule tree, with all CT rules substituted by the transpose version (2.22) represents

the decimation-in-frequency (DIF) radix-2 FFT algorithm [38].

2.2.3 Formula optimization

The generation of algorithms is facilitated by using the rule formalism and the concept of rule trees.

The recursive substitution of rules in rule trees generates formulas that precisely define the data

flow and the order of computations, i.e., algorithms. The formulas capture important structural

information about the algorithms. The permutation matrices, for example, suggest how the data

22

should be ordered or readdressed before actual arithmetic operations take place. The tensor product

suggests the use of loops in the program. In our DFT example, the tensor product of the form

I4⊗DFT2 suggests that the DFT of size 2 is implemented four times, possibly in a loop. It is up to

the formula translator, the SPL compiler, to determine how to actually implement these constructs.

Before the compiler is invoked, however, it is advantageous to use the high-level structural infor-

mation contained in a formula to perform additional optimizations symbolically rather than on the

code level. This is achieved by using formula manipulation rules as well as by intelligently combining

the dependent elements of the formula.

As an example, consider an n× n matrix A and the following identity

A⊗ Is = Lsnn (Is⊗A) Lsns . (2.23)

The identity is one of the manipulation rules that suggests that the tensor product DFT4⊗ I2 can

be computed as L8
4 (I2⊗DFT4) L

8
2, i.e., as two DFTs of size 4 in a loop with the inputs readdressed

as suggested by the stride permutation L8
2. Further, stride permutations can be fused together using

manipulation rules such as

Lrstr Lrsts = Lrstrs . (2.24)

Many other manipulation rules for tensor products and stride permutations can be found in [32, 34].

Since the explicit reordering of data is considered very expensive on most architectures because

it often violates the locality constraints, one of the most effective optimization techniques is the

fusion of successive permutations, such as
(
I2⊗L4

2

)
L8

2 in the DFT8 example (2.20), and also the

fusion of permutations and other formula elements such as the tensor product of matrices, e.g.,

(I2⊗DFT2) L
4
2. This is achieved by representing constructs and permutations using the sums of

gather and scatter operators that solve the readdressing problem by composing simple index mapping

functions according to a set of separate function composition rules. Much more on such optimization

techniques can be found in [39].

All high-level symbolic computations and representations of data structures such as rule trees are

implemented in SPIRAL using the GAP computer algebra system [40]. The GAP system already

provides the framework for symbolic mathematical computations for matrices and matrix constructs

and can perform exact arithmetic for rational numbers and cyclotomic irrationals, such as square

roots of rational numbers and twiddle factors. Another advantage of GAP is that it is open source and

can be extended to fit the needs of SPIRAL. Since the search engine needs to control the generation

of rule trees and since most implementation options can be specified using tags in formulas, the

search engine is also implemented in GAP to take full use of the efficient algorithm generation

framework.

2.3 Translation Into Code

After the algorithm is generated as a formula and several optimization steps are performed at the

formula level, the second level of the SPIRAL, the implementation level (see Figure 2.1), translates

the formula into code. This level is also called the SPL compiler since it translates the algorithms

23

written in the SPL language into the target code. The SPL compiler can be divided into two separate

sub-levels: implementation level and optimization level.

Degree of loop unrolling. Before the actual compilation, every formula written in the SPL

language is tagged with parameters that specify certain implementation choices. One example is

the choice of the degree of loop unrolling that determines the maximum size of the block of loop

code that is converted into a block of straightline code. The tags can be placed locally on elements

and parts of formulas to specify exactly which portions of the algorithm need to be loop unrolled.

Conversely, the size of blocks for unrolling B can be also set globally in which case every matrix or

sub-formula of size smaller than B will be unrolled at the compilation. It turns out that in most

cases the local tagging does not improve considerably over the global setting [12].

Templates and intermediate code generation. Elements of a formula, such as constructs

and parameterized matrices, are matched with a library of code templates. A template consists of

a head that is written in the SPL language and represents an elementary part of a formula, and

the body that contains a code fragment written in C-like language that implements that formula

element. The head of the template can be a mathematical construct, such as the tensor product, a

matrix operator such as the stride permutation, or a full sub-formula. The purpose of a template is

to substitute an element of a formula with the code fragment of the matching template. Templates

also include conditions, such as the size of the element, under which the substitution can occur. A

template for the stride permutation Lns is given here as an example

Lns [n ≥ 1 ∧ s ≥ 1 ∧ s modn = 0]

blk = n / s

do i0 = 0..str-1

do i1 = 0..blk-1

y[i1 + i0*blk] = x[i0*str + i1]

end

end

The template is matched with the symbol Lns every time the condition [n ≥ 1∧s ≥ 1∧s modn = 0]

is satisfied and substituted for the given code fragment. Let L6
3 be the given stride permutation.

The substitution yields

do i0 = 0..2

do i1 = 0..1

y[i1 + i0*2] = x[i0*3 + i1]

end

end

If the size n is lower than the global unrolling size B, then the code is unrolled to

y[0] = x[0];

y[1] = x[3];

y[2] = x[1];

y[3] = x[4];

24

y[4] = x[2];

y[5] = x[5];

The SPL compiler builds an abstract syntax tree from the formula and recursively substitutes

the constructs and matrices with the code fragments going from the top of the tree down to its

leaves. The local variables in the substituted code are given global names to link the code fragments

into the whole code and a common name space. Code from the templates is the intermediate code

that is further subject to several code optimization techniques.

Compiler optimization. The intermediate code for the translated formula is further optimized

using the standard compiler optimization techniques. The intermediate code is represented using

the single static assignment, which means that each variable is assigned a value only once in the

entire code segment. This simplifies the optimization methods that include constant and copy prop-

agation, dead code elimination, algebraic simplifications, common subexpression elimination, and

array scalarization [13]. The optimizations are interdependent. For example, constant propagation

can allow new algebraic simplifications that can, in turn, create new constants that need to be

propagated further. Hence, several cycles of the optimization steps are needed to converge to the

desirable solution. The iterations are halted when the entire optimization pass does not change the

code.

The optimizations performed at the intermediate code level might seem redundant since the

target code is compiled using the standard C or Fortran compiler, which have all of the above opti-

mization steps already built in. However, the standard general purpose compilers cannot optimize

well code generated by a machine since such code typically involves long portions of straightline

code [2, 41, 42, 43]. The SPL compiler, thus, prepares the code in a way to make the job of the

standard target code compiler easier.

We also note that, in addition to standard code optimization techniques, SPIRAL also enables

various code scheduling methods to achieve better locality. The goal is to optimize register allocation

and usage, and minimize the number of register spills.

Target code generation. After optimization of the intermediate code, the last step in the

code generation process is to translate the intermediate code into one of the target codes. SPIRAL

currently provides backends for generation of C and Fortran target codes including the generation

of code supporting special instruction sets such as fused multiply-add (FMA) and single instruction

multiple data (SIMD), also known as vector instruction sets, for different standards.

The target code backend inserts initialization functions and constant tables, provides proper

function declarations, and makes sure that all programming constructs are assigned the right syn-

tax. If, in addition, the FMA backend is enabled, it reorders the code using the directed acyclic

graph (DAG) representation and substitutes successive additions and multiplications with the FMA

instructions [44].

SPIRAL further provides the SIMD backend that generates vector code for a variety of propri-

etary SIMD instruction sets, such as SSE2 on Pentium 4 based platforms and AltiVec for Motorola

platforms. Utilizing SIMD instruction sets can lead to a dramatic boost in performance. Theo-

retically, 4-way SIMD instructions, such as AltiVec, could lead to four times speedup. However,

most standard C/Fortran compilers cannot efficiently vectorize code except for algorithms with very

25

simple structure, which is not the case for most DSP algorithms. SPIRAL handles the problem at

the formula level. Special formula manipulation rules are applied to extract the constructs that can

be computed using vector instructions. For example, given a formula F , a construct that occurs

very often in DSP formulas is

F ⊗ I4 . (2.25)

Scalar code for this formula implements y = (F ⊗ I4)x. However, using a set of 4-way vector

instructions, the code can be implemented as y = Fx where each scalar instruction can be replaced

by a corresponding vector instruction, e.g., scalar additions with 4-way additions, and so on. To

preserve the portability and avoid compiler limitations, all algorithm manipulations are done at the

high formula level, and the special instructions are implemented as a set of C macros on top of

current vector extensions. For much more detail, we refer the reader to [45, 46, 47].

2.4 Verification and Runtime Measurements

The process of code generation proceeds through several steps and the overall correctness of the

produced code depends on the correctness of each stage. If the generated algorithm implementation

does not produce the expected output for a given input, tracking the error in such complex system

could prove to be very involving. To facilitate debugging, SPIRAL provides verification at two major

levels: 1) verification of rule trees/formulas checks the correctness of rules and generated rule trees;

2) verification of the code tests whether the produced code outputs the right result for fixed input

data.

Rule and formula verification. At the formula generator level, the first step in verification

is to check the correctness of the breakdown rules for each transform. We mentioned earlier that

each transform is a parameterized matrix. A rule is verified by first applying it to the transform,

converting the resulting formula to a matrix, and, finally, comparing the matrix to the transform

definition. If the transform coefficients are rational numbers or cyclotomic irrationals, the element-

wise comparison is exact and the verification either returns true or false. In the case of filters and

wavelet transforms, the coefficients can be real numbers represented in finite precision, as we shall

see later in this thesis. The verification returns an error that is compared to a preset threshold to

determine whether the rule is correct or not.

A rule tree is verified similarly, by recursively converting the sub-formulas to matrices starting

from the leaf nodes and going up the tree. The resolution of formulas into matrices is performed

symbolically since all objects and constructs of the SPL language are symbols in GAP. Each symbol

has a matrix definition or is defined as a matrix operation. The GAP framework is then used to

perform matrix calculations.

It is worth mentioning again that the whole verification is performed solely at the mathematical

level without generating code. If an error occurs at this level, it is certain that either the rules are

incorrect or the matrix definitions of involved formula elements need to be checked.

Code verification. SPIRAL’s verifier can also check the correctness of the generated code.

The principle is similar to the verification on the formula level: the comparison is made between the

code obtained by the direct implementation of the transform T as a matrix and the code produced

26

for the tested formula F — the actual algorithm for the given transform. In other words, SPIRAL

generates code for the tested algorithm represented by the formula ỹ = Fx and also code for the

transform implemented as a straightforward matrix-vector multiplication y = Tx. Both programs

are executed using the same input x. The error ‖ỹ− y‖, based on a chosen norm, is compared to a

threshold determining whether the code is correct or not.

The choice of the input test vector x can affect the result. SPIRAL offers two choices: the test

input is randomly chosen, or the code is tested against all vectors from the standard basis

ei = (0, . . . 0, 1
︸︷︷︸

i−th

, 0, . . . , 0), i = 1, . . . , n

where n is the size of the input. The standard basis verification is complete because SPIRAL

implements only linear transforms for which the standard basis spans all possible cases. On the

other hand, in the case of the random vector verification, it can happen that the incorrect code

passes the test. This, however, happens in very rare cases. Another alternative is to perform a

similar comparison between two different formulas.

SPIRAL can perform extensive tests on the whole space of transforms and algorithms by gen-

erating random rule trees for random transforms and verifying the code. The tests can be run

periodically for a limited time to check for bugs in the system.

Run time measurement. Algorithm and implementation optimization in SPIRAL requires a

well defined and stable performance measure. The concepts of algorithm generation and optimization

on which the SPIRAL system is based do not depend on the chosen cost measure. SPIRAL allows

the user to specify the cost measure suited to the needs of the application. For example, the cost to

be optimized can include accuracy of the implementation, instruction count, or arithmetic cost. In

this thesis, however, we exclusively use run time as the cost measure.

To obtain a stable run time, SPIRAL measures the duration of the code execution multiple times

and then averages the measurements. This is especially important for small transforms since the

relative error due to compulsory cache misses and the current state of the system can be significant

for short code. For the same reason, the first measurement is usually discarded as an outlier and the

remaining measurements are averaged. To achieve portability, the C-library timing routine clock()

is used to measure the run time. However, more precise built-in cycle counters are used whenever

available (e.g., time stamp counters on Pentium platforms). If the timing routine is more precise,

the time spent in the measurement is shorter since fewer measurements are needed to achieve the

same accuracy.

2.5 Search

So far, we have explained the complete process of automatic algorithm generation and implemen-

tation in SPIRAL, from its conception using a small set of abstract rules to the actual optimized

code. If we go back to Figure 2.1 that shows the architecture of the SPIRAL system, we see that

this process is executed linearly stage by stage from the transform to fast code. Even though“good”

breakdown rules guarantee a low cost algorithm and even though the formula and code optimization

steps ensure that the implementation is efficient, different algorithm and implementation choices can

27

have a very significant impact on performance. As we shall see in Chapter 7, algorithms with the

same operations count can have run times that differ significantly, sometimes even by a whole order

of magnitude. This is due in part to the significant impact on the run time of the movement of data

up and down the memory hierarchy on modern computer platforms, as well as the intricacies of

general purpose compilers. Only some combinations of algorithms and implementation choices can

yield really fast run times, and the choice heavily depends on the underlying computer platform.

The purpose of the search engine is to navigate the space of numerous alternatives in an efficient

way, evaluate the choices, and choose the implementation that runs the fastest on the target platform.

If the search space is broad enough, we can claim that such implementation is well adapted to the

platform. The search process loops through the system trying to fine tune the algorithms and their

implementations to achieve the best possible run time.

The search engine has to be able to control the formula generation and implementation choices

and modify them according to the run time measurements obtained from the evaluation module. A

straightforward method for searching for the tuned implementation generates all possible algorithms

based on SPIRAL’s finite set of rules, and all possible implementations using a set of parameters,

such as the degree of loop unrolling, and evaluates all of them to find the best solution. For

example, given a DFT transform and the Cooley-Tukey rule (2.13) only, SPIRAL can generate all

mixed-radix CT algorithms with arbitrary degree of loop unrolling. For the DFT of size 64 and

larger, even when we restrict the search to one rule, this exhaustive search is unfeasible. Clearly,

more efficient optimization techniques are required.

2.5.1 SPIRAL’s optimization techniques

SPIRAL provides several optimization techniques that traverse either the entire search space or the

restricted space to find a sub-optimal solution:

1. Exhaustive search generates and evaluates all possible rule trees and implementation options

for a given transform. A rule tree with the current best run time is saved for comparison.

When the whole space is exhausted, the best found code is precisely the desired optimal

implementation.

2. Random search generates a preset number of random rule trees and measures the run time of

the implementations generated by SPIRAL to determine the best one.

3. Dynamic programming is suitable for this optimization problem due to the tree structure of

the algorithm representation. The optimization is first performed on the leaf nodes and the

best found implementations are stored. The search is then repeated at the next higher node

in the rule tree where the best found sub-tree is used for the lower nodes.

4. Evolutionary search performs genetic algorithm search for the best code. A set of rule trees is

first randomly generated and then evolved using cross-breeding and mutation techniques on

the best candidates to create a next, better performing generation.

We discuss in more detail dynamic programming, which is the most frequently used and fastest

optimization method, as well as the evolutionary search, which often provides better performing

28

implementations.

Dynamic programming. Dynamic programming (DP) was initially developed to solve opti-

mization problems for nonlinear time-varying systems [48]. The technique is based on the assumption

that the system satisfies the principle of optimality, which states that if the optimal dynamic path

is found then the optimality holds starting from any point on that path. For a discrete problem,

the principle of optimality can be translated in the following way. If the optimal path is found that

minimizes the cost starting from stage 0 and ending at stage N , then the same path is optimal

starting from any point n ∈ {1, . . . , N − 1}. The impact is the following: the optimization can be

simplified by starting from the last stage N − 1, finding the optimal cost-to-go, and embedding the

solution into the larger problem starting from stage N − 2. By alternating the optimality princi-

ple and embedding technique, the optimization can continue recursively to encompass the entire

interval [0, N]. Dynamic programming typically reduces the cost of the optimization problem from

exponential to polynomial in the number of stages.

It is easy to see how the DP approach applies to the rule tree representation of algorithms.

Given a rule tree R, the optimization starts at the leaf nodes. Since the size of the leaf nodes is

usually very small or the number of available rules is small, the exhaustive search to find the optimal

solution is feasible. The best found implementation for each node is stored efficiently into a hash

table by recording the node (the transform), the recursive rule tree structure for that algorithm,

and the implementation options. The DP then performs exhaustive search for the node that is one

level higher but at this point applies the principle of optimality and substitutes the best found sub-

tree, retrieved from the hash table, for every node below the current root node. When the optimal

solution is found it is again stored in a hash table and the DP moves further one level up.

Consider a few simple rule tree examples for the DFT we presented in Figure 2.2 that used only

the Cooley-Tukey (CT) rule. To make the example more meaningful for explaining the DP search,

in addition to the CT rule RCT (2.13), we apply also the transposed CT rule RT
CT (2.22). The DP

starts by first expanding rule trees top down. In this case the DFT8 is first looked up in the hash

table to check if the best rule tree has already been found. If the hash table entry does not exist,

the transform is expanded using RCT and RT
CT , with a total of 4 different decompositions.

Expansion 1

DFT8

´
´́+

Q
QQs
RCT

DFT4 DFT2

DFT8

´
´́+

Q
QQs
RCT

DFT2 DFT4

DFT8

´
´́+

Q
QQs
RT
CT

DFT4 DFT2

DFT8

´
´́+

Q
QQs
RT
CT

DFT2 DFT4

The only transforms at the lower level are DFT2 and DFT4. DP then continues expanding

the lower level transforms, assuming they are not in the hash table, starting with the DFT4. Two

expansions are possible in this case.

Expansion 2

DFT4

´
´́+

Q
QQs
RCT

DFT2 DFT2

DFT4

´
´́+

Q
QQs
RT
CT

DFT2 DFT2

29

The next transform in Expansion 1 is the DFT2. Since there is only one way to expand it,

namely using the terminal rule (2.18), that yields also the best found rule tree and is stored in the

hash table. DP further expands transforms in Expansion 2. Since there is only the DFT2, and since

the best rule tree is already found, it is retrieved from the hash table and substituted into Expansion

2 trees.

DFT4

´
´́+

Q
QQs
RCT

[
1 1
1−1

] [
1 1
1−1

]

DFT4

´
´́+

Q
QQs
RT
CT

[
1 1
1−1

] [
1 1
1−1

]

Both trees are evaluated and the best one is stored in the hash table. Assume that the right tree

is the best. The DP climbs one level up, substitutes the best found tree for the DFT4 into all trees

in Expansion 1, and measures all four to find the best one for the DFT8.

This simple example shows the DP technique applied to the rule tree framework. The DP first

expands rule trees all the way down to the leaf node level and then recursively searches for the best

implementation and substitutes it at the next higher level.

Even though the principle of optimality holds when optimizing algorithms for arithmetic cost, it

does not generally hold for optimizing run times. The reason is that the data flow can be adversely

affected by plugging in the algorithm for a smaller transform into larger transform rule trees. Slower

running sub-trees can be a better match for the data flow of the whole algorithm and decrease the

overall run time. Still, the DP approach gives satisfying results in most cases faster than other

optimization methods. For that reason, most of the results we present in Chapter 7 are obtained

using DP.

Evolutionary search. SPIRAL also provides an alternative to DP for a large number of

algorithms. This optimization method uses principles of genetic algorithms to traverse the space

of algorithms by evolving a population of rule trees using manipulations that mimic the theory of

evolution by selection, mutation, and cross-breeding [49].

The evolutionary search called STEER first selects a population of n random rule trees. The

population is then grown to a larger size by cross-breeding and by mutation of randomly selected rule

trees. Cross-breeding is implemented by swapping a sub-tree from a selected node (transform) with

the same node from a different tree in the population, as shown in Figure 2.4. In the same figure, we

can graphically see that the mutation is performed using different methods. A sub-tree for a selected

node can be discarded and then regrown by expanding the node into a different rule tree, or it can

be copied to the same transform at a different location in the rule tree. Similar to cross-breeding,

sub-trees can be swapped between the nodes inside the same rule tree. After the population is grown

to a number of rule trees N > n, they are evaluated and only n best trees are selected for the

next generation. The process is repeated through as many generations as necessary to reach the

state where new generations do not improve the best individual rule tree. More information on this

technique and results for the WHT transform can be found in [50].

30

(a) cross-breeding

(b) regrow (c) copy (d) swap

Figure 2.4: Rule tree manipulation for the evolutionary search: (a) cross-breeding; (b)–(d) three

types of mutations: regrow, copy, and swap.†

2.5.2 Practical considerations

STEER, the evolutionary search method in SPIRAL converges to the solution much slower than dy-

namic programming, especially for larger transform sizes. However, the genetic algorithm approach

produces better results when compared to DP in the situation when the principle of optimality is

severely violated. For that reason, evolutionary search is usually used in conjunction with DP to

efficiently find good code by employing it in the DP scheme on lower levels of the rule trees (smaller

size nodes). The sub-optimality of DP for generating fast code can also be alleviated by modifying

the approach to save k best rule trees instead of just one for all intermediate nodes. The hope is

that one of those k best rule trees fits better the whole algorithm than the best found one [51, 52].

However, increasing the number of saved rule trees dramatically increases the cost of the search.

SPIRAL provides DP search for up to four best rule trees.

We also mention that the search space increases with the range of possible degrees of loop

unrolling. The sizes of nodes for which the straightline code is generated are typically between 22

and up to a maximum of 26 since most compilers cannot handle more than 26 · 26 = 212 lines of

straightline code. In addition to searching over all possible rule trees, DP, for example, evaluates all

rule trees for all unrolling settings at each level of the recursion. If, for example, the size of unrolled

nodes is a two power set between 23 and 25 then, in addition to Expansion 2 on page 29, which

includes only two rule trees, each rule tree is evaluated for all unrolling options — eight evaluations

in total. For larger transforms this can considerably affect the search time.

2.6 FIR Filters and the DWT in SPIRAL: Challenges

The SPIRAL system provides an efficient and extensible framework for automatic generation of the

space of algorithms as concise mathematical formulas. It further provides a full-fledged compiler for

†source: Püuschel et al. [13]

31

translation of formulas into C or Fortran code. The compiler includes code optimization techniques

such as loop unrolling, code simplification, and scheduling. Two main modules can automatically

produce code for any algorithm generated by a set of rules included in the rule library and for any

of the available implementation options. This two-module system is repeatedly invoked by the opti-

mization module to generate and evaluate algorithms and search for the optimized implementation

on the target platform. The SPIRAL system, thus, finds a high performance implementation for a

given DSP transform by searching a comprehensive space of fast alternatives. Since the evaluation

is run on the platform of interest, the implementation is optimized for that platform only. The

same code usually performs below par on other platforms and the search process has to be repeated.

However, search is performed precisely once per platform and per transform.

Our goal in this thesis is to use the current SPIRAL code generator to enable automatic gen-

eration, implementation, and tuning of fast algorithms for FIR filtering and the discrete wavelet

transforms (DWTs). Since SPIRAL specializes in linear DSP transforms, we formulate FIR filters

and the DWT as transforms in SPIRAL, develop a new framework to formulate existing algorithms

using the rule formalism, and implement the framework to perform the optimizations using SPI-

RAL’s modules.

Rules and the generated rule trees for FIR filters and the DWT have a very different structure

from the ones that SPIRAL can currently produce. New rules for these transforms require new

constructs that lead to code with a specific structure uncommon to trigonometric transforms. The

new constructs and primitives also require new templates in the formula translator to map the

formulas into code. Furthermore, a different approach to build rule trees implies different search

and hashing strategies that have to be incorporated in the search engine. Hence, to integrate the new

framework, the structure of SPIRAL has to be modified at almost all levels. This is a challenging

task; however, the reward is a flexible framework that enables SPIRAL to automatically generate

numerous implementations for FIR filters and the DWTs on a variety of platforms in search for the

fastest code.

The first task is to identify in the literature the algorithms and the methods that are used for

efficient computation of FIR filters and DWTs. Since wavelet transforms are essentially recursive fil-

ter banks, the core operation in all algorithms is the convolution of discrete sequences. Convolutions

are typically represented either in terms of convolution sums or as polynomial multiplication.

In the literature, algorithms are introduced using these representations; however, they are not

the most suitable models for representation on the computer, especially from the perspective of

automatic generation. To be able to automatically and efficiently generate fast algorithms from a

comprehensive space of good candidates, the algorithms have to be represented using a concise and

structured mathematical language that enables parameterization, easy manipulation, and interleav-

ing of a range of different methods. Such language should enable machine generation of a large

number of options for testing and evaluation without any input from humans. The machine opti-

mized implementations are based on algorithms hardly ever tried by human programmers because

of their unintuitive and highly involved structure.

One of our goals is to capture the core structure of many available algorithms using a constructive

mathematical language based on rules. For this purpose we achieve the following:

32

• Develop a new theoretical framework using a set of carefully defined constructs, operators, and

definitions;

• Use the developed mathematical language to define FIR filters and DWTs as finite transforms

and provide practical definitions of filtering and wavelet operators;

• Capture all major filtering and wavelet algorithms in a set of rules that fit SPIRAL’s mathe-

matical framework. The rules have to be concise and have to construct all required algorithms

and their variations by simple recursive application leading to rule trees;

• Implement the rules in SPIRAL and verify them for correctness;

• Ensure that all rules and involved constructs translate into, not only correct code, but also

the desired efficient programming structures.

• Enable the SPIRAL’s search engine to efficiently store the best found algorithms and optimize

the search taking into consideration special properties of the algorithms.

We start by defining FIR filters and discrete wavelet transforms and reviewing selected algorithms

for fast filtering and wavelet expansion techniques. In Chapter 4 we formally introduce all the

required mathematical definitions and properties required to develop the framework for FIR filters

and DWTs in Chapters 5 and 6, respectively.

33

CHAPTER 3

DISCRETE FIR FILTERS AND WAVELETS AND THEIR
ALGORITHMS

In this chapter, we review discrete FIR filters and discrete wavelet transforms. We also overview

well-known algorithms for their computation. In the standard literature, these algorithms are usually

provided in the form of summations, accompanied by supporting verbal descriptions, illustrations,

graphs, and diagrams. These representations are adopted and widely used in the signal processing

community. However, the representations will need to be adapted to capture the recursive structure

of most algorithms, the order of operations, and data flow patterns to enable automated algorithm

and code generation. We start with basic definitions and proceed with providing the necessary back-

ground for understanding the concepts of fast algorithms for digital filtering and wavelet transform

expansions.

3.1 FIR filters

The theory of discrete-time signals and systems provides the mathematical foundation for the

implementation of physical systems in hardware. Discrete-time signals are mathematically rep-

resented as sequences of numbers, which we denote as {xk}k∈Z. These sequences are generally

of infinite duration. However, in many practical cases they have a finite support length with

xk = 0 for k < a and k > b, which we then denote as {xk}ba . Discrete linear filters are fre-

quently used to process discrete-time signals. The linearity of the filtering process allows for the

unique description of filters by their impulse response, i.e., the response of the filter to the unit

impulse excitation δk = {1}kk. The impulse response of a filter is, therefore, also a sequence {hk}
that can be of either finite or infinite support. When the impulse response is finite, a filter is ap-

propriately called a finite impulse response (FIR) filter. Otherwise, it is called an infinite impulse

response (IIR) filter.

3.1.1 Signal representations

Sequences of numbers are used to mathematically describe discrete-time signals. However, it is often

useful to represent and analyze discrete-time signals and discrete linear filters in the z-transform

34

domain. The z-transform of a discrete-time signal {xk}ba is defined as the polynomial

x(z) =

b∑

i=a

xiz
−i. (3.1)

Since the limits a and b of the summation can be both positive and negative, the z-transform is

a mapping from the sequences of numbers {xk}ba to the ring of Laurent polynomials. The degree

deg(x) of a Laurent polynomial x(z) is given by

deg(x) = |b− a|. (3.2)

The z-transform exists for every finite length sequence and, hence, every such sequence {xk} can be

uniquely represented by the polynomial x(z) given by (3.1). Sequences of finite length p can also be

seen as vectors in Cp×1. These different representations of discrete time signals are important tools

in representing computational algorithms mathematically. We now summarize these definitions.

For a discrete-time signal {xk} of finite support, where the index variable k belongs to the interval

k ∈ [−r, l], the following representations are equivalent:

sequence : {xk}l−r
polynomial : x(z) = xlz

−l + · · ·+ x0 + · · ·+ x−rzr

column vector : x = (x−r, . . . , x0, . . . , xl)
T .

(3.3)

We will use all three representations interchangeably. We choose the appropriate format based on

conciseness, clarity, and easiness of manipulation.

3.1.2 Convolution

Linear filtering is inextricably tied to the convolution operation. The discrete filtering of a sequence

{xk} with a filter described by its impulse response {hk} is the discrete linear convolution of these

two sequences. The linear convolution, or simply, convolution of two sequences is denoted as

{yk} = {hk} ∗ {xk} (3.4)

and is commonly described by the convolution sum. The result of a convolution is a sequence {yk}
with elements computed as

yk =

b∑

i=a

hi xk−i =
k−b∑

i=n−a
hk−i xk. (3.5)

We refer to the length of the filter impulse response support p = a− b+1 simply as the filter length.

In the case where the input support length n and filter length l are finite, so is the support of the

output with the length equal to n+ p− 1.

Using the polynomial representation of signals, the convolution operation becomes simple poly-

nomial multiplication in C [z].

{yn} = {hn} ∗ {xn} z−transform−−−−−−−−→ y(z) = h(z) · x(z) (3.6)

This identity arises from the fact that the z-transform is an isomorphism of the algebra of finite

discrete-time sequences and the algebra of Laurent polynomials, with the convolution as the multi-

plication operation in the first algebra.

35

We will often use this relation to work with filters, filter banks, and wavelets. The main ad-

vantages of the polynomial notation are its conciseness and its mathematical clarity, since many

computational algorithms are derived using properties of polynomial algebras.

When working with finite length signals, it is useful to define other types of convolutions that

arise from different signal extensions at the boundaries [53]. The assumption on the nature of signals

implied by the signal extension translate to residue class (quotient) Laurent polynomial algebras

C [z] /p(z) using the z-transform as the isomorphism. We will discuss some important examples in

the next section.

Before we continue, we briefly mention the third way to represent filters and convolutions. Since

filters are discrete linear operators, they can be represented using matrices. The matrix notation

will be particularly useful for generating computer implementations in later chapters, since it best

exhibits structural information important for designing efficient implementations.

Let the sequence {xk}l−r be represented by the column vector x. We observe that (3.5) can be

seen as as a matrix-vector product

y =


















h−r
...

. . .

hl · · · h−r
. . .

. . .

hl · · · h−r
. . .

...

hl


















· x (3.7)

If the sequences are finite, with the input length n and the filter length p, then the dimensions of

the convolution matrix are n + p − 1 × n. For infinite sequences, the above matrix is also infinite.

In the finite case, matrices are not square and the multiplication is not commutative. However, if

we define convolutions as polynomial multiplications in C [z] /p(z), then the corresponding matrices

are square and the isomorphism of algebras is provided using the regular representations [54].

3.1.3 Generalized convolutions as multiplications in polynomial algebras

Correspondence between convolutions and polynomial algebras is important. It allows us to gener-

alize the concept of convolution and derive more efficient algorithms by decomposing longer convo-

lutions into generalized shorter convolutions using the Chinese remainder theorem. Residual class

Laurent polynomial algebras C [z] /p(z) are especially important. If p(z) has degree N , and we

choose the standard basis b = {1, z, . . . , zN−1}, then the z-transform provides an isomorphism from

C [z] /p(z) to discrete-time signal algebras with respect to some useful convolutions such as circular

convolution. In general, given a polynomial p(z) of degree N , the polynomial product in C [z] /p(z)

corresponds to the linear convolution of discrete signals of length N that are extended outside of

the boundary using a corresponding linear extension. This linear extension is inherently determined

by the choice of the generator polynomial p(z) and the basis b of C [z] /p(z). For different choices of

bases b, one must find the appropriate isomorphism, not necessarily provided by the z-transform. For

more details the reader is referred to [53] and [55]. Important examples include circular convolutions,

36

symmetric convolutions, and short convolutions modulo cyclotomic polynomials.

Polynomial algebras C [z] /p(z) can be represented using the matrix notation since the polynomial

product is a linear operation. Formally, the isomorphism of algebras is provided by the regular repre-

sentation φ : C [z] /p(z) 7→ Cn×n w.r.t. basis b. If we choose the standard basis b = {1, z, . . . , zN−1},
then the mapping φ becomes

h(z) 7→M(h) =

b−1∑

i=a

hi ∗ Cif (3.8)

where h(z) =
∑b

n=a hnz
−n, and Cf is the companion matrix of p(z).

Circular convolution. Consider polynomial multiplication modulo (1 − z−N), where N ∈ N,

i.e.,

y(z) = (h(z) · x(z)) mod(1− z−N),

i.e., the multiplication in C [z] /(1− z−N). If we choose the standard basis b = {1, z, . . . , zN−1} then
the z-transform is an isomorphism of the algebra and the corresponding algebra of discrete-time

sequences with respect to the circular convolution, also referred to as the cyclic convolution.

It follows directly that the circular convolution on N points is defined as

yn = hn ~ xn =

N−1∑

m=0

hm x(n−m) modN . (3.9)

To differentiate between the two, the convolution sum in (3.5) is also called the linear convolution.

To obtain the matrix representation of the circular convolution, we use (3.8). The companion

matrix Cs for s(z) = 1− z−N

Cs = SN =












0 . . . 0 0 1

1 0 . . . 0 0

0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0












(3.10)

is the circular shift matrix and generates the algebra of circulants since

C(h) =
b∑

i=a

hi S
i
N , (3.11)

and since shift matrices commute with respect to multiplication.

The matrix representation for the circular convolution is, therefore, the matrix-vector product

y = C(h) · x =












h0 hn−1 hn−2 . . . h1

h1 h0 hn−1 . . . h2

h2 h1 h0 . . . h3

...
...

...
. . .

...

hn−1 hn−2 hn−3 . . . h0












· x (3.12)

37

Hence, the algebra of circulant matrices C(h) is isomorphic to C [z] /(1−z−N) w.r.t. the standard

basis b = {1, z, . . . , zN−1} and, in turn, to the algebra of discrete-time signals with respect to circular

convolution.

Symmetric convolutions. Symmetric FIR filters, i.e., filters with symmetric impulse response,

are frequently used in digital signal processing because they have linear phase and, therefore, do not

introduce phase distortions. An interesting case arises when the filtered signal is also a symmetric

sequence, or more often when the signal is symmetrically extended at the boundaries. In such a

case, it turns out that one can formally perform efficient symmetric convolution similar to circular

convolution of cyclically extended signals.

There are sixteen different types of symmetries: whole point or half point, symmetric or anti-

symmetric extensions at each boundary of the fundamental sequence. The symmetries are grouped

into four classes where the convolution can be performed only within a certain class. This gives us

64 types of convolutions; only 40 are truly different [53].

Püschel and Moura showed in [55] that the 16 different signal symmetries arise from polynomial

products in C [z] /p(z), where p(z) and the basis b are chosen to be one of four types of Chebyshev

polynomials C ∈ {T,U, V,W}. Depending on the choice of p(z) and the basis b, there are 16 different

options, each determining the type of extension at right and left boundaries, respectively. For

example, symmetric convolution of signals with half-point symmetry at both ends is the polynomial

multiplication in C [z] /2(z − 1)Un−1 with b = {1, 2z − 1, V2, . . . , Vn} as the basis.

As before, matrix representations of symmetric convolutions are obtained as a linear combination

of matrices that are images of basis polynomials b = {C0, C1, . . . , Cn−1}. In the case of standard

basis this resulted in companion matrices. Here, the action of basis elements has to be computed

using properties of Chebyshev polynomials.

To illustrate the concept, we consider convolution of an odd symmetric (whole-point symmetric)

FIR filter {hn} and the input sequence {xn} of length N that is half-point symmetrically extended

on the left and half-point anti-symmetric on the right boundary. Using the results in [55], we pick

the T basis for {hn} and the V basis for {xn}. We then have

h =

L−1∑

i=0

hiTi, x =

N−1∑

i=0

xiVi. (3.13)

Furthermore, the result of this type of convolution is a half-point symmetric and half-point anti-

symmetric sequence just as the input. So it is also represented using the V basis y =
∑N−1

i=0 yiVi.

Using the properties T0 = 1, T1 = z, andCk = 2zCk−1 − Ck−2, we can compute images of all basis

elements Ti with respect to the V basis.

T0 · Vi = Vi

T1 · Vi = x · Vi =
1

2
(Vi−1 + Vi+1)

...

Tk · Vi =
1

2
(Vi−k + Vi+k)

(3.14)

The representing matrix M(h) for the product h(T)x(V) is symmetric. The upper left and the

lower right (L−1)× (L−1) corners are determined by the boundary conditions, in turn determined

38

by the choice of the basis and the algebra generating polynomial. The upper triangular matrix is

determined by the property V−1 = V0 inherent to the V basis, whereas the lower triangular part is

governed by the condition Vn = −Vn−1 obtained from the relation between Tn and the V basis.

Tn = Tn · V0 =
1

2
(Vn−1 + Vn) = 0.

For example, if L = 2, the representing matrix is

M(h) =
1

2

















2h0 + h1 h1 + h2 h2

h1 + h2 2h0 h1
. . .

h2 h1
. . .

. . .

. . .
. . . h1 h2

. . . h1 2h0 h1 − h2

h2 h1 − h2 2h0 − h1

















. (3.15)

3.1.4 Embedding one convolution type into another

We have seen that many types of convolutions can be computed as products in polynomial algebras.

Choosing the appropriate convolution will depend on the properties of convolved signals and their

extensions. To obtain efficient computational algorithms, it is often useful to compute one type of

convolution by means of another.

Given the result of a linear convolution of sequences {hn} and {xn}, which we know is the

product of polynomials h(z) and x(z), we can always obtain other convolutions arising from residual

class polynomial algebras C [z] /p(z) by simply reducing the result modulo p(z), i.e,

c(z) = y(z) mod p(z), y(z) = h(z) · x(z). (3.16)

Conversely, it is possible to compute the linear convolution of {h} and {x} through other convolution

types that arise as polynomial products in C [z] /p(z) if and only if the following condition is satisfied

deg(h) + deg(x) < deg(p) (3.17)

since in that case (h(z) · x(z)) mod p(z) = h(z) · x(z). The proof is very easy and we omit it here.

Finally, we observe that, by combining the above conversions, we can perform any convolu-

tion type through any other convolution. Assume we want to compute the product h(z) · x(z) in

C [z] /m1(z) by using the product in C [z] /m2(z). If deg(h) + deg(x) < deg(m2) then we have

(h(z) · x(z)) modm1(z) = ((h(z) · x(z)) modm2(z)) modm1(z). (3.18)

This means we can compute the convolution in the first algebra and then perform the reduction

modulo m2(z) to obtain the desired product.

As an illustration, the linear convolution is equal to the circular convolution if the input signal

is finite with length N and is extended (padded) by L− 1 zeros, where L is the filter length.

hn ∗ xn = hn ~ x̂n, x̂ =

{

xn, 0 ≤ n < N

0, N ≤ n < N + L− 1
(3.19)

which is the same as saying that the product h(z) ·x(z) is equal to the product (h(z) · x(z)) mod(1−
z−M) when M = N + L− 1.

39

3.1.5 Reducing long convolutions to multiple short convolutions

Reducing long convolutions or long polynomial products into a large number of shorter convolutions

can sometimes have computational advantages. We break down these cases into two classes:

1. The length of the input sequence is often much larger than the filter length N À L. In such

cases the representing matrix is sparse with only a narrow strip of non-zero elements along

the diagonal and near diagonal locations. It is advantageous to break down this matrix into

smaller, more dense matrices to benefit from transform domain methods or from the locality of

the computations. The long convolution is computed in segments, which are then appropriately

combined to obtain the correct result. These methods are referred to as the block convolution

methods, which we discuss next.

2. If the length of the input and the filter are similar, for example, by performing block convo-

lution methods, then it is still possible to reduce the convolution to shorter convolutions by

mapping the convolutions to higher dimensions. The mapping can be done for linear and cyclic

convolutions where the latter is known as the Agarwal-Cooley algorithm [56]. The advantage

of these methods stem from many efficient short convolution algorithms based on polynomial

multiplications modulo short cyclotomic polynomials. However, the mapping to higher di-

mensions is the basis for the Karatsuba algorithm [57] that reduces the arithmetic cost by

exploiting redundancies of the representing Toeplitz matrix.

We discuss these two classes of algorithms in the following subsections.

Block convolutions

If the input sequence is very long when compared to the filter length (N À k), it is not efficient to

use transform-based methods since the size of the transform is equal to N + k − 1, which is very

large. The solution is to block the input signal into segments, compute the convolution separately

on each segment, and then to combine the results to obtain the final output. There are two different

blocking strategies known as overlap-add and overlap-save.

Overlap-add. One way to perform long convolution using a number of shorter ones is to segment

the input into independent blocks of length B,

{xn}N0 =

dN/Be
∑

s=0

{xn+sB}B0 , (3.20)

and compute the final output as the overlapped sum of the convolutions of the filter with each

segment

{yn}N+L−1
0 =

dN/be
∑

s=0

{yn+sB}B+L−1
0 , , {yn+sB}B+L−1

0 = {xn+sB}B0 ∗ {hn}L0 . (3.21)

The overlap between the neighboring sequences at the output is L − 1 points long and they need

to be added together to obtain the correct result. This blocking procedure is referred to as the

40

overlap-add algorithm [38].

Overlap-save. Another alternative is the overlap-save algorithm. In this case, the input seg-

ments of length B are extended to length B + L− 1 and overlapped on L− 1 points

{xn + sB}B+L−1
0 , 0 ≤ s ≤ dN/be. (3.22)

We can perform circular convolution for each segment as

{yn + sB}B+L−1
0 = {xn + sB}B+L−1

0 ~ {hn}L0 (3.23)

and retain only the last B values since they represent the correct output values because of the rela-

tion (3.19). What is left is the exact segment of the output result. These segments are concatenated

to obtain the final output. We could also perform linear convolutions on segments

{yn + sB}B+2L−2
0 = {xn + sB}B+L−1

0 ∗ {hn}L0 (3.24)

and discard the first L− 1 and the last L− 1 values which would lead to the same result.

The difference from the overlap-add method is that the results of the convolutions on segments

do not have to be overlapped and added at the expense of computing the convolutions on L − 1

more points in each input segment. For more details see, for example, [38].

We mention here that the overlap-add and overlap-save methods are inextricably tied to the

circular convolution. The circular convolution is typically performed on the segments because the

fast transform methods to compute it benefit from the reduced size obtained by blocking. However,

we shall see that it is important to consider block convolution methods independently of the short

convolution methods because of their important structure. This is the reason why we offer two

interpretations of these two methods that use the linear convolution and the circular convolution

found in the literature.

Nesting of convolutions using multidimensional polynomial products

Reduction of long convolutions to shorter convolutions can be obtained by converting one-dimensional

polynomial products into multi-dimensional products of shorter polynomials. We start with the nest-

ing technique for linear convolutions.

Let h(z) and x(z) be polynomials in C[z], and let the product y(z) = h(z) · x(z) represent the

linear convolution of sequences {xk} and {hk} both of length N . If N is composite N = N1 · N2,

then we can rewrite h(z) and x(z) as

x(z) = x(z1, z2) =

N1−1∑

n1=0

xn1
(z2)z

n1

1

h(z) = h(z1, z2) =

N1−1∑

n1=0

hn1
(z2)z

n1

1

, (3.25)

where z1 = zN2 , z2 = z, and

xn1
(z2) =

N2−1∑

n2=0

xN2n1+n2
zn2

2

hn1
(z2) =

N2−1∑

n2=0

hN2n1+n2
zn2

2

. (3.26)

41

In other words, the sub-polynomials of degree N1 are coefficients of a polynomial of degree N2 which

results in a two-dimensional polynomial. The result of the multiplication is a polynomial of degree

2N1 − 1 with coefficients being polynomials of degree 2N2 − 1. In other words

y(z1, z2) = h(z1, z2) · x(z1, z2) =
2N2−2∑

n=0

N1−1∑

m=0

hm(z2) · xn−m(z2)z
n
1 . (3.27)

The goal of this procedure is to make use of the short convolution algorithms and apply them

to products of N1 and N2 degree polynomials [58]. However, the structure of these algorithms is

weaker than the similar structure of algorithms for the circular convolution that we discuss later.

Further, the deficiencies of the short convolution algorithms are that they favor fewer multiplications

at the expense of larger number of additions, which is not suitable for implementation on modern

computer platforms. Therefore, the above described nesting procedure is not widely used, so we

either rely on techniques that nest circular convolutions because they provide a connection between

multi-dimensional filtering methods and important multi-dimensional FFT algorithms, or we revert

to simpler nesting techniques for linear convolutions, discussed next, since they lead to divide-and-

conquer algorithms for fast polynomial multiplication.

We slightly change the mapping of indices in (3.26). Again we require N = N1 · N2 and map

indices n→ (n1, n2) as n = N2n1 + n2. We obtain 2-D polynomials

x(z) = x(z1, z2) =

N2−1∑

n2=0

N1−1∑

n1=0

xN2n1+n2
zn1

1 zn2

2

h(z) = h(z1, z2) =

N2−1∑

n2=0

N1−1∑

n1=0

hN2n1+n2
zn1

1 zn2

2

, (3.28)

where z1 = zN2 , z2 = z. The result can be obtained as

y(z1, z2) = h(z1, z2) · x(z1, z2) =
2N2−2∑

n=0

N1−1∑

m=0

hm(z1) · xn−m(z1)z
n
2 . (3.29)

This procedure describes polynomial multiplication performed by the polyphase components and

can be seen as filtering in the polyphase channels. For example, if N is factored as N = N/2 ·2 then

we have a 2-channel case. The x(z) and h(z) polynomials are downsampled into their even and odd

components. The polynomial multiplication is performed as the following polynomial matrix-vector

product:
[

ye(z)

yo(z)

]

=

[

he(z) z · ho(z)
ho(z) he(z)

]

·
[

xe(z)

xo(z)

]

(3.30)

Here the index denotes either even (e) or odd (o) component. Of course, the mapping to two-

dimensional convolutions can be recursively generalized to multi-dimensional convolutions as needed.

Similar nesting procedures can be derived for circular convolutions. The most important case

arises when the size of the sequences can be decomposed into a product of relatively prime factors

N = N1N2, (N1, N2) = 1. This method was developed and analyzed by Agarwal and Cooley [56].

Since the factors are relatively prime, we can write an1 + bn2 = 1. Using the Chinese remainder

theorem, we can map the indices as

n = e1n1 + e2n2 modN (3.31)

42

where

n1 ≡ n modN1 e1 ≡ a modN (3.32)

n2 ≡ n modN2 e2 ≡ b modN (3.33)

Therefore, we can split the polynomials h(z) and x(z) as

hn1
(z) =

N2−1∑

n2=0

he1n1+e2n2 modNz
n2 (3.34)

xn1
(z) =

N2−1∑

n2=0

xe1n1+e2n2 modNz
n2 . (3.35)

The circular convolution h(z)x(z) mod(zN − 1) is then performed as

ŷ(z) =

N1−1∑

n=0

N2−1∑

m=0

(
hm(z) · xn−m(z) mod(1− zN2)

)
zN1n mod(1− zN1), (3.36)

where

ŷ(z) =

N1−1∑

n=0

N2−1∑

m=0

ye1n1+e2n2 modNz
nm. (3.37)

This is essentially a two dimensional circular convolution, or one-dimensional circular convolution

of size N1 with the coefficients being circular convolutions of size N2 [56, 59, 60]. Going from 1-D

to 2-D circular convolution allows application of 2-D transform-domain algorithms.

3.1.6 Divide-and-conquer methods

The multi-dimensional mapping algorithms rely on efficient computation of short convolutions, either

by taking advantage of short convolution algorithms that reduce the number of multiplications at

the expense of increased number of additions, or by using the multi-dimensional transform-based

methods.

In this section, we discuss another class of algorithms usually referred to as divide-and-conquer

algorithms. They utilize the redundancies associated with nested filter computations to reduce both

the required multiplications and the additions. The divide-and-conquer methods rely on the principle

of fast polynomial multiplication, which is better known as the Karatsuba method for polynomials

in the scientific computing community. The Karatsuba algorithm was initially developed for the

multiplication of large integers [61]. Therefore, we shall refer to divide-and-conquer methods also as

Karatsuba methods.

In its original form, the Karatsuba method divides polynomials into two parts by separating the

even and the odd coefficients. We are interested in computing the product y(z) = h(z)x(z), where

deg(h) = L, deg(x) = N and 2 |L, 2 |N . The first step is to split all polynomials into their even

and odd factors as

he(z
2) =

1

2
(h(z) + h(−z)) xe(z

2) =
1

2
(x(z) + x(−z))

ho(z
2) =

1

2z
(h(z)− h(−z)) xo(z

2) =
1

2z
(x(z)− x(−z))

. (3.38)

43

-x(z) h(z) - y(z)

⇓

x(z)

-

-µ´
¶³
↓2

xe(z)-

z µ´
¶³
↓2 -

xo(z)








h0(z) h1(z)z
−1

h1(z) h0(z)








-
ye(z)µ´
¶³
↑2

?

-
yo(z)µ´
¶³
↑2 z−1

6

m+ -
y(z)

Figure 3.1: Filtering interpreted as polyphase filtering with two channels.

If we perform the multiplication as

ye(z
2) + yo(z

2)z−1 = (he(z
2) + ho(z

2)z−1)(xe(z
2) + xo(z

2)z−1)

and group the matching terms, we obtain

ye(z) = he(z)xe(z) + ho(z)xo(z)z
−1

yo(z) = he(z)xo(z) + ho(z)xe(z)
, (3.39)

where y(z) = ye(z
2) + yo(z

2)z−1. This implementation requires four multiplications of polynomials

of degree N/2 and two additions. The decomposition can be schematically seen as what is called a

polyphase decomposition of the original filter, shown in Figure 3.1.

The conquer step is obtained by observing that the cross product yo(z) = he(z)xo(z)+ho(z)xe(z)

can be written as

yo(z) = (he(z) + ho(z)) (xe(z) + xo(z))− he(z)xe(z)− ho(z)xo(z). (3.40)

Since both he(z)xe(z) and ho(z)xo(z) are already computed for ye(z) in (3.39) and since he(z)+ho(z)

can also be precomputed, there is only one additional multiplication, a total of three as opposed to

four multiplications (convolutions) required in (3.39). The diagram of this decomposition is shown

in Figure 3.2.

Careful analysis of the method reveals that the procedure performs filtering through a multi-

rate filter bank with three channels [62]. The new algorithm requires only three multiplications of

polynomials of degree L/2 with some extra additions. However, the total cost is reduced for both

multiplications and additions. This is easy to see since the original problem requires Lmultiplications

and L−1 additions per output point, whereas the above decomposition needs only 3
4Lmultiplications

and 3
4L+ 1

2 additions (see Appendix B for more details).

Of course, the decomposition can be continued on downsampled filters recursively as long as

2 | L/2. If L = 2n, the radix-2 divide-and-conquer algorithm can proceed n times until the length

of the filters is reduced to only one tap. If k successive decompositions are performed, the cost is

reduced to

Cadds(k, L) =

(
3

2

)k [
L

2k
− 1

]

+ 4

[(
3

2

)k

− 1

]

Cmult(k, L) =

(
3

2

)k
L

2k

. (3.41)

44

x(z)

µ´
¶³
↓2

xo(z)
-

6

h1(z)

z

µ´
¶³
↓2

xe(z)-

?

h0(z)

m+ - h0(z) + h1(z) - m+
6−

−?
-µ´
¶³
↑2

yo(z)
z

6

- z−1

- m+
6

-µ´
¶³
↑2 -

ye(z) m+ -

Figure 3.2: Radix-2 divide-and-conquer single step filter decomposition

Detailed cost analysis is presented in Appendix B.

This method has been well studied in the literature, with different authors referring to it by

different names [57, 62]. In this thesis, we refer to it as the radix-2 Karatsuba algorithm for linear

convolution. However, the decomposition we presented is not the only possible radix-2 algorithm. A

similar algorithm with the same cost but different order of computations can be obtained by simply

transposing the diagram in Figure 3.2. Other variants can also be readily derived [57].

Of course, the divide-and-conquer approach is not limited to the radix-2 algorithm. Decompo-

sitions involving higher radices can be readily derived, as well as mixed-radix solutions where the

input and the output sequences are downsampled at different rates. We provide a general approach

for deriving a class of divide-and-conquer algorithms in Appendix B. We also analyze and compare

the costs of algorithms with higher radices.

As an example, we demonstrate a radix-3 Karatsuba decomposition. We require that 3 |L and

3 |N , although this condition can be relaxed by zero-padding. Given a polynomial p(z), we denote the

polyphase components as pk(z
3) =

∑

i p3i+kz
3i+k. Then, the polynomial product y(z) = h(z)x(z)

can be decomposed into






y0(z)

y1(z)

y2(z)






=







h0(z) h2(z)z
−1 h1(z)z

−1

h1(z) h0(z) h2(z)z
−1

h2(z) h1(z) h0(z)













x0(z)

x1(z)

x2(z)






. (3.42)

By grouping the terms and representing cross products as

xihj + hixj = (xi + xj)(hi + hj)− hixi − hjxj

we obtain the following decomposition of (3.42):







y0

y1

y2






=







1 w w 0 0 1

1 1 w 1 0 0

1 1 1 0 1 0






diag{h0, h1, h2, h0+h1, h0+h2, h1+h2}














1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1




















x0

x1

x2






, (3.43)

where w = z−1. We omit the polynomial argument z to save space. Even though the number of

multiplications per output point is 2
3L and the number of additions is 2

3L+2, which is lower than the

45

radix-2 decomposition, the radix-2 algorithm is asymptotically cheaper than the radix-3 algorithm

when recursive decompositions are performed. The higher radix algorithms could still be preferred

with the non two-power filter lengths. The data flow patterns are also considerably different, which

might be beneficial on some computer platforms. The efficiency of different divide-and-conquer

algorithms remains to be seen, and we shall investigate their performance in Chapter 7.

3.1.7 Short convolution algorithms

In Section 3.1.5 we presented methods for reducing long convolutions to a computation involving a

combination of shorter convolutions. The reason for this transformation is the existence of numerous

algorithms that efficiently compute short convolutions. We presented two approaches: the nesting of

convolutions is used when the input and the filter lengths are of approximately the same size, whereas

the overlap-add/save methods are used when the input sequence length is considerably larger. In the

latter case, the advantage is apparent when the convolutions are computed in the transform domain,

which we discuss in the next section. However, nesting techniques rely on either multi-dimensional

transforms with the convolution property, or on efficient short convolution algorithms [35, 59].

Short convolution algorithms that minimize the number of required multiplications at the expense

of an increased number of additions have been a focus of algorithm developers in the the early days

of digital signal processing (DSP). The fundamental idea behind short convolution algorithms is the

use of polynomial algebras and the Chinese remainder theorem (CRT) to perform the convolution

in factor sub-algebras that require a smaller number of multiplications.

The simplest idea uses the Cook-Toom algorithm for polynomial multiplication in quotient alge-

bras y(z) = h(z)x(z) ∈ C[z]/p(z), where p(z) has n distinct complex roots:

p(z) = (z − a0)(z − a1) · · · (z − an−1). (3.44)

The CRT can be applied for this factorization since pi(z) = z−ai are trivially relatively prime. The

CRT implies the isomorphism

C[z]/p(z) ∼=
⊕

i

C[z]/(z − ai).

This means that there exists an isomorphism of algebras φ : C[z]/p(z) →
⊕

i C[z]/(z − ai) such

that the multiplication in C[z]/p(z) can be performed independently in each C[z]/(z − ai) ∗. The

mapping φ is essentially the reduction of h(z)x(z) modulo each (z − ai), which is just a polynomial

evaluation on the ai points. In matrix form, the representation of φ is a Vandermonde matrix

F =










1 a0 · · · an−1
0

1 a1 · · · an−1
1

...
...

...

1 an−1 · · · an−1
n−1










, Fx =










x(a0)

x(a1)
...

x(an−1)










(3.45)

The Vandermonde matrix is, of course, invertible since it represents an isomorphic mapping.

The multiplication in sub-algebras is a simple scalar multiplication of polynomials h(z) and x(z)

evaluated on ai points. Hence, y(ai) = h(ai)x(ai) ∈ C/(z − ai). The polynomial y(z) is then
∗In fact, it is more appropriate to define it as an isomorphism of modules rather than algebras, since, in general,

{hk} and {xk} do not lie in the same space [54].

46

reconstructed (interpolated) from these points by φ−1. In matrix form, the Cook-Toom algorithm

is now

y = F−1 ((Fh)¯ (Fx)) , (3.46)

where ¯ is the element-wise product [35].

If one of the factors h(z) is fixed, then the product Fh can be precomputed. In that case (3.47)

becomes

y = F−1 diag(ĥ0, ĥ1, . . . , ĥn−1)Fx, ĥ = Fh. (3.47)

Probably the most famous Cook-Toom algorithm is obtained for the circular convolution on n

points y(z) = h(z)x(z) mod zn − 1. The roots of the polynomial zn − 1 are complex roots of unity

wk = ej2πk/n, k = 0, . . . , n − 1, where j =
√
−1. The Vandermonde matrix F in (3.45) becomes

the discrete Fourier transform (DFT), and the Cook-Toom algorithm is the well-known convolution

theorem for the DFT:

y = DFT−1 diag(ĥ0, ĥ1, . . . , ĥn−1)DFTx, ĥ = DFTh. (3.48)

The problem with (3.48) is that the sampling points are complex, inducing a complex matrix (DFT)

and complex multiplications (diagonal matrix). The fast Fourier transform (FFT) algorithms im-

prove the cost of the algorithm dramatically; however, for short circular convolutions and real input

signals, the advantage is lost due to complex multiplications.

It may be advantageous to design an algorithm as a multiplication in C[z]/p(z) where p(z) has

simple roots, e.g., integers 0, 1, and −1. Since we know from Section 3.1.4 that the linear convolution

can be embedded into any polynomial algebra multiplication as long as condition (3.17) is satisfied,

we can compute h(z)x(z) as h(z)x(z) mod p(z).

Example 3.1. Consider a linear convolution of two sequences h and x of length 2. To embed it

into a quotient polynomial algebra we need a polynomial p(z) of degree at least 3. Let us choose

p(z) = z(z − 1)(z + 1) with simple roots. The Cook-Toom algorithm is

y =







1 0 0

0 1
2 − 1

2

−1 1
2

1
2



















1 0

1 1

1 −1






h¯







1 0

1 1

1 −1






x






.

The algorithm requires 5 additions and 3 multiplication in case h is fixed. An improvement to only

3 additions can be achieved by selecting ∞ as a sampling point [35, 63]. This is in contrast to 4

multiplications and 1 addition for the standard implementation

Unfortunately, for longer convolutions, this type of algorithms minimizes the number of multi-

plications by using excessive number of additions. Winograd has proposed a modified version of

the Cook-Toom algorithm where the polynomial p(z) can have factors of degrees larger than one

[64]. This increases the number of multiplications slightly but considerably reduces the number of

required additions when compared to the Cook-Toom algorithm. For example, the 3-point circular

convolution can be computed by factoring

p(z) = z3 − 1 = (z − 1)(z2 + z + 1)

47

and computing multiplication modulo the factor polynomials. The resulting algorithm requires 4

multiplications and 11 additions as opposed to 9 multiplications and 6 additions for the standard

implementation. A table of some of the best short convolution algorithms can be found in [59] in

Section 3.7. A much more detailed overview and cost analysis of short convolution algorithms and

all algorithms derived from the Chinese remainder theorem can be found in [26].

The algorithms discussed so far aim at reducing the number of multiplications since, traditionally,

multipliers required more processor power that reflects into slower execution time in software and

more expensive architecture in hardware. However, modern computer platforms and specialized

DSP processors implement multiplications much more efficiently; hence, it remains to be seen if and

when short convolution algorithms outperform other algorithms that are more suitable for computer

implementation.

3.1.8 Transform domain filtering algorithms

We already introduced the DFT as an efficient method for computing the circular convolution of two

sequences. As a direct consequence of the Cook-Toom algorithm, the convolution property of the

DFT says that we can compute the circular convolution in the transform domain by element-wise

multiplication:

DFT {hn ~ xn} = DFT {hn} ¯ DFT {xn}. (3.49)

In matrix form, the circular convolution is represented by a circulant matrix defined in (3.12). We

have seen in (3.48) that the circular convolution can be performed through the DFT; hence, we can

write

C(h) = DFT−1 ·D ·DFT, D = diag(ĥ0, ĥ1, . . . , ĥn−1), ĥ = DFTh. (3.50)

Thus, the Cook-Toom algorithm provides an indirect proof that all circulant matrices are diagonal-

ized by the DFT transform. This is called the convolution property of the DFT. The original problem

of computing circular convolution requires generally O
(
N2
)
operations. Since the DFT of size N

can be computed using O(N logN) operations, this method can save on the number of operations,

especially for large filter lengths k. However, the DFT is not suitable for real-valued sequences since

it represents them on the complex unit circle. One of the properties of the DFT says that the DFT

of a real sequence is a conjugate symmetric sequence. This obvious redundancy can be overcome by

designing real transforms that preserve the convolution property [65].

Real transforms related to the DFT can be designed by separating and combining real and imag-

inary parts of the transform so that the mirrored computations are eliminated. Popular examples

include the real discrete Fourier transform (RDFT) and the discrete Hartley transform (DHT).

The RDFT is designed to separate the real and the imaginary part of the DFT, and to treat

them as real coefficients [66].

48

RDFTN =


























1 1 1 . . . 1

1 cos
(

2π
N

)
cos
(

2·2π
N

)
. . . cos

(
(N−1)·2π

N

)

...
...

...
...

1 cos
(

(N/2−1)2π
N

)

cos
(

2(N/2−1)2·2π
N

)

. . . cos
(

(N−1)(N/2−1)·2π
N

)

1 −1 1 . . . 1

1 sin
(

(N/2−1)2π
N

)

sin
(

2(N/2−1)2·2π
N

)

. . . sin
(

(N−1)(N/2−1)·2π
N

)

...
...

...
...

1 sin
(

2π
N

)
sin
(

2·2π
N

)
. . . sin

(
(N−1)·2π

N

)


























(3.51)

From the definition of the RDFT we observe that it computes one half of the DFT of real data

with real and imaginary parts of the result split into two vectors mirrored around the mid-point

N/2 (ω = π). This relation to the DFT can be represented in matrix form as

RDFTN = AR ·DFTN , AR =
1

2











2

IN/2−1 JN/2−1

2

−i · JN/2−1 i · IN/2−1











. (3.52)

A similar relationship between other trigonometric transforms and generalized DFT transforms can

be found in [67]. The convolution property for the RDFT can be now easily derived from (3.52)

and (3.50) to obtain the RDFT transform domain method for computing the circular convolution.

C(h) = RDFT−1
N ·X(h) · RDFTN , (3.53)

where

X(h) =





















c0

c1 −d1

.
.

cN
2
−1 −dN

2
−1

cN
2

dN
2
−1 cN

2
−1

. .
. . . .

d1 c1





















,


















c0

c1
...

cN/2

dN/2−1

...

d1


















= RDFTN · h. (3.54)

The inverse RDFT can be obtained as RDFT−1
N = RDFTT · 1ND whereD = diag{1, 2, . . . , 2, 1, 2, . . . , 2}.

The discrete Hartley transform is another real transform alternative to the DFT [68].

DHTN = [cos(2πij/N) + sin(2πij/N)]N×N (3.55)

49

It can be also derived from the DFT in a fashion similar to (3.52). Britanak and Rao [67]

provide relations between a number of trigonometric transforms in their generalized form. The

relation between the DHT and the RDFT is given as

DHTN = AH · RDFTN , AH =
1

2











2

IN/2−1 JN/2−1

2

JN/2−1 −IN/2−1











.† (3.56)

It is now straightforward to obtain the convolution property for the DHT from (3.53) and (3.56).

C(h) = DHT−1
N ·X ′(h) ·DHTN , (3.57)

where

X ′(h) =
















2d0

d1 + dN−1 d1 − dN−1

.
.

2dN
2

. .
. . . .

dN−1 − d1 dN−1 + d1
















,










d0

d1

...

dN−1










= DHTN · h (3.58)

The above discussion is meant to show that the important convolution property can be transferred

to real transforms in order to use them for more efficient computation of the circular convolution by

using fast transform algorithms. The real transforms require only half of the arithmetic operations

of the complex ones, and we expect that to transfer to their fast algorithms [69, 66, 70].

It can also be shown that, under certain symmetry conditions on the filters and input sequences,

the discrete cosine (DCT) and the discrete sine transforms (DST) also have convolution properties

and can be used to implement filtering of symmetric sequences [53, 55]. This type of filtering relies

on the diagonalization properties of the DCTs and DSTs with respect to the generalized concept of

convolution based on residue class polynomial algebras. We discussed these concepts in Section 3.1.3.

More details can be found in [55].

Linear phase FIR filters are very important for signal processing. Since they have symmetric

coefficients, linear or circular convolutions can be embedded into a special symmetric convolution

for which there is a trigonometric transform that has the convolution property similar to (3.50). We

return to the example given at the end of Section 3.1.3, where we assumed that the filter is odd and

whole-point symmetric, and the input sequence is half-point symmetric and anti-symmetric at the

boundaries. In this case the symmetric convolution matrix looks like (3.15), and has the following

convolution property:

M(h) = DCT-4−1 ·D ·DCT-4, D = diag(ĥ0, ĥ1, . . . , ĥn−1), ĥ = DCT-3 · h (3.59)

where DCT-3 and DCT-4 are type 3 and type 4 discrete cosine transforms. So, this symmetric

convolution can be performed in the transform domain as pointwise multiplication, The procedure
†The relation is given in Britanak [67] on page 140; however, there is a slight confusion with what f I represents.

The correct interpretation is that f I is the generalized RDFT and not the GDFT of the input sequence

50

can, in turn, be used for filtering with odd symmetric filters by embedding linear into symmetric

convolution as explained in Section 3.1.4.

This concludes our review of the most important filtering and convolution methods. In Chapter 5

we represent filtering and convolution operators as matrices to be implemented on a computer. We

capture many of the algorithms discussed in this chapter in a set of breakdown rules that include a

small set of mathematical constructs that can be translated into efficient code. Our goal is to provide

a comprehensive methodology for generating and implementing the whole range of algorithms and

utilize numerous degrees of freedom to search for the optimized solution on a target computer

platform.

3.2 Discrete Wavelet Transforms

Wavelet theory addresses the problem of signal expansions in scaled subspaces that provide different

levels of detail. The problem of multi-scale spaces has been known to mathematicians for quite

some time but it caught considerable attention of scientists and engineers only in the mid eighties,

especially after the work of Ingrid Daubechies [71] and Stephane Mallat [72]. The theory turned

practical when Daubechies established a link between continuous-time wavelets and multirate filter

banks, which had already been well studied and understood. Such tree-structured filter banks

had been heavily used even before the arrival of wavelet theory, for example, in speech processing

[73]. Daubechies, further, provided systematic methods for deriving orthonormal wavelet bases with

compact support that led to efficient FIR filter bank structures and enormous activity in the signal

processing communities [71]. Mallat, on the other hand, described wavelets using multiresolution

analysis, which provided important clues on possible applications and interpretation of wavelet

analysis.

The areas of research using, either directly or indirectly, wavelet analysis have since grown

rapidly and the new theoretical results are spurred by many successful applications. Wavelets had

a significant impact on data compression [16, 74, 75], denoising [76], detection, numerical solutions

to partial differential equations (e.g., [77, 78]), and many other research areas.

In practical terms, wavelets owe their success to the discrete version of the continuous wavelet

transform. The discrete wavelet transform (DWT), sometimes also referred to as the discrete-time

wavelet transform (DTWT), is necessary for implementation in both hardware and software. It is

one of very few useful transforms that have extremely low O (N) computational cost when compared

to most other fast transforms, such as trigonomatric transforms, which have O (N logN) cost. The

DWT is inextricably tied to recursive multirate filter banks and is used for multiresolution expansion

of discrete-time signals in a flexible way. The DWT is a linear transform and as such can be seen

as a matrix. However, at this point we note that, unlike the DFT and other linear transforms, the

DWT does not have a fixed definition. The DWT matrix will depend on the choice of the wavelet

basis, the extension of the signals at the boundaries, and the number of levels of expansion. Hence,

”the” in front of the DWT is slightly misleading so we will use it cautiously and point to differences

in definitions as needed.

In the rest of the chapter, we will:

51

• Provide a very brief overview of the wavelet theory;

• Explain the origins of the DWT;

• Briefly touch upon some of the frequently used wavelets;

• Review standard algorithms for the computation and the required theoretical results;

• Provide motivation for introducing some of the algorithms and methods from the perspective

of efficient computer platform implementation.

There are many ways to introduce wavelets. For any theoretical and practical purpose, mul-

tiresolution analysis (MRA) is a good point to start. It provides basic theoretical understanding of

the principles of wavelet bases expansion and draws a connection to multirate filter banks without

extensive mathematical preparation for a signal processing expert.

3.2.1 Multiresolution analysis

The concept of multiresolution arises from the idea of scaling and embedding function spaces [79].

Define a set of functions S = {ϕ(t−k)}, k ∈ Z, as integer translates of the square-integrable function
ϕ(t) ∈ (L2(R)). Let the subspace V0 ⊂ L2(R) be spanned by the functions in S ∗. An arbitrary

function f(t) ∈ V0 can be now represented as

f(t) =
∑

k

ckϕ(t− k) (3.60)

We can naturally ”scale” the subspace V0 by dilating the set of spanning functions and form a

subspace V1 spanned by {ϕ(2t − k)}. Since the spanning functions are contracted by the factor of

two, any function can be represented in finer detail in the new subspace. By continuing to contract

the spanning set, the scaling of subspaces Vj = Spank{ϕ(2j−k)} adds more and more detail to each

subsequent subspace Vj . Spaces Vj created this way are called scaling spaces, whereas the spanning

functions ϕ(2j − k) are called the scaling functions.

In addition to scaling the subspaces, to construct the multiresulution analysis (MRA), we require

that the subspaces are nested so that any Vk at a lower scale is a subspace of Vk+n at a higher scale.

In other words

V0 ⊂ V1 ⊂ V2 ⊂ · · · (3.61)

so that the information at a coarser level is contained in finer detail spaces. We also require the

scaled subspaces to complete the Hilbert space V∞ ≡ L2(R). The spaces also have to satisfy the

scaling condition

f(t) ∈ Vj ⇒ f(2mt) ∈ Vj+m

We shall use a short notation for the functions in the spanning set of Vj

ϕj,k(t) = ϕ(2jt− k). (3.62)

The spanning set {ϕj,k(t)} forms either a basis, or an overcomplete spanning set treated by the

theory of frames [16]. In this thesis, we consider only cases where each spanning is a basis.
∗More precisely, V0 is the closure of Span S

52

Because of the telescoping of the spaces in (3.61), the basis functions at a lower scale Vj can be

expanded by the basis at the next scaling level Vj+1

ϕj,0(t) =
∑

k

√
2 hk ϕj+1,k(t), k ∈ Z (3.63)

The relation is called the scaling equation or the refinement equation, and the weights hk are called

scaling coefficients [14].

MRA creates a foundation for defining the wavelet expansion sets in the following way. Since

Vj ⊂ Vj+1, it is possible to find a subspace Wj such that it represents a complement of Vj to Vj+1:

Wj ⊕ Vj = Vj+1, Wj ⊂ Vj+1 (3.64)

Such subspaces are called wavelet spaces of different scaling levels. It is clear now how wavelet spaces

can be used to span the entire L2(R)

L2(R) = V0 ⊕W0 ⊕W1 ⊕ · · · (3.65)

The basis functions for the wavelet spaces Wj are called wavelets where the basic function at the

lowest level of resolutionW0 is called the mother wavelet ψ0(t). All other wavelet basis functions are

then created by integer translates and octave dilates of the mother wavelet ψj,k = ψ(2j − k) ∈ Wj .

Since the wavelet space at one level is a subspace of the scaling space at the next level, as

established in (3.64), we can also express these wavelets as a weighted sum of refined scaling functions,

similar to (3.63):

ψj,0(t) =
∑

k

√
2 gk ψj+1,k(t), k ∈ Z (3.66)

The above relation is called the wavelet equation and the weights gk are referred to as the wavelet

coefficients.

Wavelet series. Consider a square-integrable function f(t) ∈ L2(R). From the decomposition

of L2(R) in (3.65), we know that f(t) can be represented as a weighted sum of basis functions of the

lowest level scaling space and bases of all wavelet spaces

B = {ϕ0,k(t), ψ0,k(t), ψ1,k(t), ψ2,k(t), . . . }, k ∈ Z (3.67)

and, hence, we can perform a series expansion of f(t) using the basis set B:

f(t) =
∑

k

21/2c0,kϕ0,k(t) +
∑

k

∑

j

dj,k2
j/2ψj,k(t), k, j ∈ Z, j > 0, (3.68)

At this point, we note that the above expansion is usually referred to as the discrete wavelet transform

(DWT) of the function f(t). However, the ”discrete” in the name does not imply a transform of

discrete sequences. The terminology is slightly misleading for a signal processing expert familiar with

the standard terminology for the Fourier signal analysis, where a trigonometric series expansion

of an L2[−π, π) signal is called the Fourier series and the discrete Fourier transform (DFT) is a

trigonometric series expansion of a periodic discrete-time signal. To avoid confusion, we refer to

(3.68) as the wavelet series expansion. We defer the definition of the “true” discrete version of the

transform till the next section.

53

The coefficients of the wavelet series (3.68) cj,k and dj,k are called the scaling and wavelet

expansion coefficients, respectively. It should be clear from the above discussion that the coarsest

scaling level is chosen to be 0 by convention. It can be any integer number j0 from which the MRA

could be constructed as previously described. We note that for j0 = −∞, the coarsest space is

empty and the wavelet series expansion in (3.68) becomes

f(t) =
∑

k

∑

j

dj,k2
j/2ψj,k(t), k, j ∈ Z

For practical purposes, we are interested in obtaining a discrete version of (3.68). Consider again

a function f(t) ∈ L2(R) that we want to expand into wavelet series. Let us assume that there exist

a detail level J at which the best approximation f̂(t) to f(t) from VJ defined as

‖f(t)− f̂(t)‖ = inf{‖f(t)− g(t)‖ : g(t) ∈ Vj}

has acceptably small error ε. Then we can represent f(t) as

f(t) = f̂(t) + ε =
∑

k

cJ,k ϕJ,k(t) + ε (3.69)

The last equation can also be seen as a sampling of f(t) with the coefficients cJ,k representing

the discrete-time approximation signal. We are now ready to introduce the discrete version of the

wavelet transform.

3.2.2 Discrete wavelet transform

Let us assume that the coefficients cJ,k are available and treated either as expansion coefficients of

a continuous-time signal f(t) ∈ VJ or as a discrete-time sequence {xk}. Using the MRA, we realize

that every signal in VJ can be also represented in VJ−1 ⊕WJ−1 as

f(t) =
∑

k

cJ−1,k ϕJ−1,k(t) +
∑

k

dJ−1,k ψJ−1,k(t) (3.70)

To establish the relationship between coefficients at different scaling levels, we substitute the scal-

ing (3.63) and the wavelet equations (3.66) into the inner product computation of coefficients

cJ,k = 〈f(t), ϕJ,k(t)〉.

After the substitution, we obtain key equations that allow us to recursively compute scaling and

wavelet coefficients at all coarser levels:

cj−1,n =
∑

m

hm−2n cj,m

dj−1,n =
∑

m

gm−2n cj,m
(3.71)

Starting from the finest-detail level J , we could proceed one level down to compute all expansion

coefficients by always recursing on the scaling coefficients {cj,k} and bookkeeping the wavelet coef-

ficients {dj,k} at each subsequent stage.

DWT definition. Let the starting coefficients at the finest level J represent the input sequence,

i.e., {xk} = {cJ,k}. If we proceed with the recursion (3.71) exactly J times, we obtain the following

54

set of coefficients

{yn} = {{c0,k}, {d0,k}, {d1,k} . . . , {dJ−1,k}} (3.72)

The sequence {yn} is the J-level discrete wavelet transform (DWT) of the sequence {xk}. If the

number of recursions proceeds without bound, then {yn} = {{dJ−1,k}, {dJ−2,k}, . . . , {d−∞,k}} and
we call it simply the DWT.

DWT matrix. The DWT is clearly a linear transform and can be represented by a matrix. In

the case of signals of infinite duration the matrix is infinite in size. At this point, we restrict our

focus to an important class of wavelet systems built with the compact support wavelet functions.

If the mother wavelet ϕ(t) has compact support on the interval t ∈ [0, N], and if the wavelet space

W0 is an orthogonal complement of the scaling space V0, then the father scaling function has also

compact support. It can be proven rather easily that, in that case, the scaling and the wavelet

coefficients {hk} and {gk} also have limited support in the interval [0, N] (see, e.g., [14]). The

recursive equations (3.71) for one level of recursion are represented by the following infinite matrix

W =
















. . .
...

...
...

...

h0 h1 h2 · · · hN−1

g0 g1 g2 · · · gN−1

h0 h1 h2 · · · hN−1

g0 g1 g2 · · · gN−1

...
...

...
. . .
















(3.73)

If the sequence {xk} is finite, however, the above matrix is banded. Assume that the length of the

input signal is N . The equations (3.71) suggest that, when the length of the scaling and wavelet

coefficients is greater than two, some additional values at the boundaries of {xk} are needed to

compute all coefficients at the next lower scale. Hence, the sequence {xk} has to be extended by

exactly L − 2 points at the boundaries, where L is the length of either the scaling {hk} or the

wavelet {gk} coefficients, whichever is greater. The type of extension depends on the signal model

used [80, 81, 15]. For example, if N = L = 4, a one-level DWT matrix will look like

y =W4(h,g)x =









h0 h1 h2 h3

h0 h1 h2 h3

g0 g1 g2 g3

g0 g1 g2 g3









E x (3.74)

where E is the signal extension operator that takes care of the boundary conditions. Notice that we

slightly reordered the output from (3.73). A two-level DWT can be obtained by recursing only on

the upper half of the output:

y =

[

W2(h,g)E

I2

]

W4(h,g) E x (3.75)

Since the recursion (3.71) reduces the number of coefficients by two after descending down each

level, there can be at most blog2Nc levels. Without loss of generality, assume N = 2J and that

the starting level is J = log2N . The DWT algorithm terminates at level j = 0, since {c0,n} and

55

{d0,n} contain only one sample, which generates the fully recursed DWT. We have already seen one

example of the fully recursed 2-level DWT in (3.75).

Multirate filter bank representation. The implications of the equations (3.71) is multifold.

They explain how to efficiently obtain coefficients at different resolution levels of the expansion of

the original signal, which immediately provides a fast algorithm for implementing the DWT. We

refer to this algorithm as Mallat’s algorithm. If the length of the scaling and the wavelet coefficients

is much smaller then the signal length N , then the complexity of Mallat’s algorithm is only O (N)

as compared to O
(
N2
)
if the DWT was implemented simply as a linear transformation.

Equations (3.71) also provide an important insight into the nature of the DWT. If we compare

the equations with the convolution sum in (3.5), we observe that they represent convolutions with

filters whose impulse responses are {h−k} and {g−k} where the resulting sequence is downsampled

by two [16, 14, 15]. In the polynomial representation, we can write equations (3.71) as

cj−1(z
2) =

1

2

(
h(z−1)cj(z) + h(−z−1)cj(−z)

)

dj−1(z
2) =

1

2

(
g(z−1)cj(z) + g(−z−1)cj(−z)

)
(3.76)

The scaling and wavelet coefficients are taps of the time-reversed filters h(z−1) and g(z−1), and one

level of the recursion is performed by filtering the input signal with these two filters followed by

the downsampling by two. It turns out that the filter h(z−1) consisting of the scaling coefficients is

a lowpass filter, whereas the wavelet filter g(z−1) is highpass. The recursion can be continued by

filtering and downsampling the lowpass portion of the output until the signal is reduced to only one

sample.

The whole procedure is schematically presented in Figure 3.3. The input signal is lowpass and

highpass filtered and then downsampled to obtain expansion coefficients at the next lower scaling

level. The filter bank is recursed in the lowpass branch until a one sample output is obtained. The

DWT of {xk} is the output sequence {yk}. To establish a connection with the MRA, we indicated

the scaling and the wavelet subspaces after each stage of the filter bank.

The above description of the DWT is closely related to the multirate signal processing that

had been researched and applied well before the ground-breaking work of Daubechies [73]. The

multirate filter bank representation provided better understanding of the wavelet analysis for a signal

processing expert with the traditional knowledge of Fourier analysis and spawned a tremendous

amount of activity in the area of wavelet signal processing. An excellent introduction to this topic

can be found in several texts [16, 15, 82].

The DWT filter bank is considered as the analysis filter bank since the output represents the

coefficients of the wavelet expansion. It is often necessary to process the signal in the transform

domain and then reconstruct the result using the inverse DWT or the synthesis filter bank. The

synthesis filter bank can be obtained by transposing the graph in Figure 3.3. Transposition changes

all nodes into adders, downsamplers into upsamplers, and analysis filters (h(z), g(z)) into synthesis

filters (h̃(z), g̃(z)). The synthesis filter bank tree is shown in Figure 3.4. For orthogonal wavelet bases,

the inverse DWT matrix is simply the transpose of the forward DWT matrix. The transposition

of the filter matrices equals the time-reversal in the z-domain representation of the filters, so the

synthesis filters in this case are simply h̃(z) = h(z−1), g̃(z) = g(z−1). The advantage of orthogonal

56

{xk}n0

Vj
-

-

g(z) µ´
¶³

-↓2 {yk}n−1
n/2

Wj−1

h(z) µ´
¶³
↓2
Vj−1

-

- g(z) µ´
¶³

-↓2 {yk}n/2−1
n/4

h(z) µ´
¶³
↓2

-

-

g(z) µ´
¶³

-↓2 y1
W0

h(z) µ´
¶³

-↓2 y0
V0

Figure 3.3: Filter bank interpretation of the DWT.

-

-

{y0}

{y1} g̃(z−1)µ´
¶³
↑2

h̃(z−1)µ´
¶³
↑2

6

?
-m+ -

-{yk}n/2−1
n/4 g̃(z−1)µ´
¶³
↑2

h̃(z−1)µ´
¶³
↑2

6

?

-

-

{yk}n−1
n/2

m+

g̃(z−1)µ´
¶³
↑2

h̃(z−1)µ´
¶³
↑2

6

?m+ -

Figure 3.4: Filter bank representation of the inverse DWT.

systems is that they are simple to construct and that Parseval’s theorem holds, i.e., that the energy

of the signal is preserved in the transform domain. However, imposing the orthogonality as the

condition removes many other degrees of freedom so that, for example, it is no longer possible

to design filters with the linear phase: a major drawback of orthogonal wavelet systems. The

biorthogonal systems are a generalization of orthogonal wavelets and allow a more flexible design.

We next discuss this and other generalizations of wavelet analysis and synthesis tools.

Generalizations of the DWT. Wavelets are an extremely versatile tool for modeling and

analyzing signals. We have seen that the wavelet expansion is designed to extract properties of

signals at different resolutions in both time and frequency. This expansion strategy is very useful

when the signal does not have fast changing components at low frequencies but has high-frequency

components (e.g., noise) that need to be localized in time (e.g., for denoising) [16, 14]. We expand

some of the definitions and review some generalizations that further empower wavelet tools.

In Section 3.2.1, we developed multiresolution analysis for the case when the scaling is done

with a factor of two which is often referred to as the dyadic expansion. The same concepts can be

developed for any integer dilation factorM , which leads toM-channel filter banks, and accordingly, to

the M-band DWT. Further, we mentioned that if the wavelets are compactly supported, the lowpass

and the highpass filters are FIR. The filter bank implementation of the DWT in Figure 3.3 does not

57

Figure 3.5: Wavelet packet trees: full (left); pruned (center); DWT (right).

require this condition. The filters can also be running IIR filters for real-time implementations in

both hardware and software. However, FIR filters have the advantage of being stable and having

simple linear phase design. Moreover, when the filters are FIR, the DWT can be represented as a

banded matrix, which allows treatment of the DWT as other block transforms such as the DFT.

The standard dyadic DWT always splits the scaling spaces into lower resolution wavelet and scal-

ing subspaces. This creates a one-sided filter bank tree shown in Figure 3.3. However, it is possible

to expand any branch of the tree, or equivalently, to expand the subspaces of the wavelet spaces as

needed. For example, starting from VJ = VJ−1⊕WJ−1 we could expand both VJ−1 = VJ−2⊕WJ−2

and WJ−1 =WJ−1,0 ⊕WJ−1,1 or either one of them to obtain different expansions adjusted to the

properties of the expanded signal. This is illustrated in Figure 3.5 for three different constellations.

The expansions obtained this way are referred to as wavelet packets. The fully expanded wavelet

packet tree provides tiling of the time-frequency plane similar to the short-time Fourier transform

and thus requires O (N logN) operations. However, the full tree is usually adaptively pruned to find

the best wavelet basis that matches the characteristics of the signal and achieves specific objectives

[83, 84, 85, 86].

Wavelet examples. The design of the wavelet systems in the discrete case boils down to

the design of filters in the wavelet filter bank. After satisfying basic properties and requirements

for wavelet systems, such as perfect reconstruction, completeness, etc., there are many remaining

degrees of freedom that can be used to design wavelets that satisfy additional properties such as

orthogonality, smoothness, regularity, symmetry, compactness, and many more. Based on these

choices, numerous classes of wavelet systems have been designed that have good properties for

specific applications. We briefly mention only some of them next.

The simplest meaningful example is the Haar basis, the shortest among all wavelet bases. The

Haar wavelet and the scaling functions are box functions shown in Figure 3.6. In the case of the Haar

wavelet it is very easy and instructive to determine the wavelet and the scaling coefficients. It is clear

from equations (3.63) and (3.66), and the shape of the box functions in Figure 3.6 that the scaling

coefficients are h = 1√
2
(1, 1)T and the wavelet coefficients g = 1√

2
(1,−1)T . The corresponding

filters are a simple moving average and a moving difference filter, respectively, a simple filter bank

of lowpass and highpass blocks. The wavelet and the scaling functions are of compact support and

so are the filter impulse responses. It is interesting to note that this is the only case when the DWT

matrix is natively square, i.e., no extension operator is needed.

58

-

6

-

6

tt

Figure 3.6: Haar scaling function and the wavelet.

Example 3.2. According to (3.75) we have

DWTHaar
4 =









1 1 1 1

1 1 −1 −1
1 −1 0 0

0 0 1 −1









=









1 1 0 0

1 −1 0 0

0 0 1 0

0 0 0 1

















1 1 0 0

0 0 1 1

1 −1 0 0

0 0 1 −1









The Haar DWT is also known as the rational Haar transform (RHT) since it was discovered long

before wavelet theory came to life. It is also interesting to notice that, if we use the Haar basis and

the fully expanded wavelet packet tree, we obtain the Walsh-Hadamard transform [15].

The next best known is the sinc wavelet: a direct consequence of the Haar basis and Shannon’s

sampling theorem. The lowpass filter impulse response in this case is the discrete sinc function

hk = sinc
(
π
2 k
)
and the highpass is derived from the relation ψ(t) = 2ϕ(2t)− ϕ(t).

Daubechies constructed orthogonal wavelets where the number of zero moments of the wavelet

function are maximized, which translates into the lowpass and the highpass filters h(z) and g(z)

having maximum number of zeros at frequencies 0 and π, or equivalently, being maximally flat at

those frequencies; hence, they are called the Daubechies maxflat wavelets [87, 88]. The Daubechies

wavelets can be of arbitrary even length L; the details of the design can be found in [71, 87].

For L = 2 we have the Haar basis, for L = 4 we get the Daubechies D4 wavelets with the lowpass

filter

hD4
=

1

4
√
2

(

1 +
√
3, 3 +

√
3, 3−

√
3, 1−

√
3
)T

and the highpass filter is simply given as g(z) = h(−z−1), which is always the case for orthogonal

wavelets. For larger lengths, the coefficients have an increasingly complex closed form [89]. It can

be shown that the orthogonal wavelets can be parameterized and represented very nicely using the

so-called lattice decomposition [82]. The choice of parameters is used to design optimal system for a

specific problem [90].

Spline functions have also been used for wavelet design for their smoothness and symmetry

properties. The most popular are the cubic splines for which the scaling coefficients are

hcspline =
1√
2

(
1

16
,
1

4
,
3

8
,
1

4
,

1

16

)T

However, splines are not orthogonal to integer translations, but they can be orthogonalized to

generate the Battle-Lemarié wavelets [87, 15]. The problem with these is that they have infinite

59

support and other unsatisfactory properties. If splines are used as biorthogonal wavelets, then the

compact support of splines translates into FIR filters where the synthesis filters are solved as a set

of linear equations [91]. This class of wavelets are called Cohen-Daubechies-Feauveau biorthogonal

family of biorthogonal wavelets and are widely used, e.g., in FBI fingerprint and the JPEG2000

image compression standards [17, 92].

Daubechies designed wavelets systems named coiflets that have both zero wavelet and zero scaling

function moments, based on work by Coifman [87, 93]. Furthermore, the number of zero moments

can be traded between the scaling function and the wavelet to better suit the application (e.g., [94]).

In addition, there are many classes of complex wavelet systems based on the Gaussian function

and complex exponentials, such as the Morlet wavelets and the Gabor wavelets. In this thesis,

however, we consider only real wavelet systems.

3.2.3 Polyphase representation

The multirate filter bank formulation of the wavelet expansion was very important, not only because

it made wavelet theory accessible to the signal processing experts, but also because it allowed direct

application of many already developed techniques for filter bank implementations. One very useful

technique, both in terms of efficiency and clarity, for representing single and multirate filter banks

is called the polyphase representation developed in the mid seventies [95].

Consider again the multirate filter bank tree in Figure 3.3. We observe that the downsampling

is performed after each filtering stage, which effectively removes every other sample of the filter

output. This is clearly not very efficient since every second cycle the system is performing redundant

operations. For an M -channel filter bank this inefficiency is even more pronounced. The polyphase

representation makes use of the Noble identities that explain how to commute downsamplers and

filters. Figure 3.7 shows one Noble identity and the application of the identity to achieve more

efficient filtering with the downsampled filters he(z) and ho(z) we defined in (3.38). Instead of

filtering the input signal with a bank of filters and then throwing away half of the results, the

identities show us that the downsampling can be done first, followed by filtering usign filters with

downsampled coefficients. This speeds up the computation by the downsampling factor; in this case

by two.

Using the decomposition from Figure 3.7, we can apply the identities to each stage of the wavelet

filter bank tree. If the identity is applied to both the lowpass filter h(z) and the highpass filter g(z)

and the polyphase channels carrying subsampled input signal are merged together, then we obtain

the identity shown in Figure 3.8. The input signal is split into even and odd samples by shifting and

downsampling, which creates two separate sequences in two channels. Each polyphase sequence is

filtered with the corresponding downsampled filters having only half the coefficients: even coefficient

filters for the even channel and odd coefficient filters for the odd channel. The results are then added

as suggested in Figure 3.7 and the whole filtering operation can be represented as the filter matrix

operation shown in Figure 3.8. The exact derivation can be found in [15, 82].

The filter matrix

P (z) =

[

he(z) ho(z)

ge(z) go(z)

]

(3.77)

60

-
x(z)

µ´
¶³
↓m - h(z) -

y(z)

≡ -
x(z)

µ´
¶³
↓m -h(zm)-

y(z)

-
x(z)

µ´
¶³
↑m - h(zm) -

y(z)

≡-
x(z)

µ´
¶³
↑m -h(z)-

y(z)

x(z)
- h(z) -

y(z)

≡ x(z)

-

-z−1

ho(z
2) µ´
¶³
↓2

he(z
2) µ´
¶³
↓2

6

?m+-y(z)≡ x(z)

-

-z−1

ho(z)µ´
¶³
↓2

he(z)µ´
¶³
↓2

6

?m+-y(z)

Figure 3.7: Noble identities (top); Efficient filtering using the Noble identity (bottom).

-

-

g(z) µ´
¶³

-↓2

h(z) µ´
¶³

-↓2

≡
z−1

-

-

µ´
¶³

-↓2

µ´
¶³

-↓2



he(z) ho(z)

ge(z) go(z)





-

-

Figure 3.8: Polyphase representation of one filter bank stage.

61

is called the polyphase matrix. The elements of the matrix are polynomials describing downsampled

filters defined in (3.38). A similar polyphase representation exists for the synthesis filter bank that

yields the synthesis polyphase matrix

P̃ (z) =

[

h̃e(z) g̃e(z)

h̃o(z) g̃o(z)

]

. (3.78)

The matrix P (z) plays an important role in designing wavelet systems since it captures all

properties and conditions that are either required or desired for the chosen wavelet basis. For

example, the perfect reconstruction (PR) defined in (3.82) establishes a relationship between analysis

and synthesis filters

h(z) = zg̃(−z−1) g(z) = −zh̃(−z−1)

g̃(z) = −zh(−z−1) h̃(z) = zg(−z−1).
(3.79)

Given the analysis filter bank we can compute the synthesis filters and vice versa.

If the system is orthogonal then

P̃ (z) = P (z)T , (3.80)

in which case

h(z) = h̃(z), g(z) = g̃(z), h(z) = zg(−z−1), g(z) = −zh(z−1) (3.81)

Many other necessary and sufficient conditions are easier to derive using this formulation [16].

Furthermore, the polyphase representation is used to exploit the relationship between filters, such

as the ones in (3.81), and derive even more efficient implementations. We explore these possibilities

next.

3.2.4 Lattice factorization

We have seen in the previous section that the polyphase matrices play an important role in filter

design for wavelet filter banks, and that they capture many important properties of wavelet systems.

Polyphase matrices reveal important structural information about the system, which enables a more

efficient implementation.

In some important special cases, the polyphase matrix takes an especially regular form. One

such case is the orthogonal 2-channel filter bank, or equivalently, a 2-band DWT with an orthogonal

basis. From the perfect reconstruction condition (3.82), the orthogonality condition is obtained as

P̃ (z) = P (z)T and the filters have to satisfy (3.80). Such polyphase matrix has the property of

being paraunitary, i.e., it is unitary on the unit circle |z| = 1 [82, 96], with the condition

P (z−1)TP (z) = I . (3.82)

This condition gives a very special structure to the polyphase matrix that is exploited in factoriza-

tions.

The lattice factorization is based on factoring the polyphase matrix with the paraunitary property

into elementary paraunitary matrices. Without loss of generality, we assume that the lowpass and

62

highpass filters are FIR and causal, i.e., h(z) =
∑L

i=0 hkz
−k, g(z) =

∑L
i=0 gkz

−k. Next, we design

two elementary paraunitary matrices

Rθ =

[

cos θ sin θ

− sin θ cos θ

]

(3.83)

representing Givens rotations, and the delay operator

∆(z) =

[

1 0

0 z−1

]

. (3.84)

It is easy to see that a cascade of these two matrices

H(z) = Rθp
∆(z)Rθp−1

· · ·∆(z)Rθ0 (3.85)

will again be paraunitary. It turns out that the above cascade of simple matrices is sufficient to

implement any real paraunitary system [82]. Thus, when the polyphase matrix P (z) is real, we can

factorize it into the following cascade

P (z) = αRθl
∆(z)Rθl−1

· · ·∆(z)Rθ0

[

1 0

0 −1

]

, (3.86)

where l is the filter length of the downsampled filters in P (z), and α is a scalar factor. The structure

of the factorized system is shown in Figure 3.9. Further improvement can be obtained by factoring

out cos θm from each of the Givens rotations Ri and gathering them all into the constant β. The

rotations become the following butterfly computations

[

cos θi sin θi

− sin θi cos θi

]

= cos θi

[

1 tan θi

− tan θi 1

]

= cos θi

[

1 αi

−αi 1

]

. (3.87)

The constant β can be written as a function of all α’s as

β =
α

∏

k

√

1 + α2
k

.

The synthesis polyphase matrix P (z−1)T factorization can be obtained easily by transposing and

time-reversing (3.86)

P (z−1)T = α

[

1 0

0 −1

]

Rθ0 ∆(z−1)Rθ1 · · ·∆(z−1)Rθl
. (3.88)

Assume that the lowpass and highpass filters h(z) and g(z) are real and satisfying the orthogo-

nality condition (3.80). The lattice decomposition shown in Figure 3.9 can be obtained recursively

by solving the system of equations

(1 + α2
j)h

(j−1)(z) = h(j)(z)− αjg(j)(z)

(1 + α2
j)z

−2g(j−1)(z) = αjh
(j)(z) + g(j)(z)

, (3.89)

by initializing h(j)(z) = h(z) and g(j)(z) = g(z), and then solving for αj so that the highest power

of h(j)(z) is canceled.

63

z−1

-

-

µ´
¶³

-↓2

µ´
¶³

-↓2 




1 α0

−α0 1






-

-

z−1 -






1 α1

−α1 1






-.....

-..... -

- z−1 -






1 αm

−αm 1






-

-

Figure 3.9: Lattice decomposition of an orthogonal filter bank.

The lattice factorization with rotations calculated as shown in Figure 3.9 requires 2(l + 1) + 2

multiplications and 2(l+1) additions as compared to 4lmultiplications and 4l−2 additions per output
point, an approximate two times speedup for the lattice structure. Further, the lattice factorization

alleviates the effects of the quantization on finite precision arithmetics since the orthogonality of

the transform is preserved and, more importantly, the perfect reconstruction condition holds. The

lattice factorization can be used as the (only) design tool for multirate filter banks to optimize the

coefficients so as to minimize the stopband energy [97].

3.2.5 Lifting scheme factorization

The lattice factorization from the previous section reduces the arithmetic cost of computations for

one stage of the wavelet filter bank by decomposing the paraunitary polyphase into elementary stages

of rotations and delays. The disadvantage of this approach is that it does not apply to biorthogonal

systems, for which the polyphase matrix is not paraunitary. Based on the work of Lounsbery et

al. [98], Sweldens and Daubechies designed a new technique for factorizing any polyphase matrix

that satisfies property (3.82) into elementary matrices called the lifting steps [19]. The algorithm

is referred to as the lifting scheme factorization and is used both as an efficient implementation of

the DWT and as a versatile tool for designing biorthogonal wavelet systems. The original goal was

to develop techniques for the design of second generation wavelets; however, the lifting scheme has

found a wide use in efficient implementations of first generation wavelet systems (e.g., [17]).

The lifting scheme (LS) is based on the Euclidean algorithm for polynomials that is used for

constructions factoring filter banks into ladder structures [99, 100]. Consider a polyphase matrix

P (z) obtained for the filter pair {h(z), g(z)} and defined in (3.77). The perfect reconstruction

condition (3.82) implies that the determinant of P (z) is a monomial

detP (z) = czp. (3.90)

It follows that the matrix P (z) can be factored into polynomial matrices whose determinant is also

a monomial, or 1 as a special case. The matrices

Si(z) =

[

1 si(z)

0 1

]

, and Ti(z) =

[

1 0

ti(z) 1

]

(3.91)

clearly satisfy this condition. We call them primal and dual lifting matrices.

64

Without any loss of generality, assume that the degree of the polynomial he(z), as defined in (3.2),

is larger than the degree of ho(z). By dividing he(z) with ho(z) we obtain

he(z) = ho(z)t0(z) + re(z) (3.92)

where s(z) is the quotient, and re(z) is the remainder of the division. Because of the requirement

detP (z) = 1, the same equation must hold for the highpass filter

ge(z) = go(z)t0(z) + ro(z). (3.93)

If we rename h1
e(z) = re(z), and h

1
o(z) = ro(z) and use the matrix form, these two equations amount

to [

he(z) ho(z)

ge(z) go(z)

]

=

[

h1
e(z) ho(z)

g1
e(z) go(z)

][

1 0

t0(z) 1

]

(3.94)

The original polyphase matrix is factored into the new polyphase matrix P 1(z) with the determinant

one and the lifting step matrix. Since deg(h1
e) < deg(ho), the division can proceed as

ho(z) = h1
e(z)s0(z) + h2

o(z)

go(z) = g1
e(z)s0(z) + g2

o(z)
(3.95)

and, hence, we obtain

[

he(z) ho(z)

ge(z) go(z)

]

=

[

h1
e(z) h2

o(z)

g1
e(z) g2

o(z)

][

1 s0(z)

0 1

][

1 0

t0(z) 1

]

(3.96)

The division can be continued alternating between even and odd filters that produce alternating

primal and dual lifting steps. The procedure is equivalent to the Euclidean algorithm for polynomials

that terminates with the greatest common divisor (GCD) for the polynomials he(z) and ho(z). Since

these polynomials are relatively prime because of the condition (3.82), the gcd(he, ho) = 1. This

ensures that the algorithm terminates with the diagonal matrix of constant coefficients with the

determinant one. Thus, the polyphase matrix is decomposed into

P (z) =

[

α 0

0 1/α

]

·
m∏

i=0

[

1 si(z)

0 1

][

1 0

ti(z) 1

]

(3.97)

The described factorization method is not unique due to the fact that the division with remainder

of Laurent polynomials is not unique. The consequence of this is that there may be many lifting

schemes for the same polyphase matrix. A detailed analysis of the degrees of freedom in choosing

the LS is given in Appendix A.

The lifting scheme reduces the arithmetic cost for computing the polyphase matrix asymptotically

by one half; this is similar to the savings obtained for the lattice factorization of orthogonal filter

banks. Furthermore, it allows for in-place implementation of each stage of the DWT, which is easy

to see in Figure 3.10 that schematically describes the lifting scheme factorization. Each of the two

channels requires allocation of one memory block that is updated every other lifting step by the

filtered sequence from the other channel.

Other advantages of the LS we do not consider in this thesis are the possibility of adaptive

wavelet transforms and, as was the case with lattice structures, robustness to quantization errors.

65

z−1

-

-µ´
¶³
↓2 - m+

µ´
¶³
↓2 -

6

t0(z)

6

m+
s0(z)

?

?

-

-

- m+

-
6

tm(z)

6

m+
sm(z)

?

?

-

-

µ´
¶³
α -

µ´
¶³
1/α -

Figure 3.10: Lifting scheme for one stage of the forward DWT.

Additionally, with LS it is rather simple to design nonlinear wavelet transforms, such as integer-to-

integer DWTs [101, 102].

The LS is widely used, for example, in the JPEG2000 standard [17]. However, (3.97) shows that

the LS algorithm increases the length of the critical path. As a consequence, it may actually increase

runtime even though it reduces the arithmetic cost. We will perform experiments to investigate this

behavior in Section 7.

3.3 Summary

This chapter provides background information on digital FIR filters and discrete wavelet signal

processing required to understand the concepts of representing and generating fast algorithms for

their computation. We introduced the definitions of linear, circular, and generalized convolutions,

and discussed some of the most frequently used algorithms for their efficient implementation. The

presented algorithms can be broadly classified into algorithms implemented fully in the time domain

and algorithms implementing filters in transform domain. We decide to present a more interesting

classification from the implementation perspective:

• Algorithms that do not reduce the computational cost but provide better locality and better

data flow patterns: overlap-add, overlap-save, nesting, and other blocking techniques;

• Algorithms that reduce the arithmetic cost of the direct filtering implementation, but still have

O
(
n2
)
cost: divide-and-conquer methods;

• Methods that reduce the cost to O (n log n): transform-domain methods based on the convo-

lution property of trigonometric transforms such as the DFT and the DHT;

• Simple techniques that serve as a gateway to other efficient methods (Agarwal-Cooley algo-

rithm for multi-dimensional convolution, embedding methods).

We explore the advantages and disadvantages of each class of algorithms in Chapter 7, where we

design experiments to compare different approaches.

In the second part of this chapter, we introduced wavelets multi-resolution analysis and drew

a connection between critically-sampled filter banks and the discrete wavelet transform (DWT).

Several generalizations of the DWT were discussed, including wavelet packets and multi-channel

filter banks. We reviewed most of the commonly used efficient methods for implementing the DWTs.

66

Since the DWT can be computed using Mallat’s equations (3.71), the definition of the DWT already

lends itself to a very fast implementation method of only O (n) cost, where n is the length of the

input sequence. Because of the special properties of the wavelet systems, the arithmetic cost can

be further reduced by techniques such as the lifting scheme and the lattice factorization. However,

the reduced cost comes at the price of increased critical path of the computation and the increased

memory bandwidth. We compare these methods and report our results in Chapter 7.

67

CHAPTER 4

MATHEMATICAL PRELIMINARIES

In the previous chapter we have reviewed known algorithms for efficient computation of FIR

filtering and wavelet transform operations. We want to formulate these algorithms using the rule

formalism to be able to automatically generate implementations using SPIRAL and search for those

that are best matched to the target platform. In this chapter we provide necessary mathematical

definitions, concepts, and tools we use to derive and represent implementations of important filtering

and wavelet algorithms.

4.1 Matrices

Matrix representations of linear operators are the foundation of our mathematical framework. We

start by introducing basic definitions and conventions that will be used throughout this thesis.

4.1.1 Basic definitions

Linear transformation. A linear transformation from Cn to Cm is a function T : Cn 7→ Cm

such that

y = T (cv +w) = c(Tv) + Tw (4.1)

where v,w ∈ Cn,y ∈ Cm and c ∈ C. Given an ordered basis {x0, . . . ,xn−1} for Cn, the transfor-

mation T is uniquely defined by its action on the basis vectors yi = Txi, i = 0, . . . , n− 1 [103]. If

we choose the standard basis {e0, . . . , en−1} for Cn, defined by

e0 = (1, 0, 0, . . . , 0)T

e1 = (0, 1, 0, . . . , 0)T

· · · · · ·
en−1 = (0, 0, 0, . . . , 1)T ,

(4.2)

represented as column vectors, then ti = Tei, i = 0, . . . , n− 1 is also unique.

Matrix. A matrix A over a field F is a rectangular array of elements ai,j ∈ F with m rows and

n columns

A =







a0,0 . . . a0,n−1

...
. . .

...

am−1,0 . . . am−1,n−1






. (4.3)

68

In other words, A is an element of Fm×n.
In writing and referring to matrices we introduce a few conventions for the clarity and the brevity

of the notation.

1. If necessary, we explicitly denote the dimensions of the matrix in the subscript Am×n.

2. If most of the elements of the matrix are zero, we either completely omit showing them, or we

replace zeros with dots, e.g.,






4 0 0

2 0 0

0 1 1






=







4

2

1 1






=







4 · ·
2 · ·
· 1 1






. (4.4)

3. If the matrix A has dimensions 1 × n or n × 1, then it is a row or a column vector, re-

spectively. By convention, we use small letters in boldface to refer to column vectors, e.g.,

x = (x0, . . . , xn−1)
T . Row vectors are denoted as xT .

4. The analogy between sequences and vectors should be obvious. Given a sequence {xk}n−1
0 ,

the corresponding vector is x = (x0, . . . , xn−1)
T

Matrix-vector product. Given a matrix A = [ai,j] ∈ Cm×n and a column vector x ∈ Cn×1,

the matrix-vector product is defined by

y = (y0, . . . , ym−1)
T = Ax, yi =

n−1∑

j=0

ai,jxj (4.5)

Matrix representation of linear transformations. We are now ready to draw the connection

between linear transformations and matrices. Given a linear transformation T : Cn 7→ Cm and the

standard bases (4.2) for both Cn and Cm, we know that

ti = Tei, i = 0, . . . , n− 1 (4.6)

is unique. Then, for any x ∈ Cn, we can write

y = Tx = x0t0 + x1t1 + · · ·+ xn−1tn−1, (4.7)

where

x = x0e0 + x1e1 + · · ·+ xn−1en−1. (4.8)

The proof is elementary and follows directly from the linearity of the transform (4.1). The rep-

resentation of the vector x with respect to the standard basis is x = (x0, x1, . . . , xn−1)
T where

xi, i = 0, . . . , n are the coordinates. Equivalently, we can represent images of the standard basis

tj , j = 0, . . . n as vectors tj = (t0,j , . . . , tm,j)
T . By convention, the representations are column

rather then row vectors. We can then represent (4.7) by the matrix vector product

y = Tx =







t0,0 . . . t0,n−1

...
. . .

...

tm−1,0 . . . tm−1,n−1






x. (4.9)

69

where y = (y0, y1, . . . , ym−1)T and the columns of the matrix T are given by (4.6) w.r.t the standard

basis of Cm.

Matrix generating function. An indirect way to define matrices is by using matrix generating

functions. A matrix generating function f(i, j) is the mapping of the form

a :







{0, . . . ,m− 1} × {0, . . . , n− 1} → C

(i, j) 7→ a(i, j)
. (4.10)

Given a generating function for the matrix A, the elements of the matrix are images of the matrix

generating function ai,j = a(i, j) where i = 0, . . . ,m − 1 and j = 0, . . . , n − 1. We use the same

notation for the element ai,j and the image a(i, j) hoping that it will not confuse the reader. We

often use a shorthand notation for matrices A = [a(i, j)]m×n, or simply A = [ai,j]m×n. This notation

is especially useful when the generating function is given analytically.

Matrix transpose. Given a matrix A = [ai,j]m×n, the transposed matrix is defined as AT =

[aj,i]n×m.

4.1.2 Special matrices

We define a few special matrices that have simple structure.

Diagonal matrix. A diagonal matrix diag(a) is a square matrix of size n × n where the n

diagonal elements are specified by the vector a = (a0, . . . , an−1)
T ∈ Cn×1 and the rest of the matrix

is zero:

diag(a) =







a0

. . .

an−1







(4.11)

Given a generating function

f :







{0, . . . , n− 1} → C

i 7→ f(i)
.

for the diagonal elements ai = f(i), we write diag(a) = diag(f)n.

Zero matrix. The zero matrix 0m×n is an m× n matrix of zeros,

0m×n = [0]m×n (4.12)

Identity matrix. The identity matrix In is the diagonal matrix with all n diagonal elements

one and all off-diagonal elements zero, i.e.,

In = diag(1), 1 = (1, . . . , 1). (4.13)

Opposite identity matrix. The opposite identity matrix, or the flip matrix, is the square

matrix of ones on the opposite diagonal, i.e.,

Jn =





1
. .
.

1



 (4.14)

70

4.2 Constructs

We define several matrix operations that are instrumental in expressing DSP algorithms including

discrete filtering and wavelet transform algorithms. Since these operations mathematically describe

the structure of the algorithms and define basic implementation strategies, we call them mathemat-

ical constructs. They provide the binding glue between basic building parts of algorithms.

4.2.1 Basic matrix constructs

The following is a list of well-known matrix constructs that we provide here for completeness. We

also establish several notational conventions that we use throughout this document.

Scalar product. Given an m × n matrix A = [ai,j]m×n over a field F and the element c ∈ F,
the scalar product c ·A is defined as c ·A = [c · ai,j]m×n

Matrix of matrices. Let the matrices Ai,j ∈ Cmi,j×ni,j , where i = 0, . . . , r − 1, and j =

0, . . . , s− 1, be concatenated into a larger rectangular array C of r × s blocks. We assume that the

dimensions of matrices Ai,j agree, i.e., that

mi= mi,0= mi,1= · · ·= mi,s, ∀i ∈ {0, . . . , r − 1}
nj = n0,j = n1,j = · · ·= nr,j , ∀j ∈ {0, . . . , s− 1}

Then the matrix C of dimensions (
∑r−1

k=0mk)× (
∑s−1

l=0 nl) is a matrix of matrices or a block matrix.

C =







A0,0 . . . A0,s−1

...
. . .

...

Ar−1,0 . . . Ar−1,s−1






= [Ai,j]r×s (4.15)

If C is a block matrix with 1× s or r×1 blocks then we call it the horizontal stacking or the vertical

stacking of matrices, respectively. We sometimes denote the stacking of matrices as

C =
[

A |B
]

, and C =

[

A

B

]

. (4.16)

We also define the iterative stacking using the associativity of the stacking operations.

r−1[]

i=0

Ai =







A0

...

Ar−1






= [Ai]r×1 (4.17a)

s−1[]

i=0

Ai =
[

A0 · · · As−1

]

= [Ai]1×s (4.17b)

Sums of matrices. The matrix sum of m × n matrices A = [ai,j]m×n and B = [bi,j]m×n over

a field F is performed as the element-wise sum in F

C = A+B = [ai,j + bi,j]m×n = [ci,j]m×n. (4.18)

71

Thus, all the properties of the addition in F translate directly to matrix sums:

1. A+ (B + C) = (A+B) + C (Associativity) (4.19a)

2. A+B = B +A (Commutativity) (4.19b)

3. A+ 0n×m = A, A+ (−1) ·A = 0n×m (Zero and negative matrix) (4.19c)

Using the associativity property, we define the iterative matrix sum simply as

N−1∑

i=0

Ai = A0 +A1 + · · ·+AN−1 (4.20)

Matrix composition. Let A = [ai,j]m×l be an m × l matrix and B = [bi,j]l×n be an l × n
matrix. Then the composition or the product of matrices A and B is an m× n matrix C given by

C = A ·B =

[
l−1∑

k=0

ai,k · bk,j
]

= [ci,j]m×n (4.21)

Basic properties of the matrix product are

1. A · (B · C) = (A ·B) · C (Associativity) (4.22a)

2. A · In = A = Im ·A, A ∈ Cm×n (Identity matrix) (4.22b)

3. A ·A−1 = A−1 ·A = In, A ∈ Cn×n (Inverse matrix) (4.22c)

If it exists, A−1 is the inverse of the square matrix A by respect to multiplication. A square matrix

A is said to be orthogonal if AT = A−1.

Conjugation of matrices. The conjugation of a square matrix An with another square matrix

Bn is the similarity transformation

Cn = AB = B−1 ·A ·B (4.23)

We list some of the useful properties of the conjugation

1. C = AB ⇒ CB−1

= A (Symmetry) (4.24a)

2.

(
N−1∏

i=0

Ai

)B

=

N−1∏

i=0

AB
i

(
N−1∑

i=0

Ai

)B

=

N−1∑

i=0

AB
i

(Distributivity) (4.24b)

3.
((
AB1

)B2
)...BN−1

= AB1·B2···BN−1 (Iterative conjugation) (4.24c)

4. Ax = λx⇒ ABy = λy, where y = B−1x (Conservation of the spectrum) (4.24d)

The last property shows that the matrix spectrum is preserved by the conjugation and, hence, also

is the matrix determinant detA = detAB .

Conjugation can be seen as a change of basis specified by B of the linear transformation repre-

sented by A. In the case B is a permutation, conjugation is a reordering of the basis.

72

4.2.2 Subspace decomposition constructs

We introduce constructs that decompose linear operators on vector spaces into multiple operators

on subspaces. They are instrumental in expressing many important structured matrices and serve

as a tool for decomposing large structured matrices leading to fast algorithms.

Direct sum. The direct sum of matrices Am1×n1
and Bm2×n2

is the (m1 +m2)× (n1 + n2)

block diagonal matrix

C = A⊕B =

[

A 0

0 B

]

(4.25)

Through the associaticity property we define the iterative direct sum as

N−1⊕

i=0

Ai =









A0

A1

. . .

AN−1









(4.26)

If Ai, Bi, i = 0, . . . , N − 1 are all n× n matrices then the following holds true

1.

(
N−1⊕

i=0

Ai

)(
N−1⊕

i=0

Bi

)

=

N−1⊕

i=0

(Ai ·Bi) (4.27a)

2.

(
N−1⊕

i=0

Ai

)(
⊕N−1

i=0 Bi)

=
N−1⊕

i=0

ABi

i (4.27b)

Tensor product. The tensor or Kronecker product of matrices A = [ai,j]m1×n1
and B =

[bi,j]m2×n2
is the m1m2 × n1n2 block matrix C of the following form

C = A⊗B =







a0,0B . . . a0,nB
...

. . .
...

am,0B . . . am,nB







(4.28)

We list some of the most important properties of the tensor product. The proof can be found in

[32].

A⊗ I1 = I1⊗A = A (I dentity) (4.29a)

A⊗ (B ⊗ C) = (A⊗B)⊗ C (Associativity) (4.29b)

(A+B)⊗ C = (A⊗ C)(B ⊗ C)
A⊗ (B + C) = (A⊗B)(A⊗ C)

(Bilinearity) (4.29c)

(A⊗B)(C ⊗D) = AC ⊗BD (Resolution of the product) (4.29d)

(
n−1⊕

i=0

Ai)⊗B =
n−1⊕

i=0

(Ai ⊗B) (Distributivity over direct sum) (4.29e)

73

The proof can be found in [32].

Using the above properties, we can derive several useful identities

1. Im⊗ In = Imn (4.30a)

2. (A⊗B)T = AT ⊗BT (4.30b)

3. A−1 ⊗B−1 = (A⊗B)−1 (4.30c)

4. Am1×n1
⊗Bm2×n2

= (A⊗ Im2
)(In1

⊗B) = (Im1
⊗A)(B ⊗ In2

) (4.30d)

5.

(
n−1⊗

i=0

Ai

)(
n−1⊗

i=0

Bi

)

=

n−1⊗

i=0

(Ai ·Bi) (4.30e)

6.

n−1∏

i=0

Ai ⊗Bi =

n−1∏

i=0

Ai ⊗
n−1∏

i=0

Bi (4.30f)

The tensor product is frequently encountered in expressing DSP algorithms as it captures the

structure of many algorithms in a concise and unified way. Closely related to the tensor product is

a family of permutations with which it shares many important properties. We defer the discussion

of these properties until later in this chapter.

4.2.3 Overlapped constructs

We introduce two overlapped constructs that are required for expressing filtering and wavelet al-

gorithms. Overlapped matrices arise in convolution operators with Toeplitz structure, as well as

in block transforms. The overlapped constructs represent a family of binary operators that are

parameterized by the integral parameter k.

Overlapped direct sum. The row overlapped direct sum and the column overlapped direct sum

of matrices A = [ai,j]m1×n1
and B = [bi,j]m2×n2

are matrices C = [ci,j](m1+m2)×(n1+|n2−k|) and

D = [di,j](m1+|m2−k|)×(n1+n2) defined, respectively, as

C = A⊕k B =










A

B










, D = A⊕k B =








A

B







, (4.31)

where the parameter k specifies the number of overlapping columns or rows, respectively.

In general, the overlapped direct sum can be defined for any k ∈ Z. A negative overlap k simply

means that there are |k| zero columns (rows) between matrices A and B. This is illustrated in (4.32).

A⊕k B =







A

B






, k < 0, A⊕k B =








A

B







, k < 0, (4.32)

If, on the other hand, k > n2 for the row overlapped direct sum,or k > m2 for the column

overlapped direct sum, then the size of the resulting matrix increases with k, which we can see from

74

the dimensions of matrices C(m1+m2)×(n1+|n2−k|) and D(m1+|m2−k|)×(n1+n2). This case is shown

in (4.33).

A⊕k B =







A

B






, k > n2 A⊕k B =






A

B




 , k > m2 (4.33)

By definition, the reference point of the overlap is the bottom right corner of the first matrix in the

overlapped direct sum. From (4.33) we observe that the reference point of the resulting matrix does

not correspond to the reference point of the last matrix in the summation. It implies that many

of the properties, such as associativity of the overlapped direct sum, do not hold in this case and

require special treatment. This irregularity is inherent to all overlapping constructs regardless of

the definition or the choice of the reference point.

The set of all parameterized operators is bipartitioned into two subsets. We, therefore, consider

two separate cases: the ”regular” case with k ≤ n2 or k ≤ m2, and the ”irregular” case with k > n2

or k > m2.

The following basic properties hold for both cases:

1. A⊕0 B = A⊕0 B = A⊕B (4.34a)

2. (A⊕k B)T = AT ⊕k BT

(A⊕k B)T = AT ⊕k BT

(4.34b)

3. A⊕k B = (A⊕B)(In1
⊕k In2

)

A⊕k B = (Im1
⊕k Im2

)(A⊕B)

(4.34c)

The following lemmas provide conditions under which the associativity property holds.

Lemma 4.1 (Associativity of the overlapped direct sum). In the regular case (4.31), the

associativity property holds for both the row and the column overlapped direct sum.

A⊕k1 B ⊕k2 C = A⊕k1 (B ⊕k2 C) = (A⊕k1 B)⊕k2 C (Column-column) (4.35a)

A⊕k1
B ⊕k2

C = A⊕k1
(B ⊕k2

C) = (A⊕k1
B)⊕k2

C (Row-row) (4.35b)

A⊕k1
B ⊕k2 C = A⊕k1

(B ⊕k2 C) = (A⊕k1
B)⊕k2 C (Row-column) (4.35c)

A⊕k1 B ⊕k2
C = A⊕k1 (B ⊕k2

C) = (A⊕k1 B)⊕k2
C (Column-row) (4.35d)

The proof is intuitive from the illustration (4.31) and we omit it here.

In the irregular case (4.33), only the left associativity holds. The right associativity can still be

obtained by appropriate mappings of the overlap parameters. This represents a generalization in

the sense that it incorporates the regular associativity as a special case.

Lemma 4.2 (Left associativity in the irregular case). For matrices Am1×n1
, Bm2×n2

, and

Cm3×n3
we have

A⊕k1 B ⊕k2 C = (A⊕k1 B)⊕k2 C = A⊕k1+〈k2−m2−〈k1−m2〉〉 (B ⊕k2−〈k1−m2〉 C) (4.36a)

A⊕k1
B ⊕k2

C = (A⊕k1
B)⊕k2

C = A⊕k1+〈k2−n2−〈k1−m2〉〉 (B ⊕k2−〈k1−n2〉 C) (4.36b)

75

where

〈k〉 =
{

k, k ≥ 0

0, k < 0
. (4.37)

Proof. We start with the row overlapped case. The overlapped direct sum is left associative by

definition. The right parenthesizing requires the change of the overlap parameter. We first notice

that the matrix C should be overlapped with the matrix B by k2 subtracted by the shift in the

reference (bottom-right) point going from A ⊕k1
B to B, which is equal to 〈k1 −m2〉. Second, the

overlap between matrices A and B need to be readjusted by adding the shift in the reference (upper-

left) point when going from B to B ⊕k2−〈k1−m2〉 C, which is equal to 〈(k2 − 〈k1 −m2〉)−m2〉. For
the column overlap case the proof is similar. ¥

Overlapped tensor product. We use the overlapped direct sum to define the row overlapped

tensor product and the column overlapped tensor product,respectively, as

Row overlapped tensor Column overlapped tensor

Is⊗kA =
s−1⊕

k
i=0

A Is⊗kA =
s−1
⊕k

i=0

A










A

A
· · · ·

A


















A
A

A
· · · ·

A









(4.38)

Most of the properties of the overlapped tensor product follow directly from the properties of the

overlapped direct sum so we list them without proof. Let A be an m× n matrix. Then

(Is⊗kA)T = Is⊗kAT (4.39a)

Is⊗0A = Is⊗0A = Is⊗A (4.39b)

Is⊗kA = (Is⊗A)(Is⊗k In)
Is⊗kA = (Is⊗k Im)(Is⊗A).

(4.39c)

Lemma 4.3 (Composition of overlapped tensors in the regular case). Let us assume that

k ≤ n for Is⊗kA and that k ≤ m for Is⊗kA. Then we have a regular row and column overlapped

tensor product and the following properties hold

Is⊗k(It⊗kA) = Ist⊗kA
Is⊗k(It⊗kA) = Ist⊗kA

(4.40a)

Is⊗k1
(It⊗k2

A) = (Ist⊗A)(Is⊗k1
(It⊗k2

In))

Is⊗k1(It⊗k2A) = (Is⊗k1(It⊗k2 Im))(Ist⊗A)
(4.40b)

Proof. The first two identities follow directly from the associativity property of the overlapped direct

76

sum (4.35). The proof of (4.40b) goes as follows:

Is⊗k1
(It⊗k2

A)
(p.1)
= (Is⊗(It⊗k2

A))(Is⊗k1
It(n−k2)+k2

)

(p.1)
= (Is⊗(It⊗A)(It⊗k2

In))(Is⊗k1
It(n−k2)+k2

)

(p.2)
= (Ist⊗A)(Is⊗(It⊗k2

In))(Is⊗k1
It(n−k2)+k2

)

(p.1)
= (Ist⊗A)(Is⊗k1

(It⊗k2
In))

The labels over the equality signs refer to the identity used in the derivation. Label (p.1) denotes

property (4.39c) and label (p.2) denotes property (4.29d). The proof for the column overlapped

tensor product is similar. ¥

4.3 Operators

We introduce a few classes of parameterized operators. Even though transforms are also linear opera-

tors, in our framework we treat them separately to indicate that they are suitable for decomposition.

Unlike transforms, operators typically perform simple reordering, copying, and localized operations

on data, using relatively small number of arithmetic operations. Because of their simple structure,

operators are normally not decomposed to obtain fast algorithms.

4.3.1 Permutations

We start by defining operators that perform permutations of sequences.

General permutation. Given a finite set A, a permutation is a one-one mapping of the set A

onto itself.

π : A 7→ A

Two sets A and B are equivalent if there is a one to one correspondence between them, i.e., if there

exists a bijective mapping from A to B. Since every finite set A of size n is equivalent to the set

S = {0, 1, . . . , n − 1}, we can define any permutation on A uniquely as a permutation on S. This

can be formally achieved by ordering and indexing the elements of A to obtain sequences or vectors

of elements (a0, . . . , an−1). The permutation π is then defined by the 1-1 mapping

π :

{

{0, . . . , n− 1} 7→ {0, . . . , n− 1}
i 7→ π(i)

(4.41)

We will use the above definition throughout the rest of the thesis. It implies that a permutation

represents a mapping of indices of elements of A, not the elements themselves. To clarify what this

exactly means, we use the matrix representation of permutations. As before, we assume that the

linear transformations of sequences are represented by matrices that operate from the left on column

vectors. The permutation matrix is then defined using the following generating function

π̂ :

{

{0, . . . , n− 1} × {0, . . . , n− 1} 7→ {0, 1}
(i, j) 7→ π̂(i, j)

, (4.42)

77

where

π̂(i, j) =

{

1, j = π(i)

0, else
(4.43)

The matrix generating function π̂ generates the permutation matrix [π̂i,j]. To avoid reference to the

generating function to obtain the permutation matrix, we simply write mat(π) = [π̂i,j].

The permutation matrix can be readily obtained as

P = mat(π) =










eTπ(0)

eTπ(1)

...

eTπ(n−1)










(4.44)

We refer to a permutation matrix simply as permutation.

Example 4.1. Let π be a permutation on S4 = {0, . . . , 3} defined as

π :
{

0 7→ 0, 1 7→ 3, 2 7→ 1, 3 7→ 2 ,

Using (4.44), we obtain the matrix representation of π as

P = mat(π) =









1 · · ·
· · · 1

· 1 · ·
· · 1 ·









.

The reordered sequence is simply (x0, x3, x1, x2)
T = P · x.

Permutation matrices are orthogonal with exactly one non-zero element in each row and column.

P = [π̂i,j] ⇒ P−1 = [π̂−1
i,j] = PT , (4.45)

where

π̂−1(i, j) =

{

1, j = π−1(i)

0, else
.

Stride permutation. The stride permutation is frequently encountered in representations of

DSP algorithms. It is determined by the parameter s called the stride and the size of the permuted

set n = r · s.

lrss :







{0, . . . , n− 1} 7→ {0, . . . , n− 1}
i 7→ i · s modn, i = 0, . . . , n− 2

i 7→ n− 1, i = n− 1

, Lrss = mat(lrss) (4.46)

The stride permutation Lrss reorders a sequence of length n by collecting the elements at the stride s.

78

Example 4.2.

L6
2 =














1 · · · · ·
· · 1 · · ·
· · · · 1 ·
· 1 · · · ·
· · · 1 · ·
· · · · · 1














, (x0, x2, x4, x1, x3, x5)
T = L6

2 x

The most fundamental property of the stride permutation is the blocking property. Let A be an

m × n matrix A = [ai,j]m×n, and let r and s be stride parameters such that r|m and s|n. Then A

is blocked by two stride permutations in the following way.

A[r,s] = Lmr ALnn/s =







A0,0 · · · A0,s−1

...
. . .

...

Ar−1,0 · · · Ar−1,s−1






= [Ai,j]r×s (4.47)

where

Ak,l = [ari+k,sj+l]m
r
×n

s
. (4.48)

For a square matrix A = [ai,j]n×n, it immediately follows that

1. (Lrss)T = Lrsr (4.49a)

2. A[s,s] = ALrs
r , n = rs (4.49b)

Several properties of the stride permutation, in conjunction with the tensor product and the over-

lapped tensor product, are essential for deriving fast algorithms for many DSP transforms, including

filtering and wavelet transforms.

The stride permutation is inextricably tied to the tensor product due to the following property

(Is⊗A)L
ns
n = Lnsn (Is⊗A) Lnss = A⊗ Is, A = [ai,j]n×n (4.50a)

The formal proof can be found in [35]. This property can be easily generalized for rectangular

matrices to

(Is⊗A)[s,s] = Lms
m (Is⊗A) Lnss = A⊗ Is, A = [ai,j]m×n (4.50b)

This generalizes (4.50a), which follows when m = n. Further generalization is the blocking property

of the stride permutation shown in (4.47), which we denote as A[r,s] similar to the conjugation

operation.

The stride permutation does not go hand in hand with the overlapped tensor products as well

as with the tensor product. Still, we can derive a useful property that decomposes the overlapped

tensor products into blocks of smaller overlapped tensor products.

Let A be an m× n matrix, and let k be the overlap. If the two stride parameters r and s satisfy

r|m, s|n, and s|k, then

Ltmr (It⊗kA) Lt(n−k)+kn−k+ k
s

=







It⊗k/sA0,0 · · · It⊗k/sA0,s−1

...
. . .

...

It⊗k/sAr−1,0 · · · It⊗k/sAr−1,s−1







(4.51a)

79

where Ai,j are defined in (4.48). To make the relation more clear, we can write the stride permutation

L
t(n−k)+k
n−k+k/s as (Ls(n−k)+ks)T . The relation for the column overlapped tensor product is obtained by

simple transposition of (4.51a). Let B = AT be an n×m matrix. Then,

Lt(n−k)+ks (It⊗kA) Ltmtm
r

=
[
It⊗k/sBi,j

]

r×s (4.51b)

A few special cases of the properties (4.51) require special attention. We discuss those cases in the

next chapter when we provide rules for FIR filtering algorithms.

Linear permutation. The linear permutation is very similar to the stride permutation Given

the linearity parameter a and the size of the permuted set n, where a - n, we define linear permutation

by

l̄na :

{

{0, . . . , n− 1} 7→ {0, . . . , n− 1}
i 7→ i · a modn, i = 0, . . . , n− 1

, L̄
n
a = mat(l̄na) (4.52)

The parameter a is the stride parameter.

The difference between the linear and the stride permutation comes from the fact that there is

no need to treat the n− 1 element separately. When there is no danger of confusing the reader, we

shall sometimes use the linear permutation notation to represent a stride permutation for the sake

of brevity. So, by slightly abusing the notation, we shall occasionally write

L̄
n
a = Lna ,

when a | n.

Example 4.3.

L̄
5
3 =












1 · · · ·
· · · 1 ·
· 1 · · ·
· · · · 1

· · 1 · ·












, (x0, x3, x1, x4, x2)
T = L̄

5
3 x

Example 4.4.

L̄
n
1 = In,

so, the identity matrix In represents the linear permutation ι : i 7→ i on the set {0, . . . , n− 1}.

Affine permutation. The affine permutation is similar to the linear permutation with one

additional parameter, the offset b.

Given the linearity parameter a, the offset b and the size of the permuted set n, where a - n, we
define the affine permutation by

l̄na,b :

{

{0, . . . , n− 1} 7→ {0, . . . , n− 1}
i 7→ (i · a+ b) modn, i = 0, . . . , n− 1

, L̄
n
a,b = mat(l̄na,b) (4.53)

Example 4.5.

L̄
3
2,2 = J3, (x2, x1, x0)

T = J3 x

The example is an instantiation of the following identity.

L̄
n
n−1,n−1 = Jn (4.54)

80

The opposite identity matrix represents an affine permutation that reverses the order of the elements.

For this reason, we sometimes call it the flip matrix.

Chinese remainder theorem permutation. The Chinese remainder theorem permutation

arises from the decomposition of Z/n into Z/n1×Z/n2 using the Chinese remainder theorem (CRT),

where n = n1n2 are relatively prime factors of n. The CRT states that any number a ∈ Z/n can be

uniquely represented by a1 ∈ Z/n1 and a2 ∈ Z/n2 using the isomorphism

f :







{0, . . . , n− 1} 7→ {0, . . . , n1 − 1} × {0, . . . , n2 − 1}
a 7→ (a modn1, a modn2)

with the inverse given by

f−1 :







{0, . . . , n1 − 1} × {0, . . . , n2 − 1} 7→ {0, . . . , n− 1}
(a1, a2) 7→ a1e1 + a2e2 modn

where e1 and e2 are the idempotents of Z/n1 ×Z/n2. Since n1 and n2 are relatively prime, then by

the Euclidean algorithm n1f1+n2f2 = 1. The idempotents can be obtained as e1 = n2f2 modn and

e2 = n1f1 modn. The details are provided in [35]. If we order the pairs (a1, a2) from the product

set {0, . . . , n1 − 1}×{0, . . . , n2 − 1} in the “row-wise” order ((0, 0), (0, 1), . . . , (n1− 1, n2− 1)), then

the isomorphism f is the Chinese remainder permutation σn1,n2
given by

σn1,n2
:







{0, . . . , n− 1} 7→ {0, . . . , n− 1}
i 7→ e2 · i modn+ e1 ·

⌊
i
n2

⌋ , n = n1n2, (4.55)

We shall denote the representing matrix as

CRTn1,n2
= mat(σn1,n2

) (4.56)

4.3.2 Gather and scatter operators

We require operators that collect a subset of vector elements using a predefined rule. We also need

the inverse of this operation, the operator that stores the vector elements into a larger vector at

predefined positions.

Gather. The gather operator is similar to a permutation except that it collects elements of a

set A to form a subset B ⊂ A. It is a mapping of A onto B.

f : A 7→ B ⊂ A

By ordering and indexing the n elements of A andm elements of B, we can define the gather operator

as the following mapping of indices.

f :

{

{0, . . . ,m− 1} 7→ {0, . . . , n− 1}
i 7→ f(i)

(4.57)

where m ≤ n. For the ordered sets A and B, gather operator maps af(i) 7→ bi. For m = n, the

gather function becomes a permutation. Equivalent to permutations, we can obtain the matrix

81

representations of the gather operator either by the matrix generating function defined in (4.42) or

directly as in (4.44):

Gf
m,n =










eTf(0)

eTf(1)

...

eTf(m−1)










(4.58)

where ei ∈ Cn is the standard basis (4.2). Obviously, Gf
m,n is an m× n matrix with no more than

one unit element per row and column.

Scatter. Scatter is a mapping

f : A ⊃ B 7→ A

For the ordered sets A and B, gather is a mapping of indices defined in (4.57). The scatter operator

maps the elements of ordered sets as bi 7→ af(i). In matrix form, the scatter matrix is simply the

transpose of the gather matrix.

Sfm,n =
(

Gf
m,n

)T

(4.59)

The scatter matrix is also the left inverse of the gather matrix.

Gf
m,n S

f
m,n = Im

Example 4.6.

f :

{

{0, 1, 2} 7→ {0, 1, 2, 3, 4}
i 7→ i− 2 mod 5

Gf
3,5 =







· · · 1 ·
· · · · 1

1 · · · ·






=
(

Sf3,5
T
)

(4.60)

Downsampling and upsampling. Let f be an affine mapping of indices.

f :

{

{0, . . . ,m− 1} 7→ {0, . . . , n− 1}
i 7→ i · s+ t

, m =

⌊
n− t− 1

s
+ 1

⌋

(4.61)

Then the associated gather operator is the downsampling operator or the downsampler by s with

the offset t.

Gi7→is
m,n = (↓s)tn (4.62)

The associated scatter operator is the upsampling operator or the upsampler by s with the offset t.

Si7→is
m,n = (↑s)tn (4.63)

We omit the offest parameter from the notation when it is equal to zero.

Example 4.7.

(↓2)16 =







· 1 · · · ·
· · · 1 · ·
· · · · · 1







82

The following properties are satisfied under the condition that s | n and k | n:

(↓s)tn = Ik ⊗ (↓s)tn
k

(↓s)tn = Ik ⊗ (↓s)tn
k

(4.64)

There is an obvious relationship between the downsampling/upsampling operators and the stride

permutation

Lrss =







(↓s)0rs
...

(↓s)s−1
rs






, Lrsr =

[

(↑s)0rs · · · (↑s)s−1
rs

]

(4.65)

4.3.3 Extension and reduction operators

The extension is, in general, a mapping E(x) : Cn 7→ Cl+n+r, where l and r are the number of

left and right extension points, respectively. More precisely, we define the extension operator as the

mapping

Efl,fr

n,l,r :







Cn 7→ Cl ⊕ Cn ⊕ Cr

x 7→







fl(x)

x

fr(x)







, (4.66)

where fl and fr are extension mappings at the left and the right boundary, respectively. These

mappings are in general non-linear functions that extrapolate the signal at the boundaries.

fl =

{

Cn 7→ Cl

x 7→ fl(x)
, fr =

{

Cn 7→ Cr

x 7→ fr(x)
, (4.67)

In the case the extension is a linear transformation, it can be represented in matrix form us-

ing (4.7).

Efl,fr

n,r,l =







El

In

Er







(4.68)

Matrices El and Er are generated by the following matrix generating functions induced by the

extension functions fl and fr

f̂l =







{0, . . . , l − 1} × {0, . . . , n− 1} 7→ C

(i, j) 7→ fl(ej)i
, f̂r =







{0, . . . , r − 1} × {0, . . . , n− 1} 7→ C

(i, j) 7→ fr(ej)i
,

where ej are standard basis vectors in Cn. In other words the columns of the matrices El and Er

are images of the standard basis as was discussed in (4.7).

In many cases, the domain of the extension functions is Cn′ ⊂ Cn. It is then convenient to

represent (4.68) by separating the collection of the input elements using gather operator and actual

computations into two stages. Let the domain of fl be Cl′ and the domain of fr be Cr′ .

Efl,fr

n,r,l = (Cl ⊕ In⊕Cr)







Gfl

l′,n

In

Gfr

r′,n






, (4.69)

83

where Cl and Cr represent l × l′ and r × r′ matrices that perform necessary computations on

subspaces, and f ′l and f
′
r are appropriate mappings of indices.

We also define the reduction operator as the transpose of the extension operator. Using the

representation (4.69), we can write

Rfl,fr

n,l,r =
(

Efl,fr

n,l,r

)T

=
[

Sfl

l,n | In | Sfr

r,n

] (
CT
l ⊕ In⊕CT

r

)
(4.70)

Therefore, the reduction inherits the same properties and special cases from the extension operators.

In many important cases of linear extensions the matrices Cl nd Cr are very simple, and the

extension matrix is little more than the stacking of identity and opposite identity matrices. We

define several important extension operators that fit this description.

Zero-padding extension (zero). Zero-padding simply adds l zeros on the left side and r zeros

on the right side of the input sequence. In the matrix form the zero-padding extension is

Ezero,zero
n,r,l = Ezero

n,r,l =










0l×n

In

0r×n










(4.71)

We omit writing both extension types in the superscript if they are the same. The reduction operator

Rzero
n,r,l obtained by transposing (4.71) is reducing the sequence by cutting l points from the left and

r points from the right.

We use the zero extension and reduction operators to construct matrices stacked with zero

matrices horizontally and vertically. Let A be an m× n matrix. Then,

Ezero
m,r,lA =










0l×n

A

0r×n










, ARzero
n,r,l =

[

0l×m A 0r×m

]

. (4.72)

We introduce an important property of the zero-padding that allows swapping of the extension

operator and the stride or the linear permutation.

Let 2 |n and let L̄
k
2 represent linear permutation if 2 - k and stride permutation if 2 |k. Then,

L̄
n+l+r
2 Ezero

n,l,r =
(

Ezero

dn
2 e,d l

2e,d r−n mod 2
2 e ⊕Ezero

bn
2 c,b l

2c,b r+n mod 2
2 c

)

L̄
n
2 2 | l

L̄
n+l+r
2,1 Eper

n,l,r =
(

Ezero

bn
2 c,b l

2c,d r−n mod 2
2 e ⊕Ezero

dn
2 e,d l

2e,b r+n mod 2
2 c

)

L̄
n
2 2 - l

(4.73)

In the special case when 2 |n, 2 | l, and 2 |r, we have

Ln+l+r
2 Ezero

n,l,r =
(

I2⊗Ezero
n
2
, l
2
, r
2

)

Ln2 (4.74)

Periodic extension (per). As the name implies, the periodic extension extends the input

sequence periodically at the boundaries.

84

Let l = q1n+ l
′ be the left and r = q2n+r

′ be the right extension length. The periodic extension

matrix is

Eper
n,r,l =












Rzero
l′,(n−l′),0
q1+q2[]

i=0

In

Rzero
r′,0,(n−r′)












(4.75)

The periodic extension is thus a block matrix of identity and zero matrices.

Example 4.8.

Eper
3,2,1 =














· 1 ·
· · 1

1 · ·
· 1 ·
· · 1

1 · ·














, Rper
3,1,4 =







· 1 · · 1 · · 1

· · 1 · · 1 · ·
1 · · 1 · · 1 ·







So, for example, (x1, x2, x0, x1, x2, x0)
T = Eper

3,2,1 x.

One of very important properties of the periodic extension that we will extensively use for FIR

filter and DWT rules is that it can be conjugated by stride permutation and preserve the periodic

structure.

Let 2 | n and let L̄
n
2 represent linear permutation if 2 - (n + l + r) and stride permutation if

2 |(n+ l + r). Then,

L̄
n+l+r
2 Eper

n,l,r =

(

Eper
n
2
,d l

2e,d r
2e ⊕Eper

n
2
,b l

2c,b r
2c

)

Ln2 2 | l

L̄
n+l+r
2,1 Eper

n,l,r =

(

Eper
n
2
,b l

2c,d r
2e ⊕Eper

n
2
,d l

2e,b r
2c

)

Ln2 2 - l
(4.76)

In the special case when 2 |n, 2 | l, and 2 |r, we have

Ln+l+r
2 Eper

n,l,r =
(

I2⊗Eper
n
2
, l
2
, r
2

)

Ln2 (4.77)

Symmetric extensions. There are four different types of symmetric extension operators. Based

on the type of symmetry, we have symmetric and anti-symmetric extension, and based on the point

of symmetry we have whole-point symmetry and half-point symmetry. We define each of them next.

Whole-point symmetric extension. The whole-point symmetric extension extends the se-

quence symmetrically at the boundaries, where the point of symmetry is the boundary element of

the sequence. The sequence is extended by mirroring the elements over the boundary element. If

the lengths of the left and the right extension l and r, respectively, are smaller than the length of

the sequence n then the extension matrix is simply

85

Ews
n,r,l =










JlR
zero
l,1,(n−l−1)

In

Jr R
zero
r,(n−r−1),1










(4.78)

The boundary extension matrices are of the form Jk R
zero
k,a,b which represents opposite identity matrices

(4.14) horizontally stacked with appropriate zero matrices as shown in (4.72).

In the more general case, let l = q1n+ l′ and r = q2n+ r′. We define the whole-point symmetric

extension matrix by

Ews
n,r,l =













q1[]

i=0

El,i

In
q2[]

i=0

Er,i













(4.79)

El,i =







Jn−1 R
zero
n−1,1,0 i = 2k

In−1 R
zero
n−1,0,1 i = 2k + 1

Jl′ R
zero
l′,1,n−l′−1 i = q1, q1 = 2k

Il′ R
zero
l′,n−l′−1,1 i = q1, q1 = 2k + 1

, k = 0, 1, . . .

Er,i =







Jn−1 R
zero
n−1,0,1 i = 2k

In−1 R
zero
n−1,1,0 i = 2k + 1

Jr′ R
zero
r′,1,n−r′−1 i = q1, q1 = 2k

Ir′ R
zero
r′,n−r′−1,1 i = q1, q1 = 2k + 1

k = 0, 1, . . .

(4.80)

We provide a few examples to illustrate the definition.

Example 4.9.

Ews
5,2,1 =



















. . 1 . .

. 1 . . .

1

. 1 . . .

. . 1 . .

. . . 1 .

. . . . 1

. . . 1 .



















, Rws
3,0,5 =







1 . . . 1 . . .

. 1 . 1 . 1 . 1

. . 1 . . . 1 .







In the first example we have (x2, x1, x0, x1, x2, x3, x4, x3)
T = Ews

5,2,1 x.

Half-point symmetric extension. The half-point symmetric extension extends the sequence

symmetrically at the boundaries. Unlike the whole-point extensions, the point of symmetry is in

86

between the boundary element of the sequence and the next outside element. The boundary element

in this case is mirrored together with all the other elements to create the extension.

If the lengths of the left and the right extension l and r, respectively, are smaller than the length

of the sequence n, then the extension matrix is similar to (4.78)

Ehs
n,r,l =










Jl R
zero
l,0,(n−l)

In

Jr R
zero
r,(n−r),0










(4.81)

Again, let l = q1n+ l′ and r = q2n+ r′. We define the half-point symmetric extension matrix by

Ehs
n,r,l =













q1[]

i=0

El,i

In
q2[]

i=0

Er,i













(4.82)

El,i =







Jn i = 2k

In i = 2k + 1

Jl′ R
zero
l′,0,n−l′ i = q1, q1 = 2k

Il′ R
zero
l′,n−l′,0 i = q1, q1 = 2k + 1

k = 0, 1, . . .

Er,i =







Jn i = 2k

In i = 2k + 1

Jr′ R
zero
r′,0,n−r′ i = q1, q1 = 2k

Ir′ R
zero
r′,n−r′,0 i = q1, q1 = 2k + 1

k = 0, 1, . . .

(4.83)

Half-point anti-symmetric extension. The half-point anti-symmetric extension mirrors the

sequence anti-symmetrically over a half point between the boundary element of the sequence and the

next outside element. The anti-symmetry is achieved by inverting the sign of the mirrored extension.

First, let l, r < n. Then the extension matrix is given by

Eha
n,r,l =










− JlR
zero
l,0,(n−l)

In

− Jr R
zero
r,(n−r),0










(4.84)

If we now let l = q1n+ l
′ and r = q2n+r

′, then we define the half-point anti-symmetric extension

87

matrix by

Eha
n,r,l =













q1[]

i=0

El,i

In
q2[]

i=0

Er,i













(4.85)

El,i =







− Jn i = 2k

In i = 2k + 1

− Jl′ R
zero
l′,0,n−l′ i = q1, q1 = 2k

Il′ R
zero
l′,n−l′,0 i = q1, q1 = 2k + 1

k = 0, 1, . . .

Er,i =







− Jn i = 2k

In i = 2k + 1

− Jr′ R
zero
r′,0,n−r′ i = q1, q1 = 2k

Ir′ R
zero
r′,n−r′,0 i = q1, q1 = 2k + 1

k = 0, 1, . . .

(4.86)

Example 4.10.

Ehs
4,2,1 =

















. 1 . .

1 . . .

1 . . .

. 1 . .

. . 1 .

. . . 1

. . 1 .

















, Eha
3,0,5 =



















1 . .

. 1 .

. . 1

. . −1

. −1 .

−1 . .

1 . .

. 1 .



















For example, (x0, x1, x2,−x2,−x1,−x0, x0, x1)
T = Eha

3,0,5 x.

Whole-point anti-symmetric extension. The whole-point anti-symmetric extension operator

extends the sequence by mirroring the elements over a boundary element and inverting the sign.

Since no element can be antisymmetric to itself except the zero element, the sequence is first extended

by one zero at the boundary. The sequence is then extended by mirroring and sign inversion over

that zero element.

In the case when l, r < n, the extension matrix is given by

Ewa
n,r,l =


















− JlR
zero
l,0,(n−l)

01×n

In

01×n

− Jr R
zero
r,(n−r),0


















(4.87)

88

If we now let l = q1n+ l
′ and r = q2n+r

′, then we define the half-point anti-symmetric extension

matrix by

Ewa
n,r,l =













q1[]

i=0

[
El,i

01×n

]

In
q2[]

i=0

[
01×n

Er,i

]













(4.88)

El,i =







− Jn i = 2k

In i = 2k + 1

− Jl′ R
zero
l′,0,n−l′ i = q1, q1 = 2k

Il′ R
zero
l′,n−l′,0 i = q1, q1 = 2k + 1

k = 0, 1, . . .

Er,i =







− Jn i = 2k

In i = 2k + 1

− Jr′ R
zero
r′,0,n−r′ i = q1, q1 = 2k

Ir′ R
zero
r′,n−r′,0 i = q1, q1 = 2k + 1

k = 0, 1, . . .

(4.89)

Example 4.11.

Ewa
5,0,2 =

















1

. 1 . . .

. . 1 . .

. . . 1 .

. . . . 1

.

. . . . −1

















, Rws
3,0,5 =







1 −1 .

. 1 . . . −1 . .

. . 1 . −1 . . .







For example, (x0, x1, x2, 0,−x2,−x1)
T = Ewa

3,0,3 x.

Combination of extensions. The left and the right extension methods are, in general, not of

the same type and all of the above methods as well as others can be combined freely.

Example 4.12.

Ews,ha
4,2,2 =



















· · 1 ·
· 1 · ·
1 · · ·
· 1 · ·
· · 1 ·
· · · 1

· · · −1
· · −1 ·



















Eper,ws
3,1,3 =

















· · 1

1 · ·
· 1 ·
· · 1

· 1 ·
1 · ·
· 1 ·

















(4.90)

89

Reduction modulo polynomials. From definitions (4.71) – (4.87) we can readily obtain the

reduction matrices by transposition. They are all of the form

Rfl,fr

n,l,r =
(

Efl,fr

n,l,r

)T

(4.91)

Reduction operators are also encountered in polynomial multiplication based algorithms. Since

all sequences can be viewed as polynomials using the z-transform analogy discussed in Chapter 5,

the reduction matrices can be viewed as the matrix representation of the polynomial reduction of

x(z) modulo some p(z).

Let x(z) = x−lzl+· · ·+xn+rz
−(n+r) and y(z) be the reduction of x(z) modulo a monic polynomial

of the form a(z) = z−n − an−1z
−(n−1) − · · · − a1z

−1 − 1. The operation modulo a(z) implies that

z−n = an−1z
−(n−1) + · · · + a1z

−1 + 1, and that z = z−(n−1) + an−1z
−(n−2) + · · · + a2z

−1 + a1.

Without loss of generality, we assume an = 1 and a0 = 1 to avoid writing the scaling factor. Then

the representation of the reduction operation is the matrix-vector product

y = R
a(z)
n,l,r x =

[

Rl | In |Rr

]

(4.92)

where the matrices Rr and Rl are given by the matrix generating functions

r̂r :







{0, . . . , n− 1} × {0, . . . , r − 1} → C

(i, j) 7→ ai : j = 0

(i, j) 7→ a0 · r̂r(m− 1, j − 1) : i = 0, j > 0

(i, j) 7→ r̂r(i− 1, j − 1) + ai · r̂r(m− 1, j − 1) : else

(4.93a)

r̂l :







{0, . . . , n− 1} × {0, . . . , r − 1} → C

(i, j) 7→ ai+1 : j = l − 1

(i, j) 7→ r̂l(0, j + 1) : i = n− 1, j < l − 1

(i, j) 7→ r̂l(i+ 1, j + 1) + ai+1 · r̂l(0, j + 1) : else

(4.93b)

We also define extension operators modulo a(z) as

E
a(z)
n,l,r =

(

R
a(z)
n,l,r

)T

(4.94)

Example 4.13. Let p(z) = z−4 − 1 and let x(z) = x−1z + · · · + x6z
−6. Using (4.93) we generate

the R
p(z)
4,1,2 matrix.

R
p(z)
4,1,2 =









. 1 . . . 1 .

. . 1 . . . 1

. . . 1 . . .

1 . . . 1 . .









= Rper
4,1,2 =

(
Eper

4,1,2

)T

In general,

R1−z−n

n,l,r = Rper
n,l,r (4.95)

When the reduction or extension operators are induced by residue class polynomial algebras we

call them polynomial reduction and polynomial extension operators, respectively.

90

Table 4.1: Table of mathematical objects.

Special matrices Constructs Operators

0n Zero A ·B Composition Gf
m,n, Sf

m,n Gather and scatter

In Identity AB Conjugation (↑s)t

n , (↓s)tn Up/Downsampler

Jn Opposite identity [Ai,j]m×n Matrix of matrices Lrs
s Stride permutation

diag(a) Diagonal A⊕B Direct sum L̄
rs
s,t Affine permutation

A⊗B Tensor product Efl,fr

n,l,r Extensions

A⊗k B Overlapped tensor

A⊕k B Overlapped direct sum

4.4 Summary

In this chapter, we developed the mathematical tools required for designing the framework for repre-

senting FIR filters, discrete wavelet transforms, and fast algorithms toward the goal of automatically

generating their implementations. In the next two chapters, we define the filtering and wavelet oper-

ations as SPIRAL transforms and build a library of breakdown rules that span the space of available

efficient algorithms. All required mathematical constructs, operators, matrices, and their properties

have been defined in this chapter, and we will refer to them as needed.

Before we start developing the required framework, we recall that the mathematical constructs

such as the tensor product, overlapped constructs, and direct sums are used to capture the inherent

structure of the computed objects. We shall use these constructs, as well as the set of matrices and

operators to write the breakdown rules for FIR filters and DWTs. In Table 4.1 we summarize the

mathematical objects we covered in this chapter.

91

CHAPTER 5

FILTER TRANSFORMS AND RULES

5.1 FIR filter transforms

The basic building block in filtering and wavelet algorithms is the convolution operation (3.5).

Because of its linearity, it can be represented as the matrix-vector multiplication where the matrix is

an infinite Toeplitz matrix with diagonals as the values of the {hn} sequence, and where the vector

represents the values of the {xn} sequence:

















...

y−2

y−1

y0

y1

y2
...


















=


















. . .
...

...
...

· · · h0 h−1 h−2 · · ·
· · · h1 h0 h−1 h−2 · · ·
· · · h2 h1 h0 h−1 h−2 · · ·

· · · h2 h1 h0 h−1 · · ·
· · · h2 h1 h0 · · ·

...
...

...
. . .


















·


















...

x−2

x−1

x0

x1

x2

...


















(5.1)

In order to restrict the computation of the convolution to finite sequences, we assume that the

filter length is finite, i.e., we consider only FIR filters. From this point on, there are two approaches

to band the matrix (5.1). We can either consider that the input sequence {xn} is infinite and that

we compute the output sequence on an n-point interval {yk}n−1
0 . This will give us the FIR filter

transform. The second approach is to assume that the input sequence is finite {xk}n−1
0 and that we

compute the output on all non-zero points. This will be the convolution transform.

5.1.1 Filter and convolution transforms

Filter transform.. Given the impulse response {hn}l−r of an FIR filter and its z-transform h(z) =

hlz
−l + · · ·+ h0z + · · ·+ h−rzr, where l ≥ 0 and r ≥ 0, we define the filter transform computed on

n output points as the n× n+ l + r matrix

92

Filtn(h(z)) =












hl · · · h−r

hl · · · h−r
. . .

. . .

hl · · · h−r












(5.2)

We always assume that the output sequence is computed for the interval [0, n − 1]. In other

words

(y0, . . . , yn−1)
T = Filtn(h(z)) (x−l, . . . , xn+r)

T . (5.3)

If r < 0 or l < 0 then we assume r = 0 and l = 0, respectively. In those cases we explicitly write

the zero coefficients of the polynomial following z0. For example, if the polynomial h(z) = z2 then,

l = 0, r = 2 and we write h(z) = 0 + 0z + z2.

Example 5.1.

h(z) = z−2 = z−2 + 0z−1 + 0

Filt4
(
z−2

)
=









1

. 1

. . 1 . . .

. . . 1 . .









So, we write Filt4
(
z−2

)
when we actually mean Filt4

(
z−2 + 0z−1 + 0z0

)
.

This might seem a bit odd at first glance, but we shall see later that it is absolutely necessary

to preserve the time shift information contained in filtered sequences. If the filtering transforms

were invariant to shifts in time then the implementations would require special treatment and case

distinctions in numerous situations where this information is crucial.

The following identities are obtained straight from the definition

Filtn(1) = In (Identity) (5.4a)

Filtn
(
z−l
)
= InR

zero
n,l,0 (Delay) (5.4b)

Filtn(z
r) = InR

zero
n,0,r (Advance) (5.4c)

Convolution transform. If the input signal has a finite support of length n and the filter is

FIR with length k, we define the convolution transform as the following n+ l + r × n matrix.

Convn(h(z)) =


















h−r
...

. . .

hl · · · h−r
. . .

. . .

hl · · · h−r
. . .

...

hl


















(5.5)

93

Here, we always assume that the input sequence is limited to the interval [0, n− 1].

(y−r, . . . , yn+l)
T = Filtn(h(z)) (x0, . . . , xn−1)

T . (5.6)

Example 5.2.

Conv4
(
z−1

)
=












. . . .

1 . . .

. 1 . .

. . 1 .

. . . 1












Following the discussion for the filter transform, we writeConvn
(
z−1

)
when we meanConvn

(
z−1 + 0z0

)

Similar to (5.4a) we obtain the following basic identities

Convn(1) = In (Identity) (5.7a)

Convn
(
z−l
)
= Ezero

n,l,0 In (Delay) (5.7b)

Filtn(z
r) = Ezero

n,0,r In (Advance) (5.7c)

The relationship between the filter and the convolution transforms is given by the transposition

combined with time reversal

Convn(h(z)) = Filtn
(
h(z−1)

)T
. (5.8)

Properties of filter and convolution transforms. The basic property of the filter and

convolution transforms is their linearity, which we give without the proof.

Lemma 5.1. Given the two polynomials h(z) = hl1z
−l1 + · · · + h0 + · · · + h−r1z

r1 and g(z) =

gl2z
−l2 + · · ·+ g0 + · · ·+ g−r2z

r2 and the scalars a and b it follows that

Filtn(ah(z) + bg(z)) = aFiltn(h(z))R
zero
m1,L1,R1

+bFiltn(g(z))R
zero
m2,L2,R2

(5.9a)

Convn(ap(z) + bq(z)) = aEzero
m1,L1,R1

Convn(p(z)) + bEzero
m2,L2,R2

Convn(q(z)) , (5.9b)

where mi = ni + li + ri, and

Li = lmax − 〈li〉 , lmax = max{l1, l2}
Ri = rmax − 〈ri〉 , rmax = max{r1, r2}

, 〈x〉 =







0, x ≤ 0

x, x > 0
(5.10)

The lemma states that the transforms are linear in the polynomial parameter as long as the

dimensions of the matrices are adjusted by stacking zero matrices to match the dimensions.

Corollary 5.2. Given the polynomial h(z) = hlz
−l + · · ·+ h0 + · · ·+ h−rzr the filter transform can

be decomposed into

Filtn(h(z)) =

0∑

i=−r
hi Filtn

(
z−i
)
Rzero
n−i,l,r+i+

l∑

i=1

hi Filtn
(
z−i
)
Rzero
n+i,l−i,r (5.11)

The same identity holds for the convolution transform.

Corollary 5.3. Given the polynomial h(z) = hlz
−l + · · ·+ h0 + · · ·+ h−rzr with l, r > 0. The filter

transform can be decomposed into

Filtn(h(z)) = Filtn(hl(z))R
zero
n+l,0,r +Filtn(hr(z))R

zero
n+r,l,0 (5.12)

where hl(z) = hlz
−l + · · ·+ h0 and hr(z) = h−1z + · · ·+ h−rzr.

94

5.1.2 Filters with signal extension

We saw in the previous section the straightforward ways to band an infinite filtering matrix. It

is sometimes required that the number of input points equal the number of output points. An

immediate solution is to limit the input sequence to, for example, n points as in (5.5) and to compute

the output on some n out of n+k− 1 total non-zero points. This, first, requires an assumption that

the input sequence is zero outside of the interval of interest. Second, it requires a way to specify

which n output points need to be computed. The first assumption is based on the approximation

of the signal by its truncated version with zeros outside of the interval. Depending on the nature of

the signal and the application of the filtering operation, this approximation may not be particularly

well fit. The properties of the signal can be better modeled by extending the signal outside of the

interval of interest by some method. This procedure and the selection of the output points can be

formalized by defining the extended filter transform.

We introduce the extended filter transform as an n× n matrix

Filtfl,fr

n (h(z)) = Filtm(h(z)) · Efl,fr

n,l,p (5.13)

Thus, the extended filter transform represents the filter transform with the input sequence extended

to the appropriate length using the method specified by the extension operator Efl,fr

n,l,r . The length

of the extension of the extended filter transform need not be specified since it is implicitly given in

h(z) = hlz
−l + · · ·+ h0z + · · ·+ h−rzr.

Filtfl,fr

n (h(z)) =
[

Ezero
l,0,n−l Fl Filt

zero
n (h(z)) Ezero

r,n−r,0 Fr

]

· Efl,fr

n,l,r

=













hl · · · h1 h0 · · · h−r
. . .

. . .
. . .

hl h0
. . .

. . .
. . .

. . .

hl · · · · · · h0 · · · h−r













·








El

In

Er








(5.14)

When extension is a linear transformation, the extended filter matrix can be represented as

Filtfl,fr

n (h(z)) =



















a1,0 a1,2 · · · · · · · · · · · · a1,n
...

...
...

al,0 al,2 · · · · · · · · · · · · al,n

hl · · · h0 · · · h−r
. . .

. . .
. . .

hl · · · h0 · · · h−r

b1,0 b1,2 · · · · · · · · · · · · b1,n
...

...
...

bp,0 bp,2 · · · · · · · · · · · · bp,n



















=








Al

Filtn−l−r(h(z))

Br








(5.15)

where, from (5.14), Al = Fl · El + Rzero
l,0,n−l Filt

zero
n (h(z)) and Br = Fr · Er + Rzero

r,n−r,0 Filt
zero
n (h(z))

are left and right boundary filters, respectively.

If the extension operator is linear, then the linearity of the extended filter transform in the

95

polynomial h(z) follows directly from the linearity of the filter transform (5.9a).

Filtfl,fr

n (ap(z) + bq(z)) = Filtn(ap(z) + bq(z)) · Efl,fr

n,l,r

= (aFiltn(p(z)) + bFiltn(q(z))) · Efl,fr

n,l,r

= aFiltfl,fr

n (p(z)) + bFiltfl,fr

n (q(z))

(5.16)

Example 5.3.

Filtws,hs
4

(
z + z−1

)
=









1 . 1 . . .

. 1 . 1 . .

. . 1 . 1 .

. . . 1 . 1









Ews,hs
4,1,1 =









. 2 . .

1 . 1 .

. 1 . 1

. . 1 1









Lemma 5.4. Given the polynomial h(z) = hlz
−l+ · · ·+h0+ · · ·+h−rzr with l, r > 0. The extended

filter transform can be decomposed into

Filtfl,fr

n (h(z)) = Filtfl

n (hl(z)) + Filt
fr

n (hr(z)) (5.17)

where hl(z) = hlz
−l + · · ·+ h0 and hr(z) = h−1z + · · ·+ h−rzr.

Proof.

Filtfl,fr

n (h(z))
(p.1)
= Filtn(h(z)) E

fl,fr

n,l,r

(p.2)
=
(
Filtn(hl(z))R

zero
n+l,0,r +Filtn(hr(z))R

zero
n+r,l,0

)
Efl,fr

n,l,r

= Filtfl

n (hl(z)) + Filt
fr

n (hr(z))

where (p.1) refers to identity (5.13) and (p.2) to (5.12). The last equality is obtained by observing

that

Rzero
n+l,0,r E

fl,fr

n,l,r =
[

In+l | 0n+l×r

]







El

In

Er






= Efl

n,l,0

Rzero
n+r,l,0 E

fl,fr

n,l,r =
[

0n+r×l | In+r

]







El

In

Er






= Efr

n,0,r

¥

From the definition of the extended filter transform we obtain a few special cases that are fre-

quently encountered in algorithm representations. They are the Toeplitz and the circulant transform.

Toeplitz. The Toeplitz transform represents a Toeplitz matrix whose elements are given by a

polynomial b(z).

Tn(b(z)) = [bi−j]n×n , b(z) = bn−1 z
−(n−1) + · · ·+ b0 z + · · ·+ b−(n−1) z

n−1

It can be easily seen that the Toeplitz transform is a special case of the extended filter transform

Tn(b(z)) = Filt
zero
n (b(z)) . (5.18)

96

Using the linearity of the extended filter transform, we can represent the Toeplitz transform by

Tn(h(z)) = hlTn
(
z−l
)
+ · · ·+ h0 In+ · · ·hrTn(zr)

Toeplitz transforms of the form Tn
(
z−k

)
and Tn

(
zk
)
are the left and the right shift operators. In

hardware, these operators are implemented by shift registers.

Example 5.4.

T5

(
z − 1 + z−1

)
=












−1 1 0 0 0

1 −1 1 0 0

0 1 −1 1 0

0 0 1 −1 1

0 0 0 1 −1












An important role of the Toeplitz transform is to represent the independent blocks of the filter

transform. We investigate the possible representations for several cases of filter transforms.

Given a polynomial h(z) = hlz
−l + · · ·+ h0z + · · ·+ h−rzr, let the polynomials hl(z) and hr(z)

be defined as
hl(z) = hlz

−l + · · ·+ h1z
−1

hr(z) = h−rz
r + · · ·+ h−1z

(5.19)

Let n > l, r. The filter transform Filtn(h(z)) can be represented using the Toeplitz transforms

as

Filtn(h(z)) =
[

Ezero
l,0,n−lTl

(
zlhl(z)

)
|Tn(h(z)) |Ezero

r,n−r,0Tr(z
−rhr(z))

]

(5.20)

In the case n < l, r, the extension operators become the reduction operators but the form of (5.20)

stays the same.

Filtn(h(z)) =
[

Rzero
n,l−n,0Tl

(
zlhl(z)

)
|Tn(h(z)) |Rzero

n,0,r−nTr(z
−rhr(z))

]

(5.21)

From (5.14) we can now represent the extended filter transform as

Filtfl,fr

n (h(z)) =
[

Ezero
l,0,n−lTl

(
zlhl(z)

)
|Tn(h(z)) |Ezero

r,n−r,0Tr(z
−rhr(z))

]








El

In

Er








=








Tl
(
zlhl(z)

)
· El +Rzero

l,0,n−lTn(h(z))

Filtn−l−r(h(z))

Tr(z
−rhr(z)) · Er +Rzero

r,n−r,0Tn(h(z))








(5.22)

which provides the exact form of the matrices Al and Br in (5.15). The case when n < l, r is

obtained directly from (5.21). The last equality holds only when n < l+ r, in which case the matrix

Rzero
l,0,n−lTn(h(z)) represents the first l rows, and the matrix Rzero

r,n−r,0Tn(h(z)) represents the last

r rows of the Toeplitz transform Tn(h(z)). In other cases, the matrix has to be obtained by the

full multiplication in (5.22). This formula shows how to fuse the extension operator into the filter

transform.

Circulant. The Circulant transform represents a circulant matrix whose elements are deter-

mined by the coefficients of a polynomial a(z). The circulant transform is an n× n matrix defined

97

by

Cn(a(z)) = [ai−j modn]n×n , a(z) = an−1z
−(n−1) + · · ·+ a0 (5.23)

This definition can be generalized by noting that the circulant transform is a special case of the

extended filter transform

Cn(a(z)) = Filt
per
n (a(z)) (5.24)

With this definition, the degree of the polynomial a(z) need not be n − 1 as noted in (5.23). In

general, a polynomial of degree n′ > n produces a circulant transform using the definition (5.24),

although the elements of the circulant matrix are then not equal to the coefficients of the polynomial.

If the polynomial a(z) represents a z-transform of a causal filter as in (5.23), i.e., if it does not have

positive degrees, then the coefficients form the first column of the circulant transform. Other columns

are formed by the circular shift of the first one. We provide a few examples to clarify the definition.

Example 5.5.

Cn

(

an−1z
−(n−1) + · · ·+ a0

)

=










a0 an−1 · · · a1

a1 a0 a2

...
. . .

...

an−1 · · · · · · a0










Example 5.6.

C4

(
z−1 + 2 + 4z1

)
=









2 4 0 1

1 2 4 0

0 1 2 4

4 0 1 2









Example 5.7.

C2

(
2z−1 + 1 + z + 5z2

)
=

[

2 1 1 5 0

0 2 1 1 5

]












0 1

1 0

0 1

1 0

0 1












=

[

6 3

3 6

]

An important property of the circulant transform is the multiplication of the circular shifts.

Cn

(
z2
)
= Cn(z) ·Cn(z) = Cn(z)

2
(5.25)

The circulant Cn

(
z−1

)
= Sn is the circular shift matrix defined in (3.10).

Using properties (5.16) and (5.25), we can decompose any circulant transform into a linear

combination of the circular shift matrices and their powers.

Cn(h(z)) = hlCn

(
z−l
)
+ · · ·+ h0 In+ · · ·hrCn(z

r)

= hlS
l
n + · · ·+ h0 In+ · · ·+ hrS

−r modn
n

(5.26)

This is exactly the decomposition described in Chapter 3 in equation (3.11). Hence, the circulant

transform Cn(h(z)) is the representation of the circular convolution with the filter h(z) on n points.

98

5.1.3 Filter banks and polyphase matrices

Filter banks are encountered in multi-rate signal processing where the input signal is filtered by

multiple filters (filter bank) at the same time. The operation of processing a signal through a

filter bank can be viewed in the z-domain as a multiplication of an s × 1 matrix of polynomials

h0(z), . . . , hs−1(z) with the input signal polynomial x(z) [82]. In the matrix representation of filter

banks, the same issues of banding the infinite Toeplitz matrices arise as in the case of a single

filter. We address these issues by defining the filter bank transform as a generalization of the filter

transform in the following way.

Filter bank.. Let [hi(z)]s×1] be an s × 1 matrix of polynomials representing a filter bank of s

filters with the transfer functions hi(z) = hliz
−li + · · ·+h−ri

zri . We define the filter bank transform

as the filter transform given by

Filtn













h0(z)
...

hs−1(z)













=











Filtn(h0(z))R
zero
n,l̃0,r̃0

Filtn(h1(z))R
zero
n,l̃1,r̃1

...

Filtn(hs−1(z))R
zero
n,l̃s−1,r̃s−1











. (5.27)

where

l̃i = lmax − li, lmax = max
i
li, (5.28)

r̃i = rmax − ri, rmax = max
i
ri,

We can also define the extended filter banks using the above definition

Filtfl,fr

n













h0(z)
...

hs−1(z)













= Filtn













h0(z)
...

hs−1(z)












· Efl,fr

n,lmax,rmax
(5.29)

Matrix of filter transforms.. Furthermore, multi-rate filter banks can be represented in the

z-domain as matrices of polynomials using the so-called polyphase representation [15]. We extend

the definition (5.27) to include r × s matrices of filters. Let [hi,j(z)]r×s be an r × s matrix of

polynomials. The r× s filters have the transfer functions hi,j(z) = hli,j
z−li,j + · · ·+h−ri,j

zri,j . The

filter transform of the matrix of polynomials is defined by

Filtn([hi,j(z)]r×s) =
[

Filtn(hi,j(z))R
zero
n,l̃i,j ,r̃i,j

]

r×s
, (5.30)

where

l̃i,j = ljmax − li,j , ljmax = max
i
li,j , (5.31)

r̃i,j = rjmax − ri,j , rjmax = max
i
ri,j ,

Generalized matrix of filter transforms.. We also define a slightly more general form of the

definition (5.30) where each filter transform in the matrix of filters has an explicitly specified left and

99

right extensions L = [li,j]r×s and R = [ri,j]r×s, rather then determined from the given polynomials.

Also, the sizes of filter transforms are given by the matrix N = [ni,j]r×s. In that case we have

FiltN,L,R([hi,j(z)]r×s) =
[

Filtni,j
(hi,j(z))R

zero
ni,j ,l̃i,j ,r̃i,j

]

r×s
. (5.32)

The parameters l̃i,j and r̃i,j are again specified by (5.31), where li,j and ri,j are elements of matrices

L and R, respectively. This definition will be useful for defining different types of wavelet transforms

in Chapter 6.

Matrix of extended filter transforms. The extended filter transform of matrices of polyno-

mials is defined by

Filtfl,fr

n ([hi,j(z)]r×s) = Filtn([hi,j(z)]r×s) ·
s−1⊕

i=0

Efl,fr

n,ljmax,rjmax
(5.33)

From this definition, it directly follows that

Cn([hi,j(z)]r×s) = [Cn(hi,j(z))]r×s (5.34)

Tn([hi,j(z)]r×s) = [Tn(hi,j(z))]r×s . (5.35)

We note that the definitions (5.27), (5.30), and (5.32) can be extended to convolution transforms by

simple transposition. In that case we have

Convn([hi,j(z)]r×s) =
[

Ezero
n,Li,j ,Ri,j

Convn(hi,j(z))
]

r×s
, (5.36)

and

ConvN,L,R([hi,j(z)]r×s) =
[

Ezero
ni,j ,Li,j ,Ri,j

Convni,j
(hi,j(z))

]

r×s
. (5.37)

We illustrate the definitions with a few examples.

Example 5.8.

Filt2

([

z−2 + 2 + z

3 + 2z2

])

=









1 . 2 1 . .

. 1 . 2 1 .

. . 3 . 2 .

. . . 3 . 2









Example 5.9.

Filths3

([

z−2 z

3 + 2z2 1

])

=














1 1 . .

. 1 1 .

. . 1 1

. . 3 . 2 . . 1 . . .

. . . 3 . 2 . . 1 . .

. . . . 3 . 2 . . 1 .


















Ehs3,2,2

Ehs3,0,1





=














. 1 . . 1 .

1 1

1 1

3 . 2 1 . .

. 3 2 . 1 .

. 2 3 . . 1














100

5.1.4 Composition of filters and convolutions

Discrete-time signals have three equivalent representations described in (3.3). We discussed that

the filtering of the sequence {xk} with an FIR filter {hk} can be seen as either polynomial multi-

plication x(z)h(z) in (3.6), or as the matrix-vector product, where the type of matrix is either the

convolution transform Convn(h(z)), the filter transformFiltn(h(z)), or the extended filter transform

Filtfl,fr

n (h(z)), depending on the method of reducing the infinite signal convolutions to finite cases.

We now explore the case when the input signal is processed by a cascade of two FIR filters given

by their transfer functions h(z) and g(z). In the infinite case the result of this operation can be

seen as the polynomial multiplication y(z) = g(z)h(z)x(z). In the case of finite signals, the matrix

representation of the multiplication has to be carefully defined. We start with the filter transform

representation of the convolution with a sequence of two filters.

Lemma 5.5 (Composition of the convolution transforms). Let the two polynomials h(z) =

hl1z
−l1 + · · ·+h0+ · · ·+h−r1zr1 and g(z) = gl2z

−l2 + · · ·+g0+ · · ·+g−r2zr2 , with ri, li ≥ 0, represent

the transfer functions of two filters, and let their convolution transform representations on n input

points be Convn(h(z)) and Convn(g(z)). Then the convolution transforms are composed as

Convn(h(z) · g(z)) = Convn+l2+r2(h(z)) ·Convn(g(z))
= Convn+l1+r1(g(z)) ·Convn(h(z))

(5.38)

Proof. Let w(z) = g(z)x(z). Since the degree of x(z) is n, the polynomial multiplication is repre-

sented as w = Convn(g(z))x. We know from definition (3.5) that the degree of w(z) is n+ l2 + r2,

so the multiplication y(z) = h(z)w(z) can be written as y = Convn+l2+r2(h(z))w. Therefore,

Convn(h(z) · g(z)) = Convn+l2+r2(h(z)) ·Convn(g(z))

The second identity is obtained the same way. ¥

Corollary 5.6 (Composition of filter transforms). The filter transforms Filtn(h(z)) and

Filtn(g(z)), with polynomials h(z) and g(z) given in lemma 5.5 are composed as

Filtn(h(z) · g(z)) = Filtn(h(z)) · Filtn+l1+r1(g(z))

= Filtn(g(z)) · Filtn+l2+r2(h(z))
(5.39)

Proof. The identity is obtained by transposing and time-reversing the equations (5.38) and using

the relation (5.8). ¥

At this point, we remind the reader that it is wrong to jump to the conclusion that Filtn
(
z−1 · z

)
=

Filtn(1). The reason is that z−1 is just a short notation for z−1+0z0 because of the condition l, r ≥ 0.

If, for example, h(z) = zt and g(z) = z−s, then l1 = 0, r1 = t, l2 = s, r2 = 0, and identity (5.39)

can be applied as defined.

Example 5.10.

Filtn
(
z−1 · z

)
= Filtn

(
(z−1 + 0z0) · (z + 0z0)

)

= Filtn
(
0z−1 + 1 + 0z

)

= Filtn
(
z−1

)
· Filtn+1(z)

101

Of course, both Filtn
(
z−1 · z

)
and Filtn(1) produce the same result

(y0 . . . yn−1)
T = Filtn(1) (x0 . . . xn−1) = Filtn+2

(
z−1 · z

)
(x−1 . . . xn)

The only difference is the number of input points considered. In the second case, there are two more

input points that do not contribute to the final result.

To avoid the additional zero points outside of the main interval that may appear as a consequence

of filter compositions, the following manipulation of the formula can be applied. We give this result

as a corollary and omit the proof.

Corollary 5.7. Suppose that the polynomials h(z) and g(z) are of the form h(z) = h′(z)z−s and

g(z) = g′(z)zt, where h′(z) = h′0 + · · · + h′p−1z
1−p and g′(z) = g′0 + · · · + g′q−1z

q−1. Then f(z) =

h(z)g(z) = zt−sh′(z)g′(z) with t ≥ s and

Filtn(f(z)) = Filtn(h(z)g(z))

= Filtn
(
zt−sh′(z)g′(z)

)

= Filtn
(
h(z)′zt−s

)
· Filtn+p−1+t−s(g

′(z)) .

When s > t, the roles of h(z) and g(z) can be reversed.

Example 5.11. Let h(z) = zs, g(z) = z−t, s > t.

Filtn(h(z)g(z)) = Filtn
(
zs−t · 1 · 1

)

= Filtn
(
zs−t

)
Filtn+s−t(1)

= Filtn
(
zs−t

)

Example 5.12.

Filt3
(
(z2 + z)(2z−2 + z−3)

)
= Filt3

(
(z + 1)z−1

)
Filt4

(
2 + z−1

)

=







1 1 . .

. 1 1 .

. . 1 1















1 2 . . .

. 1 2 . .

. . 1 2 .

. . . 1 2









=







1 3 2 . .

. 1 3 2 .

. . 1 3 2







= Filt3
(
z−2 + 3z−1 + 2

)

Corollary 5.8 (Composition of extended filters). The extended filter transform of the product

of the polynomials h(z) and g(z) given in lemma 5.5 is decomposed as

Filtfl,fr

n (h(z) · g(z)) = Filtn(h(z)) · Filtfl,fr

n+l1+r1
(g(z))

= Filtn(g(z)) · Filtfl,fr

n+l2+r2
(h(z))

(5.40)

Proof. The proof follows directly from the definition (5.13) and corollary 5.6. ¥

102

The identities (5.40) are always valid. However, we are interested in cases when the extended

filter transforms can be decomposed into shorter extended filters. In other words, we look for cases

when the extension can be distributed among all matrices in the composition. It turns out that

this is possible if signal extensions arise from polynomial algebras C[z]/p(z) as we discussed in

Section 4.3.3, in which case all matrices in the product are square.

Theorem 5.9 (Distribution of the extensions). The extended filter transform of the product of

the polynomials h(z)g(z) is the product of extended filter transforms of h(z) and g(z) if the extension

arises from polynomial algebras C[z]/p(z). The periodic (4.75) or any of the symmetric types (4.78)–

(4.87) or their combinations belong to this class.

Filtfl,fr

n (h(z)g(z)) = Filtfl,fr

n (h(z))Filtfl,fr

n (g(z)) , fl, fr ∈ {per,ws,hs,wa,ha} (5.41)

Proof. Suppose h(z), g(z) ∈ C[z]/p(z) are two polynomials in the polynomial algebra modulo p(z).

Then

h(z)g(z) mod p(z) = h(z) · (g(z) mod p(z)) mod p(z). (5.42)

Suppose we define the polynomials x(z) = x0 + · · · + xn−1z
−(n−1), h(z) = hl1z

−l1 + · · · + h0 +

· · ·+h−r1zr1 and g(z) = gl2z
−l2 + · · ·+g0+ · · ·+g−r2zr2 . We know that the matrix representation of

h(z)x(z) isConvn(h(z))x. Without loss of generality, suppose now that p(z) = p0+· · ·+pn−1z
−(n−1)

is of the same degree n as x(z). The matrix representation of the reduction modulo p(z) is R
p(z)
n,l,r

defined in (4.92), where n + l + r is the length of the input sequence. So, the representation of

h(z) · x(z) mod p(z) is

R
p(z)
n,l1,r1

Convn(h(z))x.

Then the representation of (5.42) is

R
p(z)
n,l1+l2,r1+r2

Convn(h(z)g(z)) =
(

R
p(z)
n,l1,r1

Convn(h(z))
)(

R
p(z)
n,l2,r2

Convn(g(z))
)

(5.43)

If we transpose this identity and use z1 = z−1 we obtain

Filtn(h(z1)g(z1)) E
per
n,l1+l2,r1+r2

=
(

Filtn(h(z1)) E
per
n,l1,r1

)(

Filtn(g(z1)) E
per
n,l2,r2

)

(5.44)

which completes the proof.

As discussed in Section 3.1.3, the periodic extension arises from the polynomial algebra C[z]/(1−
z−n), whereas the family of symmetric extensions arises from the polynomial algebras modulo Cheby-

shev polynomials. Thus, the theorem applies to periodic and all types of symmetric extensions. ¥

5.2 Breakdown rules for filter and convolution transforms

In Chapter 3 we reviewed several methods for obtaining fast computational algorithms for convo-

lutions. There are two main approaches to fast linear filtering: 1) reducing the arithmetic cost of

computations by using the relationship to the discrete Fourier transform (DFT), or by exploiting

the redundancies of the Toeplitz matrix structure; and 2) breaking down a large filter into multiple

shorter filters to either localize the computations so that they can be scheduled better for the un-

derlying platform and minimize data movement, or to make other algorithms, such as DFT based

convolution, more efficient.

103

We define rules for filter, extended filter and convolution transforms. Rules are denoted as

mappings of a transform into other transforms of the same or different type. The transforms are

given in boldface. The right arrow operator denotes the decomposition operation. As discussed in

Chapter 2, the rules provide the necessary formalism for the construction of rule trees that represent

algorithms. The rules are applied to transforms, or non-terminals, as many times as possible until

a base-case rule is reached. At that moment the rule tree is fully expanded and uniquely represents

an algorithm.

We first define a few conversion rules, basic manipulation rules and the base-case rule before

capturing rules for the set of well-known algorithms.

5.2.1 Basic identities and rules

We give a few important identities and basic rules for construction of filter transforms. We also revisit

the identities and the properties obtained earlier in this chapter, and recast them as breakdown or

transform conversion rules.

For a filter with transfer function h(z) = hlz
−l + · · ·+ h0z+ · · ·+ h−rzr and length of the input

sequence n, we define the following rules.

Filter-convolution rule

Convn(h(z))→ Filtn
(
h(z−1)

)T

Filtn(h(z))→ Convn
(
h(z−1)

)T
(5.45)

The filter-convolution rule provides a connection between filter and convolution transform rules.

Using this rule, we can recast every filter transform rule into the related convolution transform rule

and vice-versa. To avoid repetitive definitions we shall define rules only for the filter transform.

Extended filter rule

Filtfl,fr

n (h(z))→ Filtm(h(z)) · Efl,fr

n,l,p (5.46)

We note that, by applying rule (5.45) to the extended filter rule, we obtain the representation of the

convolution operation followed by the reduction operation.

(

Filtfl,fr

n (h(z))
)T

→ Rfl,fr

n,l,p ·Convm(h(z)) (5.47)

If the reduction arises from the quotient polynomial algebra C[x]/p(z), as discussed in theorem 5.9,

then rule (5.47) affords the representation of the polynomial multiplication in C[x]/p(z).

However, it is often more efficient to fuse the extension matrices inside filters to obtain closed

forms for extended filters, such as circulants and Toeplitz transforms. The fusion for any linear

extension matrix is obtained using the following rule

Fused extension filter rule

Filtfl,fr

n (h(z))→








Tl
(
zlhl(z)

)
· El +Rzero

l,0,n−lTn(h(z))

Filtn−l−r(h(z))

Tr(z
−rhr(z)) · Er +Rzero

r,n−r,0Tn(h(z))








(5.48)

104

where the matrices El and Er are left and right extension matrices defined in (5.14) and hl(z) and

hr(z) are polynomials defined in (5.19) on page 97.

Base-case rule

Filtn(h(z))→ In⊗r+l (hl . . . h−r) (5.49)

The base case rule terminates the decomposition of the filter transform. Note that there are no

transforms on the right side of the rule. The base case rules for the convolution and the extended

filter transforms are obtained by applying (5.45) and (5.46).

Toeplitz identity

Filtzeron (h(z)) = Tn(h(z)) (5.50)

Circulant identity

Filtper
n (h(z)) = Cn(h(z)) (5.51)

Filter bank rule

Filtn([hi,j(z)]r×s)→
[

Filtn(hi,j(z))R
zero
n,Li,j ,Ri,j

]

r×s
, (5.52)

The filter bank rule shows how a filter transform of a matrix of r × s polynomials hi,j defined

in (5.30) is constructed as a matrix of single filter transforms. The parameters Li,j and Ri,j are

given in (5.31).

So, the filter transform of a matrix of polynomials is not the matrix of filter transforms, but

rather a matrix of filters extended by a sufficient number of zero columns to match the dimensions

of matrices and synchronize the filters in time.

Extended filter bank rule

Filtfl,fr

n ([hi,j(z)]r×s) = Filtn([hi,j(z)]r×s) ·
s−1⊕

i=0

Efl,fr

n,ljmax,rjmax
(5.53)

Similar to the extended filter rule, the extended filter bank can be converted to the regular filter

bank with extensions defined for each column of filters. The parameters ljmax and rjmax are given

in (5.31).

Filter composition identity

Filtn(h(z) · g(z)) = Filtn(h(z)) · Filtn+l1+r1(g(z)) (5.54)

The composition rules for convolution and extended filter transforms are obtained by applying (5.45)

and (5.46).

Extension distribution identity

Filtfl,fr

n (h(z)g(z)) = Filtfl,fr

n (h(z))Filtfl,fr

n (g(z)) , fl, fr ∈ {per,ws,hs,wa,ha} (5.55)

The distribution rule applies to extended filter transforms with periodic and all symmetric extensions.

105

5.2.2 Block convolution rules

It is frequently the case that the length of the filtered signal is much larger then the filter length,

as we discussed in section 3.1.5. When this is the case, the filter transform matrices become very

sparse, with only a narrow strip of non-zero values on and around the diagonal. As we discussed

in Section 3.1.5, the benefit of reducing this matrix into multiple smaller but denser matrices is

becoming obvious in the transform domain, where the size of the transform depends only on the

size of the input. The advantage of computing the convolution using the transform based methods

is diminished if the filter transform has many zero elements, since in that case it might be faster

to perform the filtering directly from the definition. To utilize the full power of transform-domain

methods, we introduce the block convolution rules. Block convolution methods are well known

and we reviewed them in detail in Section 3.1.5. However, against the traditional view, we discuss

block convolutions independent of transform-based algorithms since they present basic methods for

localizing the computations and input/output data access patterns.

Overlap-Save Rule

Filtn(h(z))→ Is⊗l+r Filtn/s(h(z)) , s | n (5.56)

The overlap save method was described in Chapter 3 as segmenting and overlapping the input

sequence at enough points (3.22) to compute the exact output for n/s output points. The method is

usually described in the literature as we presented it in Section 3.1.5. However, it can be concisely

represented using the overlap save rule. By choosing larger blocking parameter s, the filter transform

is reduced to smaller filter transforms computed on a smaller number of output points. Therefore,

the overlap-save rule exhibits the output locality of the performed computations. If s - n, then we

have an obvious generalization of (5.56). Suppose n = sq + t then

Filtn(h(z))→
(
Is⊗l+r Filtn/s(h(z))

)
⊕l+r Filtt(h(z)) , s - n

Overlap-Add Rule

Filtn(h(z))→ Rzero
n,l+r,l+r

(
Is⊗l+rConv(n+l+r)/s

(
h(z−1)

))
, s|(n+ l + r) (5.57)

The overlap-add method was given in Section 3.1.5 with equation (3.21). After capturing the al-

gorithm as the rule (5.57), it becomes clear that the overlap-add method is simply the transposed

operation of the overlap-save method. The only adjustment is the addition of a reduction operator

that removes excess boundary rows that arise from the rectangular shape of the filter transform.

The rule is valid whenever the block size s divides the number of columns n + l + r. If that is not

the case, the simple adjustment of the rule is

Filtn(h(z))→ Rzero
n,l+r,l+r

(
Is⊗l+rConv(n+l+r)/s

(
h(z−1)

)
⊕l+r Convt(h(z))

)
, s - (n+ l + r)

5.2.3 Multidimensional rules

We briefly reviewed the topic of multidimensional techniques in Section 3.1.5. Unlike block convolu-

tion methods, the assumption here is that the filter length is of the same order as the input sequence

106

length. In that case, the filter transform is already a dense matrix and the transform domain meth-

ods can be applied directly without the preprocessing using block convolution methods. However, it

might be advantageous to split the large matrix into a block matrix of smaller filters, where they can

be computed using short convolution or transform-domain algorithms. We define rules that achieve

this objective, and refer to them as the nesting rules.

Let h(z) = hlz
−l+ · · ·+h0z+ · · ·+h−rzr be a polynomial representing a filter impulse response

and define downsampled filters h0(z) and h1(z) as

h0(z
2) =

h(z) + (−1) kh(−z)
2z−k

, h1(z
2) =

h(z) + (−1) k−1h(−z)
2zk−1

, k = l mod 2 (5.58)

Then the convolution transform can be decomposed into a matrix of convolution transforms with

downsampled filters by the following rules

Convolution nesting rules

Convn(h(z))→ L̄
n+l+r
n
2
+d r+l

2 eConvn/2

([

h0(z) h1(z)z
−1

h1(z) h0(z)

])

Ln2 , (r + l) - 2

Convn(h(z))→ Ln+l+r
n+r+l

2

Convn/2

([

h0(z) h1(z)z
−1

h1(z) h0(z)

])

Ln2 , (r + l) | 2.
(5.59a)

By transposing the above rules we obtain

Filter nesting rules

Filtn(h(z))→ Lnn/2 Filtn/2

([

h0(z) h1(z)

h1(z)z h0(z)

])

L̄
n+r+l
2 , (r + l) - 2

Filtn(h(z))→ Lnn/2 Filtn/2

([

h0(z) h1(z)

h1(z)z h0(z)

])

Ln+r+l
2 , (r + l) | 2

(5.59b)

It is straightforward to obtain the nesting rule for the extended filter transforms from (5.59b) by

applying (5.46). For example,

Filtn(h(z))→ Lnn/2 Filtn/2

([

h0(z) h1(z)

h1(z)z h0(z)

])

Ln+l+r
2 · (5.60)

However, in a few special cases, the extension operator E can be commuted with the stride

permutation to break down the extension operation into two parallel extensions of the same type.

We discussed in Section 4.3.3 that this can be done in the case of zero extension, periodic extension,

or a combination of the two. In other words, the condition is fl, fr ∈ {zero,per}. We capture this

special case in the form of the following rule:

Extended filter nesting rule

Filtfl,fr

n (h(z))→ Filtfl,fr

n/2

([

h0(z) h1(z)

h1(z)z h0(z)

])Ln
2

, fl, fr ∈ {zero,per} (5.61)

107

In other words, in the case of zero padded input or periodic extension (i.e., circulant matrix), an

extended filter can be represented by a block matrix of downsampled filters with the same extension

by conjugating the transform with a stride permutation. In the case the extension is periodic, we

can write

Circulant nesting rule

Cn(h(z))→ Cn/2

([

h0(z) h1(z)

h1(z)z h0(z)

])Ln
2

. (5.62)

So, the cyclic convolution can be computed by combining (nesting) smaller size cyclic convolu-

tions, which can in turn be computed using short convolution algorithms. The circulant transform

is represented by a block matrix where blocks are circulants.

As discussed in Chapter 3, it is possible to block a circulant matrix into a block circulant matrix

where each block is also a circulant. This is achieved by mapping the indices into two sets of

indices using the Chinese remainder theorem (CRT). This effectively maps a one-dimensional into

two-dimensional cyclic convolution that is shorter in each dimension, allowing application of more

efficient algorithms for shorter convolutions.

To use the CRT mapping, the size of the transform n has to be a composite number with relatively

prime factors n = n1 n2, (n1, n2) = 1. This is similar to the Good-Thomas prime factor algorithm

for the DFT [35]. In this case the following rule applies.

Agarwal-Cooley rule

Cn(h(z))→ Cn2

(

[hi−j modn(z)]n1×n1

)CRTT
n1,n2

, n = n1n2, (n1, n2) = 1 (5.63)

where,

hi(z) =

n2∑

j=0

ĥin1+j z
j

(ĥ0, . . . , ĥn−1)
T = CRTn1,n2

·(h′0, . . . , h′n−1)
T ,

h′(z) = h(z) mod(zn − 1)

The rule says that the circulant transform conjugated by the CRT permutation defined in (4.55)

takes the form of a block circulant matrix with circulant transforms as blocks. This block transform

represents a 2-D circular convolution, which allows not only application of short convolution algo-

rithms for smaller circulants (i.e., circular convolutions) as was the case with the nesting rule (5.62),

but also the same efficient algorithms can be applied along the other dimension [35].

5.2.4 Embedding rules

We mentioned in Chapter 3 that every convolution type can be embedded into other types by

noticing that the linear convolution seen as polynomial product h(z)x(z) is the same as other types

of convolutions represented by polynomial products in C[z]/m1(z) as long as deg(h) + deg(x) <

deg(m1). Then the linear convolution can be converted to other types by reducing the product

modulo some other polynomial m2(z). We discussed this in Section 3.1.4.

108

From the representation (5.15) we immediately obtain the following important rule

Filter Extended Rule

Filtn(h(z))→ Rzero
n,l,r ·Filtfl,fr

n+l+r(h(z)) . (5.64)

As a special case we have

Filter Circulant Rule

Filtn(h(z))→ Rzero
n,l,r ·Cn+l+r(h(z)) (5.65)

If we combine this with the extended filter rule (5.46) then we obtain

Filter Extension Embedding Rule

Filtf
′
l ,f
′
r

n (h(z))→ Rzero
n,l,r ·Filtfl,fr

n+l+r(h(z)) · E
f ′l ,f

′
r

n,l′,r′ (5.66)

This rule is most general in that it provides means for expressing any extended filter through any

other extended filter, thus embedding different convolution types into one another.

5.2.5 Karatsuba rules

We discussed divide-and-conquer methods for nested filters in Section 3.1.6. We refer to them as

Karatsuba methods since they arise from the Karatsuba algorithm for large integer multiplication

well known in the scientific computing community.

To capture rules for the Karatsuba methods, we note that the polyphase signal decomposition

discussed in Section 3.1.6 is essentially splitting the input signal into polyphase channels by down-

sampling. Each channel corresponds to a downsampled signal with different offsets. Using the

relation between the downsampling operator and the stride permutation given in (4.65), we can

see the polyphase decomposition as a nesting of filters by conjugating the filter transform with a

stride permutation. In fact, the two channel polyphase decomposition is captured by the nesting

rules in (5.59) that form matrices of filters. The Karatsuba methods exploit the redundancies in the

resulting filter matrices.

We start with the radix-2 Karatsuba rule for the convolution transform. Let h(z) = hlz
−l +

· · · + h0z + · · · + h−rzr and let h0(z) and h1(z) be the downsampled filters defined in (5.58). For

simplicity, we assume that 2 | (r + l + 1). The radix-2 convolution Karatsuba rule decomposes a

convolution matrix obtained by the rule (5.59a) into a product of convolution matrices:

Radix-2 Karatsuba Convolution Rule

Convn(h(z))→ L̄
n+l+r
n
2
+d r+l

2 e ·Convn
2
+ r+l−1

2

([

1 z−1 0

−1 −1 1

])

·

Convn
2













h0(z)

h1(z)

h0(z) + h1(z)












·Convn

2













1 0

0 1

1 1












· Ln2 (5.67)

By transposition we obtain

109

Radix-2 Karatsuba Filter Rule

Filtn(h(z))→ Lnn
2
Filtn

2

([

1 0 1

0 1 1

])

·

Filtn
2













h0(z)

h1(z)

h0(z) + h1(z)












· Filtn

2
+ r+l−1

2













1 −1
z −1
0 1












· Ln+r+l

2 (5.68)

In the case of the zero-padded signal or the periodic extension, the same rule can be easily extended

to circulant matrices by applying the rule (5.46) to the above equations, commuting the periodic

extension operator with the stride permutation, and finally applying Theorem 5.9. With little effort

we obtain two radix-2 Karatsuba rules for a circulant transform.

Radix-2 Karatsuba Circulant Rule

Cn(h(z))→ Lnn
2
·Cn

2

([

1 z−1 0

−1 −1 1

])

·

Cn
2













h0(z)

h1(z)

h0(z) + h1(z)












·Cn

2













1 0

0 1

1 1












· Ln2 (5.69a)

Cn(h(z))→ Lnn
2
Cn

2

([

1 0 1

0 1 1

])

·

Cn
2













h0(z)

h1(z)

h0(z) + h1(z)












·Cn

2













1 −1
z −1
0 1












· Ln2 (5.69b)

We mentioned in Section 3.1.6 that the Karatsuba methods can be derived for higher radices,

for example, using the approach we present in Appendix B. For example the radix-3 Karatsuba rule

is given by (3.43).

Radix-3 Karatsuba Convolution Rule

Convn(h(z))→ L̄
n+l+r
n
3
+d r+l

3 eConvn
3
+ r+l−1

3













1 z−1 z−1 0 0 1

1 1 z−1 1 0 0

1 1 1 0 1 0












·Convn (diag (h0(z), h1(z), h2(z),

(h0 + h1)(z), (h0 + h2)(z), (h1 + h2)(z))) ·Convn
3



























1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1



























Ln3 (5.70)

with the assumption that 3 |n and 3 |(l + r + 1).

110

5.2.6 Transform-domain rules

As discussed in Section 3.1.8, the transform-domain techniques for performing various convolution

types provide savings in the cost of computations by invoking fast algorithms for computing trigono-

metric transforms, such as FFT algorithms. This reduces the cost from O
(
n2
)
to O (n log n) but

introduces more complex data flow patterns, where the preferred Toeplitz structure of the operation

is lost. The transform-domain techniques rely on convolution property of many transforms that we

briefly addressed in Section 3.1.8. The best-known is the DFT convolution property (3.50) that we

straightforwardly translate into the following rule

DFT Convolution Rule

Cn(h(z))→ DFT−1
n ·diag(ĥ) ·DFTn,

ĥ = DFTn · · h,
(5.71)

where h is the first column of Cn(h(z)).

This rule is often used in conjunction with the rules (5.56) and (5.57) and the application of (5.65)

to compute the linear convolution of long input sequences with shorter filters. In practice, filters

and signals are often real valued; hence, the DFT, being a complex transform, is not suitable for

transform-domain filtering. Real transforms, such as the RDFT and DHT discussed in Section 3.1.8,

are used instead. We already formulated the convolution properties of these two transforms using

the matrix form in (3.53) and (3.57), so we simply rewrite them here as convolution rules.

RDFT Convolution Rule

Cn(h(z))→ RDFT−1
n ·X(ĥ) ·RDFTn,

ĥ = RDFTn ·h
(5.72)

DHT Convolution Rule

Cn(h(z))→ DHT−1
n ·X ′(ĥ) ·DHTn,

ĥ = DHTn ·h
(5.73)

Again, h is the first column of Cn(h(z)), the X(h) matrix is defined in (3.54), and the matrix X ′(h)

in (3.58).

5.2.7 Blocking rules

It is often preferable to block the transforms into smaller transforms to improve the locality of the

computations. The basic idea is to localize the operations so that they can be either performed

in-register using smaller blocks or in-cache using larger blocks of operations, similar to the technique

used by ATLAS [1]. We apply blocking rules whenever the decision is made to implement the

entire transform as a basic matrix-vector multiplication. The matrices are blocked into square sub-

matrices recursively, using one or more levels of blocking. For example, it may be useful to block

the computations in two recursive levels for cache and register locality, respectively.

Circulant Blocking Rule

111

Cn(h(z))→
[]n

b

i=0

[]n
b

j=0
Tb

(

h(z)z(i−j)b mod(1− z−n)
)

, (5.74)

where b is the size of the basic block. The matrix can be recursively blocked by blocking the Toeplitz

transforms using the following rule.

Toeplitz Blocking Rule

Tn(h(z))→
[]n

b

i=0

[]n
b

j=0
Tb

(

h(z)z(i−j)b
)

(5.75)

Finally, we present the blocking rule for the filter transform described in similar format.

Filter Blocking Rule

Filtn(h(z))→ Ibn
b c ⊗l+r

([]d l+r
b e

i=0
Tb
(
h(z)zl−ib

)
⊕kTk

(

h(z)zl−d l+r
b eb−k

))

⊕l+rTb1
(
h(z)zl−ib1

)
⊕k1Tk1

(

h(z)z
l−

⌈
l+r
b1

⌉

b1−k1

) (5.76)

where
k = (l + r + b) mod b

k1 =







(l + r + b1) mod b1, b1 6= 0

0, b1 = 0

b1 = n mod b

This rule avoids blocking of zero coefficients. There is yet another, more natural method for blocking

the filter transforms. It represents the combination of the blocking strategies and filter nesting

techniques.

Filter Nested Blocking Rule

Filtn(h(z))→
([] l+r+1

b

j=0
Filtb(hj(z))

)(

I l+r+1
b
⊗n−1 In+b−1

)

(5.77)

where

hi(z) = hl−ib · zib−l + · · ·+ hl−(i+1)b+1 · z(i+1)b−l−1

If b - (l + r + 1) then a simple modification of the above rule will take care of the remainder of

the division – an additional filter with less than b coefficients. This rule, in combination with the

overlap-save rule (5.56), allows blocking of filters into smaller size and smaller length filters.

5.3 Concluding remarks

In this chapter, we have introduced several definitions for filtering operations: 1) convolution of

infinite signals on finite number of outputs; 2) linear convolution of compactly supported signals;

3) convolution of infinitely extended signals including circular convolution; 4) banks of filters for

different filter definitions. All definitions are represented as transforms that can be included in

SPIRAL’s formula generator. We investigated important properties, such as the composition of

112

finite filters and distribution of signal extensions, that help us to define breakdown rules for different

filter definitions.

From Chapter 3, we captured most important algorithms for fast computation of FIR filters in

an extended set of decomposition rules that, when expanded into rule trees, covers the whole space

of possibilities. In addition, we designed rules that have no impact on the computational cost of the

algorithms but lead to algorithms that have structure more suitable for implementation on computer

platforms whose hardware architectures share common features, such as multi-level memory hierar-

chy and register banks. A few examples include blocking rules, nesting rules, and overlap-add/save

(OA/OS) rules. We emphasize once more that the OA/OS rules do not have to be combined with

the circulant rule (5.65) to compute the convolutions using circular convolutions, in contrast to most

references to OA/OS methods in the literature. We consider them as simple convolution blocking

methods for input and output locality, where the smaller filters are then computed using any of the

available methods, not just the circular convolution, by applying different rules recursively.

Search space. The large set of rules we presented in this chapter creates a comprehensive search

space of algorithms by combining and applying the rules recursively in as many ways as possible. To

reduce the search space and the search time, it is important to limit the applicability of certain rules

to specific transform sizes and parameters. For example, it is clear that the circulant rule (5.65)

will not be efficient unless the circulant transform is dense (i.e., has most non-zero elements). For

sparse circulants, it might be more efficient to apply the extended filter rule (5.48) and compute the

circulants through filter transforms, or simply implement them in a straightforward manner using

their definition. We can avoid searching for unnecessary rule trees by limiting the circulant rule to be

applicable only for circulant transforms with, say, at most half of the entries being zero. Such limits

can be set for many rules, thus limiting the search space and speeding up the search. However, the

restrictions should not be hard-wired but determined empirically for different classes of computer

platforms.

Practical issues. The mathematical framework we developed in this chapter has to be imple-

mented in several steps:

1. First, all the new constructs, mathematical operators, and matrices need to be defined and

implemented in SPIRAL’s formula generator, and verified for mathematical correctness using

a symbolic algebra system;

2. For translation into code, programming constructs for all mathematical objects should either

be defined through translation templates or expressed using lower level mathematical struc-

tures on the formula optimization level, which are suitable for optimization of programming

structures (see Chapter 2). The main challenge is to draw a connection between mathematical

formulas and elements of a computer program, such as loop code, and be able to combine the

programming structures in larger formulas in an efficient way. For more information we refer

to [39].

3. After implementing the rules in the formula generator and enabling the translation into code,

the rules need to be verified on the code level for all possible expansions. Code verification is

explained in Section 2.4.

113

4. There are different issues involving optimization of search strategies. One concern is the exis-

tence of infinite search loops that can occur when two rules are interconnected by their children

transforms. This problem needs to be addressed and solved by restricting the application of

the rules depending on the transform parameters, such as the size of the transform and the

length of polynomials. For example, the potential loop between rules (5.65) and (5.48) should

be resolved by restricting the circulant rule to larger sizes (because transform-domain rules are

more efficient for larger sizes as we shall see in Chapter 7), where at the same time restricting

the rule (5.48) to cases either when polynomial length is much shorter than the size of the

transform or when the size of the circulant is smaller.

Another problem is the redundant search over rule trees that are different but conceptually

yield the same code. For example, each of the blocking rules in Section 5.2.7 breaks down a

transform into Toeplitz matrices. Most of these matrices have the same structure and only

different entries, so there is no reason to decompose them differently. However, the search

engine regards each transform with different parameters separately, which creates unnecessarily

large search spaces. The search engine should search only over one of the similar transforms

and apply the same decomposition strategy to all others during the translation into code.

This can be done by treating the specific values of the parameters, such as filter coefficients,

as abstract data structures that only differ in size and not the content. The search engine

then treats all transforms, such as Toeplitz matrices in blocking rules, as the same object for

searching and storing in hash tables to avoid repeating searches.

We address and solve the above issues to be able to run effective search and obtain experimental

results for the resulting algorithms. Before we present these results, we first introduce discrete

wavelet transforms and rules for their fast implementation.

114

CHAPTER 6

DISCRETE WAVELET TRANSFORMS AND RULES

In Chapter 3 we reviewed elements of the theory of wavelets, explained the foundations of the dis-

crete wavelet transforms (DWTs), and discussed its importance in digital signal processing. We also

provided a brief overview of the most important methods and algorithms for efficient implementation

of the DWTs through different decomposition techniques.

We now concentrate on defining the DWTs as SPIRAL transforms and capturing all reviewed

algorithms using the rule formalism. We build on the framework for FIR filters developed in the

previous two chapters and design rules for the DWTs that link the space of DWT algorithms with

the space of algorithms for FIR filters. Thus, the breakdown rules presented in this chapter span

the space of DWT algorithms by combining and recursively applying the DWT rules and the rules

we introduced in the previous chapter.

We first define different versions of the finite DWT for different signal models, cast all DWT

definitions as matrices, and use the mathematical language we developed up to this point to connect

the DWTs with the framework for FIR filters. We next formulate popular DWT algorithms as

breakdown rules that span the entire search space of competitive alternatives. By integrating these

rules in SPIRAL, we enable automatic generation of the whole space of available DWT algorithms

and their automatic implementation using SPIRAL’s platform adaptive code generator. We will

see that only a small set of rules is sufficient to describe well the space of different algorithms in

conjunction with the rules for FIR filters and other convolution transforms. By the end of this

chapter, we complete the development of the mathematical framework required to enable SPIRAL

to generate and tune code for filtering and wavelet kernels. With the help of the SPIRAL system,

we believe our approach will automatically produce code of quality comparable with the hand-tuned

numerical libraries.

6.1 Discrete Wavelet Transforms

As discussed in Chapter 3, the DWT arises from the wavelet expansion theory and the multiresolution

analysis. Separate form the continuous-time viewpoint, the DWT can be seen simply as an expansion

of a discrete-time signal into discrete bases that span multiresolution vector spaces. The discrete

wavelets are formed from the scaling and wavelet base change relations going from a coarser to a

finer level of resolution defined in equations (3.63) and (3.66). The base change equations provide

the means to compute the expansion coefficients at the coarser scale given the coefficients at a finer

scale using relation (3.71).

115

In the case of a finite sequence of length n, the recursion can be performed at most dlog2 ne
times, since the resulting sequence is downsampled by 2 at each recursion level. The DWT can

be defined either as this full recursion or, as we will do, for an arbitrarily chosen number of levels

j ∈ {1, . . . dlog2 ne}. Furthemore, depending on how we choose to treat finite signals, we shall define

different types of DWTs: nonperiodic DWT that uses linear convolutions, periodic DWT using

circular convolutions, and generalized DWT that uses arbitrary signal extensions.

Chapter 3 discussed that the DWT can be seen as the filter bank in Figure 3.3, where the impulse

response coefficients of the lowpass and the highpass filters are the scaling and the wavelet function

coefficients {hk} and {gk}. Since filtering is a linear operation, so is the DWT, which can therefore

be represented as a banded matrix if the data sequence is finite. As we discussed in Section 5.1,

there are several different approaches to band the infinite filter matrix (5.1). Depending on the signal

model at the boundaries, we consider alternative DWT and inverse DWT (IDWT) definitions:

• The finite DWT and IDWT for infinite signals is the most general definition of the finite

DWT. Here, no signal model is assumed. Transforms are rectangular matrices in this case. The

input signal, transform coefficients, and the reconstructed signal are all of different lengths.

• The extended DWT and IDWT are defined for signals extended at the boundaries. The

type of signal extension is defined by the signal model. Transforms are rectangular but the

input and the reconstructed signals have exactly the same length.

• The nonperiodic DWT and IDWT are a special case of the extended case where the

extension is obtained by zero padding, and the wavelet system is orthogonal. The signal is of

finite support.

• The periodic DWT and IDWT are defined as square matrices. There is no redundancy

in the transform domain since the transform coefficients are of the same length as the input.

Signals are periodically extended.

We start with the most intuitive definition for the special case of orthogonal wavelets that uses

the convolution and the filter transforms.

6.1.1 Nonperiodic DWT

We assume that the input sequence has compact support of length n and the filters are FIR with

length l. Then, each of the filter blocks in Figure 3.3 is a linear convolution on a finite input that

can be represented by the convolution transform on n points.

Consider the orthogonal wavelet system with the lowpass filter h(z) and the highpass filter g(z)

defined by

h(z) = hl1z
−l1 + · · ·+ h0 + · · ·+ h−r1z

r1

g(z) = gl2z
−l2 + · · ·+ g0 + · · ·+ g−r2z

r2
, (6.1)

with the coefficients given by the scaling equation (3.63) and the wavelet equation (3.66), recursively.

The orthogonality condition (3.81) given on page 62 says that all filters (analysis and synthesis,

lowpass and highpass) are of the same degree.

116

-

-

g(z) µ´
¶³

-↓2

h(z) µ´
¶³
↓2

-

- g(z) µ´
¶³

-↓2

h(z) µ´
¶³

-↓2

≡

-

-

-

g(z) µ´
¶³

-↓2

h(z) g(z2) µ´
¶³

-↓4

h(z) h(z2) µ´
¶³

-↓4

Figure 6.1: Computing channel filters using the Noble identities.

Since the input is of finite support, the filters in the first stage of the analysis filter bank are

represented by convolution transforms Convn(h(z)) and Convn(g(z)).

Single-stage nonperiodic DWT. The single stage nonperiodic DWT is defined as

DWTn,1(h(z), g(z))→




(↓2)t1n+l1+r1

Convn(h(z))

(↓2)t2n+l2+r2
Convn(g(z))



 , (6.2)

where (↓2)n is the downsampling matrix defined in (4.62) and the offsets ti are defined as

ti = ri mod 2. (6.3)

We intentionally cast equation (6.2) as a rule since it represents the base case rule for the nonperiodic

DWT.

To obtain the exact form of a multistage DWT, consider the two stages of the filter bank shown

on the left side of Figure 6.1. If we apply the Noble identity from Figure 3.7 to the next stage

of the decomposition, we obtain the fused filters for each of the channels shown on the right side

of Figure 6.1. The procedure can be repeated for an arbitrary number of stages j to obtain full

filters for each channel. Each filter can again be represented by the convolution transform and then

composed together using the results of Lemma 5.5. In this way, we obtain the definition of the

j-stage nonperiodic DWT.

DWTn,j(h(z), g(z)) =
















(
↓ 2j

)tj

mj
Convn

(
∏j−1

k=0 h(z
2k

)
)

(
↓ 2j

)tj−1

mj−1
Convn

(

g(z2j−1

)
∏j−2

k=0 h(z
2k

)
)

...

(↓ 8)t2m2
Convn

(
g(z4) h(z2) h(z)

)

(↓ 4)t1m1
Convn

(
g(z2) h(z)

)

(↓ 2)t0m0
·Convn(g(z))

.
















(6.4)

Each composition of the form Convn

(

g(z2i−1 ∏i−1
k=0 h(z

2k

)
)

for the i-th channel is implemented

using (5.38), which also determines the output size mi. The offsets ti are determined the same way

as for the single-stage case.

117

To clarify this definition, we recall that the convolution transform is defined as an infinite Toeplitz

matrix operating on inputs with finite support. Another way to see this is to assume that the signal is

zero-padded to a length sufficient for the computation. This explains the definition of the nonperiodic

DWT given in (6.4): it is the j-stage DWT of a signal of support n, or the j-stage DWT of a signal

on n points extended outside by zero padding.

The transform (6.4) is a rectangular matrix with the output size m larger than the input size n.

The size m is a function of n, j, and l, and is determined by the composition rule (5.38) and the

definition of the downsampling matrix (4.62). There is an obvious redundancy associated with the

DWT computed in this manner [104]. It can be avoided either by periodization or at an additional

cost per stage of the expansion [105].

Example 6.1. Let h(z) = h1z
−1 +h0z

0 +h−1z
1 +h−2z

2, g(z) = g2z
−2 + g1z

−1 + g0z
0 + g−1z

1, and

let the number of input points be n = 6. Then from (6.2) we have

DWT6,1(h(z), g(z)) =






















h−2

h0 h−1 h−2 . . .

. h1 h0 h−1 h−2 .

. . . h1 h0 h−1

. h1

g0 g−1

g2 g1 g0 g−1 . .

. . g2 g1 g0 g−1

. . . . g2 g1






















.

6.1.2 Inverse Nonperiodic DWT

Using the same logic as when deriving the forward DWT from the analysis filter bank, we obtain

the inverse DWT from the synthesis part. Again, we use Noble identities to collapse all filters that

belong to the same channel into a single filter and a single upsampler. A 2-stage synthesis filter

bank example is shown in Figure 6.2. After upsampling by two, the transform coefficents are filtered

by the time-reversed lowpass and highpass synthesis filters h̃(z) and g̃(z) that satisfy the perfect

reconstruction property (3.82). After applying this upsample-filtering procedure in two stages, the

original signal x(z) is fully reconstructed. On the right side of Figure 6.2, the synthesis bank is

collapsed into three channels with one upsampler and a cascade of filters. The two representations

are equivalent, and we use the collapsed channels to define the inverse DWT as a single matrix.

Again, we are faced with the problem of banding the infinite matrix that represents the filter

bank structure on the left of Figure 6.2. Consider first a single stage of the reconstruction filter

bank. Assuming that the input signal {xk} is of finite support n, the reconstructed signal has to be

{xk} and, hence, also has the support length n. We have discussed in Section 5.1 that the infinite

matrix is reduced to the filter transform matrix (5.2) if we limit the number of output points. The

filter bank stage then consists of upsampling, filtering with the lowpass synthesis filter h̃(z) and the

118

highpass synthesis filter g̃(z) defined by

h̃(z) = h̃l̃1z
−l̃1 + · · ·+ h̃0 + · · ·+ h̃−r̃1z

r̃1

g̃(z) = g̃l̃2z
−l̃2 + · · ·+ g̃0 + · · ·+ g̃−r̃2z

r̃2 ,
(6.5)

and summing the result to form the output. However, since the wavelet system has to satisfy

the perfect reconstruction condition, the analysis and the synthesis filters are related. Using the

relationship established in (3.79) on page 62, we can represent the synthesis filters by

h̃(z) = g−r2z
−r2−1 − · · ·+ g−1z

−1 − g0 + g1z − · · ·+ gl2z
l2−1

g̃(z) = h−r1z
−r1−1 + · · · − h−1z

−1 + h0 − h1z + · · · − hl1zl1−1
. (6.6)

Of course, from the orthogonality condition (3.80), for orthogonal wavelets

h̃(z) = h(z), g̃(z) = g(z). (6.7)

Single-stage nonperiodic IDWT. From the above discussion, the single-stage nonperiodic

DWT is defined as

IDWTn,1

(

h̃(z), g̃(z)
)

→
[

Filtn

(

h̃(z−1)
)

(↑2)t̃1
n+l̃1+r̃1

Filtn
(
g̃(z−1)

)
(↑2)t̃2n+l2+r̃2

]

, (6.8)

where (↑2)n is the upsampling matrix defined in (4.63), and the offsets are defined as

t̃i = r̃i mod 2. (6.9)

From the definition of the upsampling matrix (4.63), we can determine the required input size

for the matrix in (6.8).

m̃i =

⌈

l̃i + n+ r̃i
2

− t̃i
⌉

, m = m̃1 + m̃2 (6.10)

However, we know that, for orthogonal wavelets, the analysis and synthesis filters are equal (see (6.7)),

and so the input size of (6.8) exactly matches the output size of the forward DWT (6.2).

Example 6.2. We continue Example 6.1 and design the inverse DWT. Since the system is orthogo-

nal, the synthesis filters h̃(z) = h̃1z
−1+h̃0z

0+h̃−1z
1+h̃−2z

2, and g̃(z) = g̃2z
−2+g̃1z

−1+g̃0z
0+g̃−1z

1

are equal to the analysis filters h(z) and g(z). From (6.8) we obtain

IDWT6,1(h(z), g(z)) =














h−2 h0 . . . g0 g2 . .

. h−1 h1 . . g−1 g1 . .

. h−2 h0 . . . g0 g2 .

. . h−1 h1 . . g−1 g1 .

. . h−2 h0 . . . g0 g2

. . . h−1 h1 . . g−1 g1














The nonperiodic DWT and IDWT matrices are rectangular of dimensions m × n and n × m,

respectively, where m = m̃1 + m̃2 as defined in (6.10). The perfect reconstruction condition is

satisfied as

IDWTn,1(h(z), g(z)) ·DWTn,1(h(z), g(z)) = In (6.11)

119

-

-

g̃(z−1)µ´
¶³
↑2

h̃(z−1)µ´
¶³
↑2

6

?m+ -

-

- g̃(z−1)µ´
¶³
↑2

h̃(z−1)µ´
¶³
↑2

6

?m+ ≡

-

-

-

g̃(z−1)µ´
¶³
↑2

µ´
¶³
↑4 g̃(z−2) h̃(z−1) -

µ´
¶³
↑4 h̃(z−2) h̃(z−1)

6

?m+ -

Figure 6.2: Computing synthesis channel filters using Noble identities.

Similar to the procedure we developed for obtaining the forward multistage DWT from the filter

bank tree, we again apply the Noble identities to multiple stages of the synthesis filter bank to

collapse the filters in different channels as shown in Figure 6.2. From the diagram on the right side

of the image and the matrix (6.8), we obtain the j-stage inverse nonperiodic DWT.

IDWTn,j

(

h̃(z), g̃(z)
)

=

[

Filtn

(
∏j−1

k=0
h̃(z−2k

)

)
(
↑2j
)

mj
|

Filtn

(

g̃(z−2j−1

)
∏j−2

k=0
h̃(z−2k

)

)
(
↑2j
)

mj−1
|

...

Filtn

(

g̃(z−4) h̃(z−2) h̃(z−1)
)

(↑8)m2
|

Filtn

(

g̃(z−2) h̃(z−1)
)

(↑4)m1
|

Filtn
(
g̃(z−1)

)
(↑2)m0

]

(6.12)

The filter transforms in this definition are horizontally stacked as opposed to the vertical stacking

of convolution transforms in (6.4). The composition of polynomials in each filter transform is ob-

tained by applying rule (5.39). Also, the filter input dimensions mi match exactly the convolution

output dimensions in (6.4). The inverse nonperiodic DWT matrix is the left inverse of the forward

nonperiodic DWT matrix for a j-stage decomposition. It is given by

IDWTn,j

(

h̃(z), g̃(z)
)

·DWTn,j(h(z), g(z)) = In . (6.13)

6.1.3 Finite DWT and IDWT of infinite and extended signals

The previous section defined the forward and the inverse DWT under the assumption that the input

signal has finite support and that the wavelet system is orthogonal. We now relax these conditions

and let the input signal to remain infinite and the wavelets to be only biorthogonal. It is still

possible to define a finite DWT matrix by limiting the number of output points and assuming that

the wavelets have compact support, i.e., that the filters are FIR.

Consider the single-stage DWT of the infinite signals. Let the lowpass h(z) and highpass g(z)

FIR filters be defined as in (6.1). A single-stage DWT is the matrix representation of the single

120

stage of the filter bank tree shown in Figure 3.3 on page 57. The signal is filtered by the lowpass and

highpass filters and then downsampled by two. We showed the representing matrix W in (3.73) on

page 55. Consider also the synthesis filter bank in Figure 3.4 that satisfies the perfect reconstruction

condition. Let the synthesis FIR filters h̃(z) and g̃(z) be defined as in (6.5). Since the wavelet

system satisfies the perfect reconstruction (PR) condition (3.82), we can write






















...

x0

x1

x2

...

...

xn−1

...






















=


























. . .
...

...

h̃0 g̃0

h̃1 g̃1
...

...

h̃2 g̃2 h̃0 g̃0
...

... h̃1 g̃1

h̃l−1 g̃l−1

...
...

...
...

h̃l−1 g̃l−1

...
...

. . .









































. . .
...

...
...

h0 h1 · · · hl−1

g0 g1 · · · gl−1

h0 · · · hl−2 hl−1

g0 · · · gl−2 gl−1

...
...

...
. . .





































...

x0

x1

x2

...

...

xn−1

...






















. (6.14)

Furthermore, the filters are related as (3.82), or more precisely as (6.6).

To band the infinite matrix, we limit ourselves to only n output points. Since the filters are

FIR, we require only a finite number of input points to perform this operation. Starting from the

reconstructed sequence, we can backtrace through the two matrices in (6.14) to determine how

many input points of {xk} are required to expand and reconstruct the same sequence on the interval

[0, n− 1].

Note that we used interleaved lowpass and highpass filters in the infinite case for convenience to

be able to write the equations in matrix form. As before, in the finite case, we group together the

rows pertaining to the same filter.

Since we are interested in n reconstructed points, the reconstruction matrix will be exactly the

same as with the nonperiodic inverse DWT (6.8). The number m of transform coefficients needed to

implement the inverse is given in (6.10). That is also the output size of the forward DWT; however,

since we dropped the assumption that the signal is compactly supported, the number of required

input points for this case is no longer n and we need to determine it.

The number of required output points is m. Before downsampling, the number of points is

the output length n plus the number of extended points of the synthesis filters to the left and

right l̃i and r̃i, respectively. Because the synthesis filters are time-reversed, the right extension of

the synthesis lowpass r̃1 is added to the left extension of the analysis lowpass l1, whereas the left

synthesis extension l̃1 is added to the right analysis extension r1, which becomes the total extension

length. The same is true for the highpass filters. The perfect reconstruction condition and the

relations (3.82) guarantee that

lext = r̃1 + l1 = r̃2 + l2

rext = l̃1 + r1 = l̃2 + r2.
(6.15)

This is the number of additional samples of the input signal that need to be determined to the left

and right of the [0, n− 1] interval. The exact number of required input points is larger than n and

121

is given by the following formula

next = lext + n+ rext. (6.16)

We now define the single-stage DWT of an infinite-duration signal as

DWT∗n,1(h(z), g(z))→
(

(↓2)t̃1
n+l̃1+r̃1

⊕ (↓2)t̃2
n+l̃2+r̃2

)

FiltN,L,R

([

h(z)

g(z)

])

, (6.17)

where

N =

[

n+ l̃1 + r̃1
n+ l̃2 + r̃2

]

L =

[
r̃1 + l1
r̃2 + l2

]

R =

[

l̃1 + r1
l̃2 + r2

]

and t̃i are defined in (6.9).

The definition of the matrix of filters FiltN,L,R([hi,j(z)]) with variable sizes and extensions that

appears in this equation was given in (5.32). However, because of the identities (6.15), it follows

that

l̃1 + r̃1 + l1 + r1 = l̃2 + r̃2 + l2 + r2. (6.18)

This important relationship between filter lengths implies that the width of the filter transforms

in (6.17) is the same for both filters and enables the following most general definition of the DWT.

Single-stage DWT. The single stage DWT is defined by

DWT∗n,1(h(z), g(z))→
(

(↓2)t̃1
n+l̃1+r̃1

⊕ (↓2)t̃2
n+l̃2+r̃2

)
[

Filtn+l̃1+r̃1
(h(z))

Filtn+l̃2+r̃2
(g(z))

]

. (6.19)

This definition represents the base case rule for the finite DWT.

Single-stage IDWT. The single-stage inverse DWT on n points is the same as in the nonpe-

riodic case, which we repeat here for completeness.

IDWT∗n,1

(

h̃(z), g̃(z)
)

→
[

Filtn

(

h̃(z−1)
)

(↑2)t̃1
n+l̃1+r̃1

Filtn
(
g̃(z−1)

)
(↑2)t̃2n+l2+r̃2

]

. (6.20)

We emphasize that both the DWT and the IDWT defined this way are rectangular. The size of

DWT∗n,1(h(z), g(z)) is m× next whereas the size of IDWT∗n,1

(

h̃(z), g̃(z)
)

is n×m.

In Example 6.2 we provided the single-stage nonperiodic IDWT matrix, which is the same as the

general single-stage IDWT matrix. We now revisit the same example and find the single-stage finite

DWT defined in (6.19).

Example 6.3. Let the analysis filters be h(z) = h1z
−1 + h0z

0 + h−1z
1 + h−2z

2, g(z) = g2z
−2 +

g1z
−1 + g0z

0 + g−1z
1, and let the number of desired output points be n = 6. From the analysis and

the synthesis filters, we have

l̃1 = l1 = 1, r̃1 = r1 = 2, t̃1 = 0

l̃2 = l2 = 2, r̃2 = r2 = 1, t̃2 = 1
. (6.21)

From equation (6.19), we get

DWT∗6,1(h(z), g(z))→
(

(↓2)9 ⊕ (↓2)19
)
[

Filt9(h(z))

Filt9(g(z))

]

122

DWT∗6,1(h(z), g(z)) =






















h1 h0 h−1 h−2

. . h1 h0 h−1 h−2

. . . . h1 h0 h−1 h−2

. h1 h0 h−1 h−2 . .

. h1 h0 h−1 h−2

. g2 g1 g0 g−1

. . . g2 g1 g0 g−1

. g2 g1 g0 g−1 . . .

. g2 g1 g0 g−1 .






















.

This is the most general definition of the finite DWT since it can be applied to an input signal of

arbitrary length. In Section 6.1.1 we introduced the nonperiodic DWT under the assumption that

the input signal has compact support, or equivalently, that the signal is zero-padded outside of the

main interval [0, n− 1]. However, using definition (6.19), we observe that







x0

...

xn−1






= IDWTn,1

(

h̃(z), g̃(z)
)

DWT∗n,1(h(z), g(z))



















x−lext

...

x0

...

xn−1

...

xrext



















(6.22)

The input signal requires additional lext and rext points defined in (6.15). It is very important

to understand that the additional points do not affect the output since the perfect reconstruction

condition holds for any infinite signal. One interpretation is that we can take the input signal on

the interval [0, n− 1], extend it to the required number of points in any way we desire, and still be

able to reconstruct the output on the interval using (6.22).

Single-stage extended DWT. We define the single-stage extended DWT as

DWTfl,fr

n,1 (h(z), g(z)) = DWT∗n,1(h(z), g(z)) E
fl,fr

n,lext,rext
(6.23)

where Efl,fr

n,lext,rext
is the extension matrix defined in (4.68) on page 83, the extension lengths lext and

rext are defined in (6.15), and fl and fr specify the type of the extension to the left and right of

the input signal, respectively. The DWTfl,fr

n,1 (h(z), g(z)) is an m × n matrix, where m is defined

in (6.10).

From the above discussion, we conclude that the extended DWT satisfies the perfect reconstruc-

tion condition






x0

...

xn−1






= IDWTn,1

(

h̃(z), g̃(z)
)

DWTfl,fr

n,1 (h(z), g(z))







x0

...

xn−1







(6.24)

123

for any give fl and fr. If, for example, we use the zero-padding extension defined in (4.71) and if the

wavelet system is orthogonal (3.80) then (6.23) equals the single-stage nonperiodic DWT defined in

(6.2).

DWTzero
n,1 (h(z), g(z)) = DWTn,1(h(z), g(z)) (6.25)

for orthogonal wavelets.

Example 6.4. We continue with Example 6.3 and apply the zero extension to DWT∗6,1(h(z), g(z)).

From (6.15) we obtain lext = 3 and rext = 3. Then,

DWT∗6,1(h(z), g(z)) E
zero
6,3,3 =






















h−2

h0 h−1 h−2 . . .

. h1 h0 h−1 h−2 .

. . . h1 h0 h−1

. h1

g0 g−1

g2 g1 g0 g−1 . .

. . g2 g1 g0 g−1

. . . . g2 g1






















= DWT6,1(h(z), g(z))

and we obtain the single-stage nonperiodic DWT for this example since the wavelet system is or-

thogonal.

Perfect reconstruction is possible regardless of the type of extension by using the definition of

the DWT we provided here. At the first glance, this might strike the reader as a little odd; however,

the perfect reconstruction condition guarantees that all signals of the form

x =
[

x−l · · · x−1 0 · · · 0 xn · · · xn+r

]

are in the null space of the finite DWT and, hence, have no effect on the reconstructed result.

In constructing a multi-stage extended DWT, one needs to be careful with matching the dimen-

sions of the subsequent stages because of the complicated relationships between the lengths of the

filters and required expansion coefficients. We defer this discussion until we introduce recursive rules

for the computation of the DWT, which greatly simplifies the construction of the multi-stage DWT.

6.1.4 Periodic DWT and IDWT

We have introduced two definitions of the finite DWT and IDWT: the extended and the nonperiodic

as important special cases. Common to these definitions is the fact that the length of the input

sequence is not preserved after each stage of the decomposition. The output of a single stage

DWT is longer than the input, i.e., the DWT matrix is rectangular and creates extra transform

coefficients. The additional coefficients are redundant in the sense that exactly n coefficients are

sufficient to reconstruct the input of length n [105]. In addition to the cost of allocating additional

memory for these extended coefficients, another drawback of rectangular DWTs is that the error in

the transform domain tends to be amplified at the reconstruction due to the existence of the null

space of the DWT.

124

It is advantageous to construct a square DWT and IDWT that still satisfy the perfect reconstruc-

tion condition and, possibly, exhibit other desirable properties such as orthogonality, biorthogonality,

maximally flat bases, etc. This is essentially the problem of designing wavelet bases on an interval

that satisfy such properties, where special treatment is given to wavelets at the interval boundaries

[91, 106].

Consider the extended DWT defined in (6.23) and the corresponding perfect reconstruction

equation given in (6.24). Further assume that the input size n is divisible by 2. The forward DWT

is a rectangular matrix of size m× n where the output length m is given by (6.10). The input size

is n and the input is extended to next points in (6.16) using any extension method.

Now, let the extension of the input signal be periodic, i.e., Efl,fr

n,lext,rext
= Eper,per

n,lext,rext
. It is easy to

show that, if the input signal is periodic, the ouput of the filter-downsample block (↓2)n Filtn(h(z))
will also be periodic with period n/2 and, hence, both the lowpass and highpass outputs will be

periodic signals. To simplify the problem, we consider only the lowpass part of the DWT output

(the top half of (6.23)). If the lowpass output signal is y periodic with period n/2, then it can be

represented by considering only the main period and extending it periodically:


















yl̃ext

...

y0
...

yn
2
−1

...

yr̃ext



















= Eper

n,l̃ext,r̃ext







y0
...

yn
2
−1







where l̃ext =
⌊
l̃1
2

⌋

and r̃ext =
⌈
r̃1−n mod 2

2

⌉
. This implies that only the output on the interval

[0, n/2−1] needs to be computed. The values outside this interval can be found by periodic replication

of this interval. To compute these required output values, according to (6.19), the forward extended

DWT can be reduced to

DWTper
n,1(h(z), g(z)) =




(↓2)n Filtn(h(z))
(↓2)n Filtn(g(z))



Eper
n,lm,rm

, (6.26)

where lm = maxi{li} and rm = maxi{ri}.

Single-stage periodic DWT. The resulting matrix is now square and provides the definition

of the single-stage periodic DWT.

DWTper
n,1(h(z), g(z))→




(↓2)nCn(h(z))

(↓2)nCn(g(z))



 . (6.27)

We go further and fuse the extension matrix into the lowpass IDWT part Filtn

(

h̃(z−1)
)

(↑2)t1
n+l̃1+r̃1

(see (6.8)) and apply the identity (↑2)n+l+r E
per
n,l,r = Eper

2n,2l,2r (↑2)n to obtain

Filtn

(

h̃(z−1)
)

(↑2)t̃1
n+l̃1+r̃1

Eper

n/2,l̃ext,r̃ext
= Filtn

(

h̃(z−1)
)

Eper

n,l̃1,r̃1
(↑2)n

= Cn

(

h̃(z−1)
)

(↑2)n
. (6.28)

125

Single-stage periodic IDWT. The same procedure can be applied to the highpass portion of

the filter bank, which leads to the definition of the inverse periodic DWT.

IDWTper
n

(

h̃(z), g̃(z)
)

→
[

Cn

(

h̃(z−1)
)

(↑2)n Cn

(
g̃(z−1)

)
(↑2)n

]

. (6.29)

Note that IDWTper
n

(

h̃(z), g̃(z)
)

is a square matrix.

Using the above procedure, we have derived the periodic DWT and IDWT from the extended

DWT and IDWT using the periodic extension and the property that periodic signals stay periodic

even after filtering and downsampling. From the perfect reconstruction (PR) equation (6.24) it

follows immediately that

x = IDWTper
n,1

(

h̃(z), g̃(z)
)

DWTper
n,1(h(z), g(z))x. (6.30)

This form of the DWT is particularly clean since both matrices are square so there is no redundancy

in the representation.

Another advantage of the periodic DWT is that the orthogonality of the wavelet bases is preserved

by using periodically extended boundary wavelets [106]. This means that the IDWT is the transpose

of the DWT

IDWTper
n,1

(

h̃(z), g̃(z)
)

= DWTper
n,1(h(z), g(z))

T
(6.31)

However, it is well known that the periodic extension of signals introduces discontinuities which in

turn heavily affect wavelet coefficients at higher (finer detail) scales [107].

Let the length of the input signal be n = 2s. The j-stage periodic DWT and IDWT are defined

in a manner similar to the multi-stage nonperiodic DWT and IDWT in (6.4) and (6.12). As an

example, we provide the matrix form of the forward j-stage periodic DWT

DWTn,j(h(z), g(z)) =
















(
↓2j
)

n
Cn

(
∏j−1

k=0 h(z
2k

)
)

(
↓2j
)

n
Cn

(

g(z2j−1

)
∏j−2

k=0 h(z
2k

)
)

...

(↓8)nCn

(
g(z4) h(z2) h(z)

)

(↓4)nCn

(
g(z2) h(z)

)

(↓2)n ·Cn(g(z))
















. (6.32)

6.2 Breakdown Rules for DWT Algorithms

We visited several major approaches used for efficient implementation of the DWT in Section 3.2.

After introducing several related definitions of the DWT and the IDWT in the first part of this

chapter, we try to capture the most important techniques for implementing the wavelet transforms

as a set of rules that will enable automatic generation of numerous possible algorithms and also

enable effective translation into various versions of executable code. We start with the basic recursion

126

suggested by the Mallat equations (3.71) and the filter bank tree interpretation of the DWT, and

proceed with the other methods discussed in Section 3.2.

6.2.1 Mallat recursive rules

By construction, the multiresolution analysis and the recursive Mallat equations (3.71) provide an

efficient way to compute the DWT in a recursive way. The filter bank interpretation shown in

Figure 3.3 provides the most useful intuition about this recursive implementation. Each filter bank

stage of the filter tree represents a single stage of the DWT expansion. The lowpass output is

further filtered and downsampled at the next expansion stage. The procedure can be captured using

a breakdown rule that we will call the Mallat rule. Depending on which definition we choose from

the previous sections, we have closely related versions of the Mallat rule.

Consider again the filter bank tree in Figure 3.3 representing the DWT with the lowpass filter

h(z) and the highpass filter g(z) defined by (6.1). The single-stage nonperiodic DWT is given by

(6.2). The nonperiodic Mallat rule defines the recursion on the lowpass output and how to compute

the nonperiodic DWT coefficients at a lower level given the coefficients at the next higher level.

Nonperiodic DWT Mallat Rule

DWTn,j(h(z), g(z))→ (DWTm1,j−1(h(z), g(z))⊕ Im2
) ·DWTn,1(h(z), g(z)) , (6.33)

where the lowpass and the highpass output lengths m1 and m2 are given by

mi =

⌊
li
2

⌋

+
⌈n

2

⌉

+

⌈
ri − n mod 2

2

⌉

, i = 1, 2. (6.34)

The single stage nonperiodic DWTn,1(h(z), g(z)) was defined in (6.2).

The inverse nonperiodic DWT is computed similarly using the synthesis bank filters defined

in (6.5). Again, we assume that li = l̃i and ri = r̃i for both filters. The Mallat rule is then

Nonperiodic IDWT Mallat Rule

IDWTn,j

(

h̃(z), g̃(z)
)

→ IDWTn,1
(

h̃(z), g̃(z)
)

·
(

IDWTm1,j−1

(

h̃(z), g̃(z)
)

⊕ Im2

)

(6.35)

where m1 and m2 are again given by (6.34).

In Section 6.1.3, we deferred the definition of the multi-stage finite and extended DWTs because

the recursive equations provide a cleaner and more understandable form. We use the definitions of

the single-stage extended DWT and IDWT in (6.23) and (6.20) to define the multi-stage versions

through the Mallat rule.

Extended DWT Mallat Rule

DWTfl,fr

n,j (h(z), g(z))→
(

DWTfl,fr

m̃1,j−1(h(z), g(z))⊕ Im̃2

)

·DWTfl,fr

n,1 (h(z), g(z)) , (6.36)

where

m̃i =

⌈
r̃i
2

⌉

+
⌈n

2

⌉

+

⌈

l̃i − n mod 2

2

⌉

.

The single-stage extended DWTfl,fr

n,1 (h(z), g(z)) is defined using equations (6.23) and (6.19).

127

Since the extended single-stage IDWT is exactly equal to the single-stage nonperiodic IDWT,

then the extended IDWT Mallat rule is the same as (6.35). When applied recursively j times,

the rule (6.36) indirectly defines the matrix form of the j-stage extended DWT that we skipped

in Section 6.1.3. The recursion terminating matrix is the same as the single-stage extended DWT

given in (6.23).

Finally, the Mallat rule for the periodic DWT and IDWT has a particularly clean form that

follows immediately from the single-stage periodic DWTper
n,1(h(z), g(z)) and IDWT

per
n,1

(

h̃(z), g̃(z)
)

defined in (6.27) and (6.29), respectively.

Periodic DWT Mallat Rule

DWTper
n,j (h(z), g(z))→

(
DWTper

n,j−1(h(z), g(z))⊕ In
)
·DWTper

n,1(h(z), g(z)) (6.37)

Periodic IDWT Mallat Rule

IDWTper
n,j

(

h̃(z), g̃(z)
)

→ IDWTper
n,1

(

h̃(z), g̃(z)
)(

IDWTper
n,j−1

(

h̃(z), g̃(z)
)

⊕ In

)

(6.38)

For the periodic case, all matrices are square of dimensions n×n and the additional size param-

eters and the offsets need not be computed. Furthermore, if the wavelet bases are orthogonal, the

periodic IDWT Mallat rule is simply the transpose of (6.37).

Practical considerations. It should be clear that the downsampling after filtering is not very

efficient since half of the already computed samples are then wasted. A speedup of two is achieved

by fusing the donwsampling operator with the filtering stage. The fusion is done in SPIRAL at

the formula optimization level where the downsampler is represented using the gather operators

introduced on page 82. We provide one example of this fusion for illustrative purposes.

Consider again the Mallat rule (6.37) for the periodic DWT in (6.32). Without the loss of

generality, we assume that the supports of h(z) and g(z) are the same, i.e., that l1 = l2 = l and

r1 = r2 = r. Using definitions (5.34) and (5.24), we can represent the filtering stage as

Cn

([

h(z)

g(z)

])

=

[

In⊗l+r (hl, . . . , h−r)
In⊗l+r (gl, . . . , g−r)

]

· Eper
n,l,r .

If we fuse (↓2)n in each half of this matrix we get

((↓2)n ⊕ (↓2)n)Cn

([

h(z)

g(z)

])

=

[

In⊗l+r−1 (hl, . . . , h−r)

In⊗l+r−1 (gl, . . . , g−r)

]

· Eper
n,l,r−1 . (6.39)

Example 6.5. Let h(z) = h1z
−1 +h0z

0 +h−1z
1 +h−2z

2, g(z) = g1z
−1 + g0z

0 + g−1z
1 + g−2z

2, and

the number of input points be n = 6. Then, we have

(↓2)6C6

([

h(z)

g(z)

])

=

[

I3⊗2 (h1, . . . , h−2)

I3⊗2 (g1, . . . , g−2)

]

· Eper
6,1,1 =














h0 h−1 h−2 . . h1

. h1 h0 h−1 h−2 .

h−2 . . h1 h0 h−1

g0 g−1 g−2 . . g1

. g1 g0 g−1 g−2 .

g−2 . . g1 g0 g−1














.

128

The upsampling operator can be similarly fused into the synthesis filter bank.

Fusing the up/downsampling in the filtering matrices avoids redundant operations and saves half

of the cost. A disadvantage of this method is that it destroys the Toeplitz structure of the filtering

stage and the incorporated filter transforms. Consequently, none of the rules for filter transforms

described in Chapter 5 is applicable and the implementation of the DWT has to fall back to the

straightforward time-domain algorithms and blocking strategies.

On the other hand, the polyphase representation discussed in Section 3.2.3 avoids redundant

operations, preserves the filter transform structure, and allows application of numerous FIR filter

rules. We capture the polyphase method in a set of rules we define next.

6.2.2 Polyphase rules

According to the Noble identities in Figure 3.7 on page 61, one stage of the filter bank can be

represented using the polyphase notation shown in Figure 3.8.

Consider again the polynomials h(z) and g(z) downsampled to even and odd factors he(z), ho(z),

ge(z), and go(z) according to (3.38). The single-stage nonperiodic DWT can be decomposed into a

matrix of convolution transforms using the following rule

Polyphase nonperiodic DWT rule

DWTn,1(h(z), g(z))→ ConvN
([

he(z) ho(z)

ge(z) go(z)

])

L̄
n
2 , (6.40)

where

N =
[⌈n

2

⌉ ⌊n

2

⌋]

,

and where L̄
n
2 is either the linear permutation (4.52) or the stride permutation (4.46) if 2 |n. In the

latter case, the rule reduces to

DWTn,1(h(z), g(z))→ Convn
2

([

he(z) ho(z)

ge(z) go(z)

])

Ln2 .

The generalized matrix of convolution transforms in (6.40) was defined in (5.37) on page 100.

Example 6.6. We apply the polyphase rule to the nonperiodic DWT in Example 6.4. We first

determine the downsampled filters for h(z) and g(z) given in Example 6.3 using equations (3.38) on

page 43.

he(z) = h0 + h−2z, ho(z) = h1z
−1 + h−1

ge(z) = g2z
−1 + g0, go(z) = g1z

−1 + g−1

.

129

From, (6.40) we obtain

DWT6,1(h(z), g(z)) =






















h−2

h0 h−2 . h−1 . .

. h0 h−2 h1 h−1 .

. . h0 . h1 h−1

. h1

g0 . . g−1 . .

g2 g0 . g1 g−1 .

. g2 g0 . g1 g−1

. . g2 . . g1






















L6
2 = Conv3

([

he(z) ho(z)

ge(z) go(z)

])

L6
2 .

A similar rule can be obtained for the IDWT by considering the synthesis filter bank shown in

Figure 3.4 and the synthesis polyphase matrix in (3.78).

Consider the synthesis filters h̃(z) and g̃(z) and define their downsampled versions: h̃e(z),

h̃o(z), g̃e(z), g̃o(z), using equation (3.38), as before. The polyphase rule for the nonperiodic IDWT

is then

Polyphase nonperiodic IDWT rule

IDWTn,1(h(z), g(z))→ L̄
n

dn
2 e FiltN

([

h̃e(z) g̃e(z)

h̃o(z) g̃o(z)

])

, (6.41)

where N and L̄
n
n
2
are defined the same way as in (6.40). In the case 2 |n, we have

IDWTn,1(h(z), g(z))→ Lnn
2
Filtn

2

([

h̃e(z) g̃e(z)

h̃o(z) g̃o(z)

])

.

Example 6.7. Consider again Example 6.2. We compute the downsampled synthesis filters as

h̃e(z) = h̃0 + h̃−2z, h̃o(z) = h̃1z
−1 + h̃−1

g̃e(z) = g̃2z
−1 + g̃0, g̃o(z) = g̃1z

−1 + g̃−1

.

Then, we have

IDWT6,1

(

h̃(z), g̃(z)
)

= L6
3














h̃−2 h̃0 . . . g̃0 g̃2 . .

. h̃−2 h̃0 . . . g̃0 g̃2 .

. . h̃−2 h̃0 . . . g̃0 g̃2

. h̃−1 h̃1 . . g̃−1 g̃1 . .

. . h̃−1 h̃1 . . g̃−1 g̃1 .

. . . h̃−1 h̃1 . . g̃−1 g̃1














.

The polyphase rules for the extended DWT follow a similar pattern. However, special consider-

ation must be given to the input/output sizes of the downsampled filters.

Polyphase extended DWT rule

DWTfl,fr

n,1 (h(z), g(z))→ FiltN,L,R
([

he(z) ho(z)

ge(z) go(z)

])

L̄
next

2,t Efl,fr

n,lext,rext
, (6.42)

130

where next, lext, and rext are given by (6.16) and (6.15), the offset t = maxi{r̃i + li} mod 2, the

matrices

N =

[

m1 m1

m2 m2

]

, L =

[⌊
r̃1+l1

2

⌋ ⌈
r̃1+l1

2

⌉

⌊
r̃2+l2

2

⌋ ⌈
r̃2+l2

2

⌉

]

, R =





⌊
l̃1+r1

2

⌋ ⌊
l̃1+r1−1

2

⌋

⌊
l̃2+r2

2

⌋ ⌊
l̃2+r2−1

2

⌋



,

and the sizes mi are defined in (6.10).

By invoking the properties (4.73) on page 84, in the case of zero-padding, we can write

L̄
next

2,t Ezero
n,lext,rext

=

(

Ezero

dn
2 e,d lext

2 e,d rext−n mod 2

2 e ⊕Ezero

bn
2 c,b lext

2 c,b rext+n mod 2

2 c

)

L̄
n
2 . (6.43)

It can be proven that, from here, the polyphase extended DWT rule (6.42) becomes the nonperiodic

polyphase rule (6.40).

A similar manipulation can be performed for the periodic extension using the identities (4.76).

This leads to the periodic polyphase rules we define next.

Consider the analysis filter bank with filters h(z) and g(z), and let the input size n satisfy 2 |n.
For the single-stage periodic DWT (6.27) the following rule applies.

Polyphase periodic DWT rule

DWTper
n,1(h(z), g(z))→ Cn

2

([

he(z) ho(z)

ge(z) go(z)

])

Ln2 . (6.44)

Similarly, we can define the polyphase rule for the periodic IDWT using the definition (6.29).

Polyphase periodic IDWT rule

IDWTper
n,1

(

h̃(z), g̃(z)
)

→ Lnn
2
Cn

2

([

h̃e(z) g̃e(z)

h̃o(z) g̃o(z)

])

. (6.45)

As the final note in this subsection, we mention that the polyphase rules enable each stage of

the DWT to be computed using filter rules and, at the same time, avoid implementing redundant

operations. The greatest impact is achieved when specialized filter rules, such as transform-domain

and Karatsuba rules, lead to efficient algorithms for FIR filters. The polyphase rules for the DWT

are therefore seen as the gateway to efficient FIR filter algorithms.

However, the polyphase rules as well as the Mallat rules do not themselves reduce the arithmetic

cost. Lattice and lifting factorizations are also available and they asymptotically achieve a cost

reduction by 2. We capture the rules that enable both factorizations in the remainder of this

chapter.

6.2.3 Lattice factorization rules

If the wavelet bases are orthogonal there is a very efficient way to decompose each stage of the

expansion using the lattice factorization we introduced in Section 3.9. Since wavelets are orthogonal,

the analysis filters h(z) and g(z) defined in (6.1) are of equal even length. The rotation coefficients

αj = tan θj in (3.87) are determined by solving the recursive equations (3.89) on page 63. These

equations assumed that the filters are causal, but this is not necessary. At each step of the recursion,

131

the coefficients αj are chosen so that the Laurent degree of h(j)(z) − αjg(l)(z) is reduced by one,

which means canceling the highest power of either z or z−1. Because of the paraunitary property

of the filters, this procedure actually cancels two degrees and the algorithm terminates after l+r+1
2

steps. If there is a need to cancel the highest degree of z then the second equation in (3.89) requires

z2 rather than z−2

(1 + α2
j)z

2g(j−1)(z) = αjh
(j)(z) + g(j)(z),

and the delay operators in (3.86) will be

∆(z−1) =

[

1 0

0 z1

]

. (6.46)

The rules for lattice decomposition follow directly the form presented in Figure 3.2.4. We start with

the rule for nonperiodic DWT and IDWT.

Lattice nonperiodic DWT rule

DWTn,1(h(z), g(z))→ βConvN

([

1 α0

−α0 1

][

1 0

0 z

][

1 α1

−α1 1

]

· · ·
[

1 0

0 z−1

][

1 αJ

−αJ 1

])

L̄
n
2 ,

(6.47)

where

N =
[⌈n

2

⌉ ⌊n

2

⌋]

The composition of the convolution transforms is performed according to the results of Lemma 5.5

on page 101 and equation (5.38), trivially adapted for matrices of convolution transforms.

The lattice factorization rule for the nonperiodic inverse DWT is easily obtained by simply

transposing and time-reversing (6.47) since the wavelets are orthogonal and, hence, the polyphase

matrices are orthogonal (see page 62).

Lattice nonperiodic IDWT rule

IDWTn,1(h(z), g(z))→ β L̄
n

dn
2 eFiltN

([

1 −αJ
αJ 1

][

1 0

0 z−1

]

· · ·
[

1 −α1

α1 1

][

1 0

0 z

][

1 −α0

α0 1

])

(6.48)

The form of the lattice factorization is especially clean in the case of the periodic DWT and

IDWT. The convolution and filter matrices become circulant matrices, and all products are between

square matrices. In this case, we require that 2 |n.

Lattice periodic DWT rule

DWTper
n,1(h(z), g(z))→ β L

n
2

2 Cn

([

1 α0

−α0 1

][

1 0

0 z

][

1 α1

−α1 1

]

· · ·
[

1 0

0 z−1

][

1 αJ

−αJ 1

]

.

)

(6.49)

According to Theorem 5.9 on page 103 the composition of the circular transforms is the same as

the circular transform of the compositions

Cn(h(z) · g(z)) = Cn(h(z)) ·Cn(g(z))

132

and together with the definition of the matrix of circulants (5.34), the composition in (6.49) is

performed by assigning to each element of the matrices in the lattice decomposition a circulant

transform with the element as its parameter. For example,

Cn

([

1 α0

−α0 1

])

=

[

Cn(1) Cn(α0)

Cn(−α0) Cn(1)

]

=

[

In α0 In

−α0 In In

]

(6.50)

The lattice factorization for the periodic inverse DWT is again obtained by transposing and

time-reversing (6.49).

Lattice periodic IDWT rule

IDWTper
n,1(h(z), g(z))→ β L

n
2

2 Cn

([

1 −αJ
αJ 1

][

1 0

0 z−1

]

· · ·
[

1 −α1

α1 1

][

1 0

0 z

][

1 −α0

α0 1

]

.

)

(6.51)

As we mentioned in Section 3.9, the lattice factorization of orthogonal filter banks reduces the

computational cost asymptotically to one half of the polyphase implementation cost. Another ad-

vantage of the decomposition is that the rounding error of the rotation coefficients does not affect the

perfect reconstruction condition because the error is cancelled in the synthesis bank decomposition.

The lattice factorization, however, cannot be applied to biorthogonal wavelets and filter banks. In

that case, the lifting scheme factorization is used instead.

6.2.4 Lifting scheme rules

The lifting scheme for constructing and decomposing biorthogonal filter banks reduces the arithmetic

cost of the DWT. We reviewed the basics of the lifting steps factorization in Section 3.2.5, where

we explained the factoring algorithm based on the Euclidean algorithm for polynomials. Similarly

to the lattice factorization, the lifting scheme starts with the polyphase matrix

P (z) =

[

he(z) ho(z)

ge(z) go(z)

]

where he(z), ho(z), ge(z), go(z) are the downsampled analysis filters h(z) and g(z) defined in (6.1).

The polyphase matrix is decomposed into alternating primal and dual lifting steps (3.91). The

factorization is not unique due to the fact that the Laurent polynomial division is not unique [19].

We provide the analysis of the degrees of freedom and the number of different lifting schemes in

Appendix A. At this point we mention that the number L of lifting steps varies with different lifting

schemes for the same P (z), but is bounded by L < max{deg(h),deg(g)}.
The factorization scheme was illustrated in Figure 3.10. The structure is very similar to the

lattice factorization. The rules for lifting factorization for different DWT definitions can be de-

fined straightforwardly using the properties of the bounded filter matrices as in the case of lattice

factorization.

Lifting nonperiodic DWT rule

DWTn,1(h(z), g(z))→ ConvN
([

α 0

0 1
α

][

1 sL
2
(z)

0 1

][

1 0

tL
2
(z) 1

]

· · ·
[

1 s0(z)

0 1

][

1 0

t0(z) 1

])

L̄
n
2 , (6.52)

133

where

N =
[⌈n

2

⌉ ⌊n

2

⌋]

,

The initial lifting step and the order of subsequent steps is determined by the filters h(z) and

g(z). For example, if deg(he) > deg(ho) the first step is dual, otherwise it is primal. Also, if 2 - L,
the last lifting step in (6.52) does not exist. As we mentioned with the lattice factorization, the

composition of the convolution transforms is performed according to the results of Lemma 5.5.

The inverse lifting scheme can be obtained by applying the factoring algorithm described in

Section 3.2.5 to the synthesis polyphase matrix P̃ (z) defined in (3.78). However, by recognizing

that the perfect reconstruction condition (3.82) holds after the factorization into lifting steps, the

inversion can be performed by inverting each lifting step matrix individually. This is a trivial

procedure since the inverse matrix of either of the lifting steps (3.91) is obtained by simply changing

the sign of the lifting filters. Hence, we obtain the lifting scheme for the nonperiodic IDWT.

Lifting nonperiodic IDWT rule

IDWTn,1

(

h̃(z), g̃(z)
)

→

L̄
n

dn
2 eFiltN

([

1 0

−t0(z) 1

][

1 −s0(z)
0 1

]

· · ·
[

1 0

−tL
2
(z) 1

][

1 −sL
2
(z)

0 1

][
1
α 0

0 α

])

(6.53)

The periodic DWT and IDWT lifting rules follow directly

Lifting periodic DWT rule

DWTper
n,1(h(z), g(z))→ Cn

([

α 0

0 1
α

][

1 sL
2
(z)

0 1

][

1 0

tL
2
(z) 1

]

· · ·
[

1 s0(z)

0 1

][

1 0

t0(z) 1

])

Ln2 (6.54)

Lifting periodic IDWT rule

IDWTper
n,1

(

h̃(z), g̃(z)
)

→

Lnn
2
Cn

([

1 0

−t0(z) 1

][

1 −s0(z)
0 1

]

· · ·
[

1 0

−tL
2
(z) 1

][

1 −sL
2
(z)

0 1

][
1
α 0

0 α

])

(6.55)

where we require that 2 |n.
As we noted above, the lifting rule can take different forms depending on the chosen factorization

scheme. We allow the generation of all possible lifting schemes by invoking all possible Laurent poly-

nomial divisions. For example, for the Daubechies 9/7 biorthogonal wavelets used in the JPEG2000

standard, there are 27 different lifting schemes, of which only one preserves the symmetry and,

hence, the linear phase of the filters. In this case, there are either four or five lifting steps, each with

the filters of degree one or two. Different lifting schemes will obviously provide different run times.

We investigate these effects and report the results in Chapter 7

6.3 Concluding Remarks

We started this chapter by introducing four different definitions of the discrete wavelet transform

(DWT): the nonperiodic DWT, the finite DWT of infinite signals, the extended DWT, and the

134

periodic DWT. Each definition arises from different assumptions on the processed signal, similar to

the models we considered for the FIR filters in Chapter 5. For the nonperiodic DWT, the input

signal has a finite support. The second model assumes that the signal is of infinite length and that

the DWT is computed on a finite number of points. The extended DWT assumes that the signal

is infinitely extended outside of the main interval [0, N − 1]. Depending on the type of extension,

the effects on the boundary filters of the DWT filter bank will be different. The DWT matrix is

rectangular for all of the above definitions, leading to a redundant wavelet representation. The

last definition assumes infinite periodic extension of signals and leads to a square DWT transform.

In this case, the redundancy is avoided in the transform domain; however, the somewhat regular

structure of the redundant definitions is slightly violated by cyclically wrapping the boundary filters.

For each definition we designed a set of decomposition rules in Section 6.2 that captures most of

the known algorithms for efficient computation of the DWT. We covered the algorithms introduced

in Chapter 3. We break the presented algorithms into two classes:

• The direct implementation algorithms with O (n) cost based on Mallat rules introduced in

Section 6.2.1

• The factoring algorithms that achieve asymptotic reduction of the number of operations by

two based on the relation between filter coefficients arising from the perfect reconstruction con-

dition. These include the lattice factorization methods with rules introduced in Section 6.2.3

and the lifting scheme factorization methods with rules presented in Section 6.2.4.

The Mallat rules implement the DWTs in a straightforward manner, preserving the regular filter

bank structure. The advantage of these rules is the regularity of the computations that can be

performed with excellent efficiency on most platforms. On the other hand, the factoring rules lead

to the reduction of the arithmetic cost of algorithms. However, these algorithms have a longer

critical path and, typically, higher memory requirements.

Search space. All the DWT rules we presented create a search space of algorithms by expanding

a DWT at the top level of the rule tree into either smaller size DWTs or into one of the filtering

transforms, such as convolution, filter, and circulant transforms. This is important to emphasize

because the whole space of algorithms for FIR filters is embedded into the space of algorithms for

DWTs. Mallat rules provide means to reduce the multi-stage DWTs into the single-stage DWTs,

at which point the other DWT rules can be applied. After the DWT rules are applied, the children

transforms are one of the filtering transforms. From that point, any of the applicable rules for

filtering transforms can be applied. We investigate the efficiency of all DWT methods by varying

the top-level rule to expand the search space in different ways.

Practical considerations. Since the search space for filtering transforms is embedded in the

space of DWT algorithms, most of the discussion from the end of Chapter 5 apply to DWT imple-

mentations. However, we add a few more notes about the implementation of the DWT algorithms

in SPIRAL.

• The fusion of the downsampling operator and the filter bank stage is done at the formula

optimization level using the gather and scatter operators [39]. However, if the boundary

135

filters are different, as in the case of the periodic DWT, the fusion has to be taken care of by

introducing special optimization rules that achieve looping of both the downsampled boundary

filters and the main filters.

• Polyphase rules permute the data in order to restore the regular Toeplitz structure of the filter

transforms. The readressing of the data comes at a price that has to be offset by the advantage

afforded by the FIR filter algorithms. In most cases the manipulation is justified only if the

filter algorithms significantly reduce the cost of computations. For that reason, the polyphase

rule is usually seen as the gateway to transform-domain methods.

• The factoring rules, such as the lifting scheme, are applied in multiple stages. The number of

stages depends on the number of lifting steps and they are computed consecutively. Ideally,

the lifting scheme can be implemented in-place, where the temporary vector of results is kept

the same after each stage of the factorization. However, the current SPIRAL framework does

not support generation of in-place implementations. This might have a slowing effect on the

factoring algorithms, especially for large transform sizes.

In the next chapter, we conduct selected experiments to investigate the efficiency of the proposed

methods and decomposition rules. We present the results and discuss the implications on the

automatic generation and tuning of FIR filter and DWT algorithms and implementations.

136

CHAPTER 7

EXPERIMENTAL RESULTS

In Chapter 2, we described the SPIRAL system that we use to automatically implement and tune

code for FIR filters and discrete wavelet transforms (DWTs). We introduced key concepts of the

mathematical framework and the rule formalism that allows SPIRAL to automatically generate and

modify algorithms, discussed the methodology behind the translation of mathematical formulas into

code, verification of the implementation, performance evaluation, and finally reviewed the available

search techniques that are aimed at optimizing the implementations for a given transform.

In Chapter 3, we reviewed the basic filtering and wavelet processing operations and fast al-

gorithms for their implementation found in the literature. We defined these operations as finite-

dimensional matrices that perform the convolution operation on finite, extended, and infinite se-

quences, and the corresponding definitions for DWTs. In chapters 4 through 6, we developed a

new framework for representing these transforms in SPIRAL and designed a large set of rules that

spans a comprehensive space of algorithms that includes both the reviewed algorithms and the whole

space of new algorithms designed for faster implementation on a computer. We described how we

implemented the set of rules in SPIRAL’s formula generator, how to test them for correctness on

the formula and code levels, and how we modified the search techniques to accommodate for new

transforms and new algorithms.

Extending SPIRAL’s rule formalism to filtering and wavelet functions and their algorithms,

enables us to use SPIRAL to automatically generate the entire space of algorithms and implementa-

tions that we believe covers all known techniques for fast implementation of FIR filters and DWTs.

SPIRAL further enables us to implement all of these algorithms, evaluate them, and search for their

optimized code.

In this chapter, we use the framework developed in the previous chapters to perform a set of

experiments to demonstrate the efficiency and the portability of our automatically generated code.

We benchmark our code to assess the performance and present results that demonstrate the diversity

of optimized solutions, even on platforms with almost identical architecture.

7.1 Overview of Experiments and Platforms

We conduct experiments and group them into two categories:

• Performance benchmarks;

137

• Comparison of the best found methods, algorithms, or implementations on a single platform,

or across different platforms and compilers.

More specifically, we distinguish between benchmark experiments, where the goal is to evaluate our

tuned code for efficiency, and experiments comparing different approaches and options to determine

the correlation between different methods and advantages or limitations of the target platform.

Our goal in this chapter is to perform comprehensive performance tests of our code generator on

multiple computer platforms, as well as to explore the efficiency of various computational methods

on a range of platforms to determine their practicality. The practical value of our system will be

demonstrated by the quality of produced code and by often surprising implementation solutions

found by our automatic optimizer, which are hardly ever considered by a human programmer.

The first and most important point we would like to bring across is that our automatically

generated and optimized code performs on par with the best hand-coded libraries on the platforms

that were used in our experiments. Even though that alone is enough to justify our approach

of automatic code generation and automatic tuning, we emphasize that our approach produces

surprising solutions that bring further insight into the efficiency of many chosen implementation

methods.

For a signal processing expert, and even for many well-versed software programmers, the best

found implementations of filtering and wavelet algorithms can seem very unintuitive. We list below

some of the observations supporting this fact.

• Lower arithmetic cost of an algorithm does not necessarily translate into a faster run time,

i.e., the operation count is not a reliable predictor of runtime performance;

• Different realizations of the same algorithm can lead to a considerable discrepancy in perfor-

mance, even when the arithmetic cost is the same. There are several reasons that can explain

this observation: different data flow patterns, intricate memory bandwidth problems, compiler

and used compiler options, among other reasons;

• The space of possible competitive implementations is very large and cannot be searched ex-

haustively; however, it is highly beneficial to search over a comprehensive set of alternatives

because the spread in performance indicates that a considerable speedup of up to several factors

is achieved by search;

• The best found algorithms can be very different across different computer platforms, which

implies that code tuned for one platform is not portable and that the optimization has to be

repeated for every platform individually.

Hence, high performance can be achieved only through either automatic implementation and

search or by a painstaking hand-coding effort at the hardware level performed by algorithm and

hardware experts.

Benchmarks. To measure the quality of the generated code, we benchmark the run times of

the best found implementations. We use two evaluation criteria in parallel.

• Benchmark implementations against the theoretical peak performance on the target machine;

138

• Benchmark implementations against Intel Performance Primitives (IPP), Intel’s hand-coded

libraries that include digital filtering and wavelet functions.

In the first approach, we measure the efficiency of implementations by computing the number of

executed floating point operations per second, commonly expressed in millions of operations using

the unit of MFLOPS:

Operation rate (MFLOPS) =
Total number of floating point operations ×10−6(Mflop)

Run time (s)
(7.1)

This measure will be compared to the theoretical upper bound in MFLOPS that can be achieved

on the target platform, or as we call it, the theoretical peak performance. The performance can

also be expressed as a percentage of the peak performance. As an example, highly optimized BLAS

routines can achieve up to 80% of the peak performance, whereas optimized FFT routines usually

achieve at most 50%.

We also benchmark our automatically generated implementations against hand-tuned computer

vendor implementations provided by Intel’s IPP (see Section 1.1.3). We present the results as

Relative run time =
SPIRAL run time (s)

IPP run time (s)
(7.2)

IPP libraries are optimized using specific properties of the supported architectures, e.g., SSE ex-

tensions on some Intel processors, and also provide a library of hand-coded implementations for

unspecified, generic platforms.

Comparison of methods and implementation choices. We test several implementation

strategies governed by the the top-level rules on multiple architectures, compare them among them-

selves, and thoroughly investigate their runtime performance across a range of transform sizes, pa-

rameters, platforms, compilers, and compiler options. Organization of the experiments and obtained

results is based on the chosen

• target computer platform,

• computational method,

• general purpose compiler, and

• compiler options.

We demonstrate the dependence of the results on each of these different factors, even across ex-

periments run on similar platforms and/or with similar compilers and compiler options. We show

that the performance of any given method on any given platform is highly unpredictable. Different

methods and implementation options are found even on platforms with very similar architecture,

and more importantly, all of our breakdown rules play an important role in generating the best

found implementations on one platform or the other.

Platforms and compilers. We perform experiments and obtain results across a set of selected

computer platforms with different architectural features. We list the platforms and their specifica-

tions in Table 7.1. Our motivation for selecting this set of platforms is to diversify the hardware on

139

Table 7.1: Computer platforms used for experiments.

Name Processor Core Speed L1/L2 Cache OS Compiler

Xeon-1.7 Xeon Galatin 1.7 GHz 8KB/256KB Linux 2.4.16 GNU C 3.2.1

Athlon-1.73 Athlon XP 2100+ Palomino 1.733 GHz 64KB/512KB Win XP Intel C++ 8.1

P4-1.6-lin Celeron Mobile 1.6 GHz 8KB/256KB Linux 2.6.5
GNU C

Intel C++ 8.1

P4B-3.0-lin Pentium 4 Northwood B 3.0 GHz 8KB/512KB Linux 2.4.21 GNU C

P4B-3.0-win Pentium 4 Northwood B 3.0 GHz 8KB/512KB Win XP Intel C++ 8.1

P4C-3.2-win Pentium 4 Northwood C 3.2 GHz 8KB/512KB Win XP Intel C++ 8.1

Macintosh Power PC G4e 7455 933 MHz 32KB/256KB Mac OS X GNU C

P4E-3.6 Pentium 4 Prescott 3.6 GHz 16KB/1MB Win XP Intel C++ 8.1

which we run our experiments. This allows us to test the automatic tuning capability of our system

across a spectrum of general-purpose computer platforms and investigate and gain more insight in

efficiency of specific methods on specific platforms. With SPIRAL, all of this is achieved with little

additional effort by installing the system on the target platform, and setting and running the desired

experiments.

The chosen platforms range from Intel Pentium 4 family of processors with different clock speeds,

cache sizes, and different design of processor cores, running either Windows XP or Linux operating

systems, to AMD Athlon and Apple Macintosh platforms that have, for example, larger cache sizes,

or, in the case of Athlon, two floating point units.

For faster reference, we give all of our eight platforms unique shorthand names as specified in

Table 7.1. Names comprise of platform identifiers separated by dashes. The first identifier is usually

the name of the processor, followed by its clock rate, and, optionally, the name of the operating

system. The second column in the table specifies the name of the processor with the specific core

name in column 3. We also provide clock rate for the processor as well as the size of level one L1

and level two L2 cache memories. We note that L1 cache size in the table refers to data cache

only — instruction cache size is not provided. Finally, we specify the operating system running the

platform, and the type of C compiler used.

We mentioned in Chapter 2 that the SPL compiler provides translation of formulas representing

algorithms either into C or Fortran code. For the purpose of this chapter, we only use C language

as the target code. Choosing the compiler, as well as various compiler flags can have a considerable

impact on performance. The especially difficult problem is choosing optimal compiler flags. First,

there can be as many as 500 different compiler flags for a single compiler. Second, choosing the

right set of options depends on the target computer platform, the compiled program, and even on

other chosen options since specific optimization features can be inter-dependent. If the choice of

the compiler flags is not clear, one option is to perform empirical search over possible combinations

[108]. However, for our experiments, we use a set of compiler flags empirically proven to provide

satisfactory performance on selected platforms. We provide a set of compiler flags for both Intel

140

C++ compiler and GNU C compiler for different platforms, all summarized in Table 7.2.

Table 7.2: Compilers and compiler options.

Name Compiler Flags

gcc-O1-3.3 GNU C 3.3.1
-O1 -fomit-frame-pointer -malign-double

-fstrict-aliasing -mcpu=pentiumpro

gcc-O1-3.2 GNU C 3.2.1 -O1 -malign-double -fstrict-aliasing -mcpu=pentium4

gcc-O6-3.2 GNU C 3.2.1
-O6 -fomit-frame-pointer -malign-double

-fstrict-aliasing -mcpu=pentiumpro

gcc-mac-O1 GNU C 3.3 (Apple) -O1 -fomit-frame-pointer -std=c99 -mcpu=7450

gcc-mac-O3 GNU C 3.3 (Apple) -O3 -fomit-frame-pointer -std=c99 -fast -mcpu=7450

icc-8.0-lin Intel C++ 8.0 -O -axK

icc-8.1-lin Intel C++ 8.1 -O -tpp7 -march=pentium4

Intel-win Intel C++ 8.1 /O2 /Qc99 /Qrestrict /G7

Intel-SSE3 Intel C++ 8.1 /O2 /Qc99 /Qrestrict /G7 /QxKWP

We end this section by noting that, for all our experiments, we use dynamic programming (DP)

search to find the optimized solution. For some experiments, search times can be considerable, and

DP provides a suitable tradeoff between the quality of the generated code and the speed of search.

7.2 Runtime Performance Benchmarks

Our first task is to determine the quality of the code produced by our system. To do that, we

benchmark the best found implementations generated by SPIRAL against the hand-tuned IPP

routines provided by Intel. We perform benchmarks for both the best found FIR filter transform

code as well as the best DWT code. We call IPP routines from within SPIRAL’s evaluation module

to obtain the run times for both systems using the same measurement method for a fair comparison.

For FIR filters, we time the IPP library routine FIR for randomly generated taps. It is important

to emphasize that the IPP’s FIR function implements an FIR filter that is equivalent to our extended

filter transform for a zero-padded input signal.

Filtzeron (h(z)) (7.3)

For the purpose of timing IPP and our code, we will always use random causal filters, i.e.,

h(z) = hkz
−k + · · ·+ h0

Similarly, for the DWTs, we time the IPP library routine DWT that implements the extended DWT

with zero-padded input extension, i.e.,

DWT,n(h(z), g(z), zero) (7.4)

where the lowpass h(z) and the highpass g(z) filters depend on the chosen wavelet system.

Performance benchmarks against IPP on non-Intel platforms. For non-Intel platforms,

we use IPP libraries designed for high performance on generic Intel and other platforms. These

141

libraries do not make use of special instructions such as SSE and SSE2, which makes them suitable

for comparison with our scalar code.

We first present results for Athlon-1.73. Using IPP libraries on an AMD Athlon platform is well

justified for two reasons:

1. There are no available hand-tuned filtering and wavelet libraries for Athlon platforms;

2. Athlon processors are designed and optimized to efficiently run Intel Pentium III and Pentium

4 programs.

Figure 7.1 shows four plots with the relative run times vs. the IPP run times defined in (7.2) for

FIR filters with 16, 32, 64, and 128 taps as a function of the size of the input data sequence. On

each plot there are three lines showing the relative run times for three different methods against the

run time of IPP’s FIR routine. The lower the relative run time of a method the better. Relative run

times below one show that our generated code is faster than the IPP code. For now, we are only

interested in the best found implementation in SPIRAL, which is shown as the bottom line in each

plot. The results are obtained through DP search using Intel-win compiler.

For a filter with 16 coefficients, our best code outperforms IPP by about 30% for larger filter sizes

and up to 60% for smaller filters. In this case, the best blocking strategy outperforms Karatsuba

and transform-based methods, which we will discuss in more detail later in this chapter. For a filter

of length 32, all methods run faster than the IPP routine for most sizes. However, the Karatsuba

method is a clear winner, reducing the run time of IPP by as much as 40% but mostly by 30% for

all sizes. Graph 7.1(c) shows the same comparison for a filter of length 64. For this length, the

transform-domain approach is competitive with the best Karatsuba method, and, combined, the

best found approach outperforms the IPP implementation by as much as 40%. Finally, in graph

7.1(d) we show that our automatically generated code obtained for a 128-tap filter runs faster than

the IPP implementation by about 50% for smaller sizes and stays competitive with the IPP for sizes

larger then or equal to 212. In this case, SPIRAL finds the transform-based techniques as the best

implementation.

This experiment shows two important advantages of our approach on Athlon:

1. Automatically generated implementations are competitive, and for most cases outperform IPP

hand-coded libraries.

2. Search over the entire space of implementations finds a combination of different techniques

for different filter lengths, such as flexible blocking strategies and Karatsuba methods, as the

best solution. SPIRAL automates this search that would otherwise be almost impossible to

perform by hand due to the extent of the implementation space.

Next, we benchmark our code for DWTs against IPP’s DWT routine again on Athlon-1.73. In

Figure 7.2, we compare the run times of the best found implementation by SPIRAL and the IPP

code for three different wavelet systems: 1) rational 5/3 wavelets with lowpass and highpass filters of

length 5 and 3, respectively; 2) Daubechies 9/7 wavelets with filter lengths of 9 and 7, respectively;

and 3) Orthogonal Daubechies 30 wavelets with both filters of length 30.

142

2 4 6 8 10 12 14 16
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

size (log
2
n)

S
P

IR
A

L/
IP

P
 r

un
 ti

m
es

best time−domain
best Karatsuba
best transform−domain

(a) 16 taps

2 4 6 8 10 12 14 16
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

size (log
2
n)

S
P

IR
A

L/
IP

P
 r

un
 ti

m
es

best time−domain
best Karatsuba
best transform−domain

(b) 32 taps

2 4 6 8 10 12 14 16
0.5

1

1.5

2

2.5

size (log
2
n)

S
P

IR
A

L/
IP

P
 r

un
 ti

m
es

best time−domain
best Karatsuba
best transform−domain

(c) 64 taps

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

size (log
2
n)

S
P

IR
A

L/
IP

P
 r

un
 ti

m
es

best time−domain
best Karatsuba
best transform−domain

(d) 128 taps

Figure 7.1: Comparison of different filtering methods and IPP FIR function on Athlon-1.7 (lower is

better).

143

5 6 7 8 9 10 11 12 13 14
0

0.5

1

1.5

size (log
2
n)

S
P

IR
A

L/
IP

P
 r

un
 ti

m
es

rational 5/3
Daubechies 9/7
Daubechies 30
IPP

Figure 7.2: Comparing the best found DWT implementation and IPP code on Athlon-1.73 (lower is

better)

The results are shown for DWT sizes between 25 and 211. For all three wavelets, our code

outperforms the IPP code for almost all sizes. For rational 5/3 wavelet, SPIRAL generated code

is faster by about 5 times for size 32 because of overheads inherent to the IPP implementation.

For medium sizes the improvement varies between 50% and 20% until size 213, where the IPP code

runs faster by about 20%. For Daubechies 9/7 wavelet, the results are similar except that even for

larger sizes, the best found SPIRAL code still stays competitive with IPP. On the other hand, for

Daubechies 30, our code performs better than IPP for all sizes, running in most cases about two

times faster.

Benchmarks against IPP on Intel platforms. The results from the Athlon platform demon-

strate the advantage of our automatic tuning system over the hand-coded libraries provided by Intel

designed to achieve high performance on a generic computer platform. We now perform bench-

mark tests on the Intel’s native platforms, for which the IPP routines are better tuned. We choose

P4B-3.0-win with Intel-win compiler for evaluation.

In Figure 7.3, we show the run time comparison of our best found implementation and the Intel’s

hand-tuned scalar-code IPP routine FIR for implementing FIR filters. As before for the FIR filter

experiments, in this figure lower lines mean better performance. For a filter of length 32, our best

found implementation outperforms the IPP routines consistently across all considered sizes (22 –

214), reducing the run times between 20% and 40%. For longer filters, SPIRAL outperforms IPP

scalar code for smaller filter sizes, but is slower for larger sizes, although it stays competitive with at

most 20% slower run times. This is not surprising keeping in mind that the IPP libraries are tuned

to schedule code optimally for their native architecture, even for scalar code, leading to considerable

advantages for larger sizes for which memory bandwidth becomes the bottleneck.

144

2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1

1.2

1.4

size (log
2
n)

S
P

IR
A

L
/ I

P
P

 s
ca

la
r

co
de

 r
un

 ti
m

es

32 taps
64 taps
128 taps
256 taps
ipp scalar

Figure 7.3: Comparing the best found filter code and IPP filter code on P4B-3.0-win

In Figure 7.4, we present results of another comparison of our code and IPP filter routines, this

time for the DWT. As before, we measure the run time of our best found implementation and IPP’s

DWT function for three wavelets: rational 5/3, Daubechies 9/7, and Daubechies 30. The results on

the Intel Pentium 4 machine are surprisingly similar to Athlon-1.73. For all three wavelets and for

most of the DWT sizes, SPIRAL generated code outperforms the IPP routine. The improvement

for Daubechies 30 wavelets is most notable and ranges between speedups of four times for smaller

sizes and about 30% for larger sizes.

Benchmarks against the hand-tuned IPP libraries show that our automatically gen-

erated and tuned code is competitive with and often outperforms the hand-coded

routines provided by the vendor of the target platform.

FLOPS performance. To fully assess the quality of the generated code we compute the number

of floating point operations per second for each of the best found implementations and compare them

with the theoretical peak performance on the target platform. Hence, in constrast to the run time

plots, higher lines in graphs mean better performance. The number of floating point operations is

estimated from the asymptotic cost of the implemented algorithms; hence, the units we used we

refer to as the pseudo FLOPS or, more precisely, pseudo MFLOPS.

Figure 7.5 shows MFLOPS performance plots on P4-3.0-win and Athlon-1.73 platforms for FIR

filters using only time-domain methods for all sizes. On this plots, higher line corresponds to higher

performance. We observe that, for filter lengths 16, 32, and 128, the performance is close to 2200

MFLOPS which is about 75% of the peak performance of 3000 MFLOPS that can be achieved if

one floating point operation is performed per each cycle. On the right plot we see the results for

145

4 6 8 10 12 14
0

0.5

1

1.5

S
P

IR
A

L/
IP

P
 r

un
 ti

m
es

size (log
2
n)

Daubechies 30
Daubechies 9/7
rational 5/3

Figure 7.4: Comparing the best found DWT code and IPP DWT code on P4B-3.0-win for three

wavelets: rational 5/3, Daubechies 9/7, and Daubechies 30

Athlon-1.73 that run close to 1700 MFLOPS or one floating point operation per cycle. However,

Athlon provides two floating point units that can work in parallel, so the actual percentage of the

peak performance is closer to 50%. For a filter of length 64, the performance drops rapidly on all

platforms for reasons that are not completely clear. By inspecting the best generated rule trees,

we observed that, only for filters of length 64, the best found blocking strategy uses basic Toeplitz

blocks of size 16×16. In all other cases, the basic blocks are of size 8×8, which seems more efficient.

One explanation of why the blocks 8× 8 are not efficient in this special case could be that extensive

conflict cache misses occur because of the blocking effect for this particular size.

Similar performance plots are obtained for the best found code for DWTs. Figure 7.6 shows the

MFLOPS results for the same platforms as for the FIR filter case: P4B-3.0-win, and Athlon-1.73.

Again, higher lines indicate better performance. We implement the periodic DWT defined in (6.27)

and compute the performance for the method that invokes Mallat rule (6.37) on the top level. On

P4B-3.0-win platform, performance stabilizes around 70% for the rational 5/3 wavelets and around

50% for Daubechies 30 wavelets. The maximum is achieved for sizes 32 and 64 for rational 5/3

and Daubechies 9/7 wavelets, respectively, and exceeds 80% of the peak performance. We note

that there is a sharp drop in performance for sizes 216 and larger due to the cache boundary. On

Athlon-1.73, the performance stays close to 50% of the peak performance for all three considered

wavelets. However, in this case there is a sharp drop in performance already at size 212.

Next, we analyze the performance of several implementation approaches on different platforms

and with different compiler options. We intend to show that our system generates surprising solutions

using all the available rules we developed in Chapters 5 and 6. We also present results that show

that the best found code heavily depends on the target platform, target compiler, and compiler

146

2 4 6 8 10 12 14
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

size (log
2
n)

M
F

LO
P

S
32 taps
64 taps
128 taps
256 taps

(a) P4B-3.0-win

0 5 10 15
800

1000

1200

1400

1600

size (log
2
n)

M
F

LO
P

S

32 taps
64 taps
128 taps
256 taps

(b) Athlon-1.73

Figure 7.5: Performance of the best found FIR filter code in MFLOPS

2 4 6 8 10 12 14 16 18
600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

size (log
2
n)

P
se

ud
o

M
F

LO
P

S

Rational 5/3
Daubechies 9/7
Daubechies 30

(a) P4B-3.0-win

2 4 6 8 10 12 14 16
200

400

600

800

1000

1200

1400

1600

1800

2000

size (log
2
n)

P
se

ud
o

M
F

LO
P

S
rational 5/3
Daubechies 9/7
Daubechies 30

(b) Athlon-1.73

Figure 7.6: Performance of the best found DWT code in MFLOPS (higher is better)

options. Finally, we show the spread in performance between different fast algorithms to exemplify

the possible improvement that can be obtained by search.

7.3 FIR Filter Methods Across Multiple Platforms

In the first part of our set of experiments, we search and generate code for FIR filter transforms.

We gradually introduce different implementation methods to investigate the performance and effec-

tiveness of the breakdown rules we designed in Chapter 5. We test the performance of the main

implementation methods on multiple platforms to emphasize the diversity of the generated solu-

tions. In addition to different computer platforms, we test performance for different compilers and

compiler options.

147

7.3.1 Setup of experiments

Our test transform for these experiments will be the FIR filter transform Filtn(h(z)) defined in (5.2)

on page 93. At this point, we recommend reviewing some of the basic definitions and the notation

for FIR filters in Chapters 3 and 5. We recall that the filter transform is defined by its input size

n and filter coefficients or filter taps hi specified by the polynomial h(z). We call the degree (3.2)

of the Laurent polynomial h(z) the filter length k. We perform experiments for different filter sizes

and filter lengths. The exact values of the filter taps are irrelevant for obtaining the run times as

long as they are different from zero and one. For all our experiments, we set the filter taps randomly

to double precision numbers except zero and one.

We roughly divide all experiments into several parts:

1. Time-domain experiments use breakdown rules for FIR filter transform that implement filters

using blocking, nesting, or divide-and-conquer (Karatsuba) methods.

2. Karatsuba experiments include the Karatsuba rule (5.68) that reduces the arithmetic cost of

time-domain methods from O
(
n2
)
to O

(
nlog2 3

)
;

3. Transform-domain experiments apply the RDFT convolution rule (5.72) to compute the filter

in the frequency domain with O (n log2 n) cost.

7.3.2 Time-domain methods

Given a filter transform Filtn(h(z)) of size n and filter length k, the straightforward implementation

is to design a loop over all n outputs as in the rule

Filtn(h(z))→ In⊗k−1 (h0, . . . , hk−1) (7.5)

and possibly loop over filter taps stored in a table. However, storing and retrieving filter coefficients

from a table is not very efficient. For reasonable length filters, coefficients can be included directly

in code:

for i = 0..n-1

y[i] = h[0]*x[0+i]+h[1]*x[1+i]+...+h[n-1]*x[n-1+i]

end

This implementation is the most straightforward, yet reasonably good implementation of the

transform Filtn(h(z)) and typically one chosen by a human programmer with little knowledge about

compilers.

Time-domain blocking methods. This is our starting point. We design this implementation

in our framework by allowing only one implementation of the overlap-save rule (5.56) for s = 1 and

set the degree of loop unrolling to be at least the filter length k. We use this approach as the baseline

method for the first experiment.

We compare different time-domain algorithms relative to the baseline method. We perform these

experiments on Xeon-1.7 with gcc-O1-3.2 compiler flags. Figure 7.7 shows relative run times with

respect to the baseline method for various filter sizes along the x-axis. Experiments were first run

148

2 4 6 8 10 12 14 16 18 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

size (log
2
n)

re
la

tiv
e

ru
n

tim
es

 v
s.

 b
as

e

base
16 taps (OS)
32 taps (OS)
64 taps (OS)
16 taps
32 taps
64 taps

Figure 7.7: Comparison of the time-domain methods on Xeon-1.7 (lower is better)

by turning on only overlap-save (OS) rule. We ran the experiment for filters with 16, 32, and 64

taps. By only applying the OS rule the run times improve by up to 10% for the 16-tap filter and

slightly less for other filters.

Next, we allow blocking (5.76) and nesting rules (5.77). Both rules allow flexible recursive

blocking strategies by invoking recursively either the blocking rule for Toeplitz transforms (5.75) or

again the nesting rule. The run times in Figure 7.7 show a significant improvement over the baseline

method by as much as 30% for a filter with 32 taps. On this platform, the nesting rule is never

found, and the blocking wins as the best implementation strategy. We note that the overlap-add

(OA) rule was also tried by the search; however, we consistently observe that the OA rule leads to

slower run times than OS rule on all platforms, concluding that output locality is more important

than the input locality. For that reason we perform all experiments that require overlapped methods

using only OS rule.

Compiler deficiencies. The reason for choosing very simplified compiler options gcc-O1-3.2 is

that the GNU C compiler cannot optimize well large portions of unrolled code. Turning on more

sophisticated compiler optimization techniques can violate the regular structure of data flow for

filter implementations. To demonstrate the deficiency of the GNU C compiler on Linux, we repeat

the above experiment for OS method, which has the most regular structure of all filter algorithms,

but we now turn on sophisticated compiler options gcc-O6-3.2. In Figure 7.8 we see how detrimental

extensive optimizations of GNU C compiler can be on filters of smaller size. The performance

stays slightly worse even for larger filters, suggesting that more “intelligent” compiler optimization

techniques should not be taken for granted and used in all situations. With Xeon-1.7 and GNU

C compiler, we determine that -O1 and a few additional flags specified in Table 7.2 lead to better

performance.

149

2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

size (log
2
n)

−
O

6
ru

n
tim

e
/ −

O
1

ru
n

tim
e

16 taps
32 taps
64 taps

Figure 7.8: Blocking methods for gcc-O6-3.2 and gcc-O1-3.2 on Xeon-1.7

FLOPS performance of time-domain methods. The same experiment was run in parallel

on four different platforms: Xeon-1.7 with gcc-O1-3.2, Athlon-1.73, P4B-3.0-win, and P4e-3.6, all

with Intel-win compiler flags. We showed the FLOPS plots for time-domain methods on P4B-3.0-win

and Athlon-1.73 platforms in Figure 7.5. In Figure 7.9, we show the MFLOPS results for flop/s for

P4E-3.6 and Xeon-1.7.

We observe that Intel C++ compiler is very consistent for larger size filters, where the perfor-

mance stays almost exactly the same for all sizes. This suggests that the compiler applies intensive

optimization methods and unifies implementations; thus, for different sizes, compiled code has very

similar structure and, therefore, similar performance. On the other hand, the GNU C compiler pro-

duces erratic behavior, as we can see on the Xeon plot. This is not surprising since the optimizations

are set to almost a minimum and the performance depends highly on the structure of the algorithm.

7.3.3 Karatsuba methods

The next set of experiments is designed to investigate the efficiency of Karatsuba, or divide-and-

conquer methods we discussed in Section 3.1.6. Even though Karatsuba methods operate also in

time domain, when we refer to time-domain methods we mean only blocking and nesting strategies

that preserve the cost of the straightforward filter implementation. Karatsuba methods reduce the

cost for every recursive implementation of the decomposition (for more details see Appendix B). To

enable the Karatsuba approach and combine it with the best time-domain algorithms, we turn on

the radix-2 Karatsuba rule specified in (5.68) on page 110 and leave all time-domain rules from the

previous experiments active. By doing this, we allow search to explore the algorithm space where

Karatsuba techniques can be applied on arbitrary levels and combined with best overlap-save and

blocking/nesting strategies.

Figure 7.10 compares run times for the best found time-domain method and the best Karat-

150

0 5 10 15

1000

1500

2000

size (log
2
n)

M
F

LO
P

S

16 taps
32 taps
64 taps
128 taps
256 taps

(a) P4E-3.6

2 4 6 8 10 12 14 16 18 20
700

800

900

1000

1100

1200

1300

1400

1500

size (log
2
n)

M
F

LO
P

S

16 taps
32 taps
64 taps

(b) Xeon-1.7

Figure 7.9: Performance in MFLOPS for best found time-domain method.

suba method for Athlon-1.73 and Macintosh platforms with compilers Intel-win and gcc-O1-mac,

respectively. On Athlon, the best blocking strategy outperforms Karatsuba only for filter length

16. For filter lengths 32, 64, and 128, the best rule tree is usually a combination of overlap-save on

the top level, Karatsuba decomposition for two or three recursion, and some blocking strategy on

smaller filters. In Table 7.3, we provide two examples of rule trees found by DP search on Athlon-1.7

platform. The first rule tree decomposes a 64-tap filter of size 32 into smaller filters using two levels

of Karatsuba decomposition and computes small filters using overlap-save technique. The second

rule tree, shown on the right in Table 7.3, decomposes a 64-tap filter of size 1024 into a filter of size

128, applies three levels of Karatsuba decomposition, and finally implements smaller filters using

two levels of blocking, first into Toeplitz blocks of size 4 and then of size 2.

On both platforms, Karatsuba methods achieve speedup of more than two times when compared

to the best time-domain methods for 64-tap filters, and for 32-tap filters on Macintosh platform. For

shorter filters, time-domain methods achieve high performance rates, whereas Karatsuba methods

reduce the computational cost but have more complicated data flow patterns. However, for Macin-

tosh platform, Karatsuba methods win even for length 16 filters. However, we report that Karatsuba

method was not found on Xeon-1.7 platform with gcc-O1-3.2 compiler. In that particular case, the

blocking strategies were superior over Karatsuba methods for all sizes, suggesting that the intricate

structure of the recursion in divide-and-conquer approach is not appropriately handled by the com-

piler. The regular structure of the convolution operation and efficient blocking strategies to improve

locality are preferable for this platform and compiler combination.

We investigate the efficiency of Karatsuba methods w.r.t different methods after we obtain ex-

periments for the transform-domain algorithms in the next section.

7.3.4 Transform-domain methods

The computational cost of implementing FIR filters can be further reduced by using transform-

based algorithms. For large sizes, the cost of the implementation is of O (n log n) as we discussed

151

Table 7.3: Two rule tree examples for Karatsuba method found by search

ruletree := RuleFilt_Karatsuba(

Filt(32, 64, -63),

RuleFilt_Karatsuba(

Filt(16, 32, -31),

RuleFilt_Karatsuba(

Filt(8, 16, -15),

RuleFilt_OverlapSave(

Filt(4, 8, -7),

RuleFilt_Base(Filt(2, 8, -7)))))

ruletree := RuleFilt_OverlapSave(

Filt(1024, 64, -63),

RuleFilt_OverlapSave(

Filt(128, 64, -63),

RuleFilt_Karatsuba(

Filt(64, 64, -63),

RuleFilt_Karatsuba(

Filt(32, 32, -31),

RuleFilt_Karatsuba(

Filt(16, 16, -15),

RuleFilt_Blocking(

Filt(16, 16, -15),

RuleToeplitz_Base(Toeplitz(7)),

RuleToeplitz_Blocking(

Toeplitz(7),

RuleToeplitz_Base(Toeplitz(3))))))

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1

1.2

size (log
2
n)

K
ar

at
su

ba
 /

be
st

 ti
m

e−
do

m
ai

n
ru

n
tim

es

16 taps
32 taps
64 taps
128 taps

(a) Athlon-1.73

2 4 6 8 10 12 14 16 18 20

0.4

0.6

0.8

1

1.2

1.4

1.6

size (log
2
n)

K
ar

at
su

ba
 /

T
im

e−
do

m
ai

n
ru

n
tim

es

16 taps
32 taps
64 taps
128 taps

(b) Macintosh

Figure 7.10: Comparison of Karatsuba methods and the best blocking/nesting strategy.

in Section 3.1.8. In this section, we implement filters based on the real discrete Fourier transform

(RDFT) convolution property. We implement FIR filters using the circulant rule (5.65) to embed

filters into circulant transforms and then using rule (5.72) to compute the circulant transform in

the transform domain. Approximate cost for the RDFT is O (2.5n log n), where n is the size of the

transform, leading to the total cost of O (5n log n) including both RDFT and inverse RDFT. We

investigate the performance of implementations based on this approach and compare them with the

best time-domain and Karatsuba methods we found so far.

Comparison of computational costs of time-domain and transform-domain methods gives us a

rough estimate of the runtime performance. For time-domain methods, the arithmetic cost is exactly

2n · k − n, where n is the size of the filter output (the number of rows of the matrix) and k is the

number of filter coefficients. This cost is lower than the cost of transform-based methods for two

cases: 1) filter size n is small, and 2) filter length k is much smaller than n. We mentioned in

152

Section 3.1.5 that the latter case can be avoided by using block convolution methods such as the

overlap-save. The basic idea is to segment the filter matrix into filters of block size b = n/s so that

b ∼ k, and then apply transform methods on filter matrices that are more “dense”.

Following the above discussion, we design our experiments to allow the overlap-save rule (5.56)

to reduce the size of a filter n to b so that it is close to the filter length k, and then apply circulant

and RDFT rules to compute the filter in the transform-domain. There is an inherent tradeoff in

how to efficiently segment the filter matrix before applying the RDFT transform method. On one

hand, there is a compulsory overhead in implementing filters in the transform domain arising from

the embedding rule (5.45) equal to k − 1 additional rows needed to complete the circulant matrix.

It is clearly advantageous to choose b much larger than k− 1 to reduce the relative cost incurred by

the overhead. On the other hand, the cost of implementing the filter using the transform method

increases with b and has to be lower than the direct implementation with the cost 2bk−k. In this case,

it is advantageous to reduce the size b to make transform-domain approach more efficient. In other

words, when a filter is embedded into a circulant matrix, the number of zero entries of the circulant

matrix is proportional to b/k. Less zero entries in the matrix lead to more efficient transform-

domain methods when compared to the time-domain implementation. This tradeoff between the

sparsity of the circulant matrix and the overhead incurred by filter embedding determines the optimal

segmentation for the transform-based approach.

DP search finds the best overlapped filter blocks and the best RDFT convolution rule (5.72) for

the target platform. In Figure 7.11 we show results of experiments run on four different platforms:

1. Athlon-1.73 with Intel-win compiler

2. P4B-3.0-win with Intel-win compiler

3. Xeon-1.7 with gcc-O1-3.2 compiler

4. Macintosh with gcc-mac-O1 compiler

The graphs show relative run times of the best found transform-domain methods normalized by the

run time of the best found time-domain methods for filter sizes 21 to 215. Different lines in graphs

show the run time comparison for filters of different lengths.

On Athlon-1.7, for a 32-tap filter, the transform-domain method is competitive with the best

found time-domain method, each being better for particular filter sizes. For longer filter lengths,

our transform domain implementation clearly wins over the best blocking/nesting strategy with the

increasing speedup as the filter length increases. For a 128-tap filter, the best transform-domain

method is about five times faster. On the other hand, for P4B-3.0-win platform, the 32-tap filters

are still running much faster, almost 2 times, using the best available time-domain method, typi-

cally the best recursive blocking strategy. However, similar to the Athlon platform, a 64-tap filter

implementation is faster in the transform domain, and the advantage increases with the length of

the filter, as expected.

The results obtained on Xeon-1.7 platform showed a different picture. For shorter filter lengths,

the transform-domain approach is clearly inferior to the best found blocking strategy we reported

in the previous section shown in Figure 7.7. Even for a 64-tap filter, the run times were slower

153

5 10 15

0.2

0.4

0.6

0.8

1

1.2

1.4

size (log
2
n)

tr
an

sf
or

m
/ti

m
e

do
m

ai
n

ru
n

tim
es

32 taps
64 taps
128 taps
256 taps
best time−domain

(a) Athlon-1.73

4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

size (log
2
n)

be
st

 tr
an

sf
or

m
/ti

m
e−

do
m

ai
n

ru
n

tim
es

32 taps
64 taps
128 taps
256 taps
best time−domain

(b) P4B-3.0-win

6 8 10 12 14 16 18
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

size (log
2
n)

fr
eq

ue
nc

y/
tim

e
do

m
ai

n
ru

n
tim

es

64 taps
128 taps
256 taps

(c) Xeon-1.7

4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

size (log
2
n)

tr
an

sf
or

m
−

do
m

ai
n/

K
ar

at
su

ba
 r

un
 ti

m
es

16 taps
32 taps
64 taps

(d) Macintosh

Figure 7.11: Comparison of the best found time-domain and transform-domain methods.

by about 50%, in contrast to P4B-3.0-win and Athlon-1.7. The first filter length for which the

transform-domain approach becomes competitive is 128.

In stark contrast to Xeon results, on Macintosh platform, similar to Athlon-1.7, the transform-

domain methods compete with the best found blocking and nesting strategies already for filter

of length 32. The significant difference of results on different platforms can be attributed to the

capability of used compilers, especially when compared between Xeon-1.7 and P4B-3.0-win because

they both feature Intel processors with similar design. Another reason are the different hardware

features. For example, both Athlon and Macintosh feature large L1 cache and large register banks,

allowing a compiler to do a much better job of scheduling the implementation.

Cross-over between time and transform-domain methods. We conclude that the cross-

over point between the time-domain and the transform-domain methods depends heavily on the

chosen computer platform and compiler and has to be determined empirically since the arithmetic

cost comparison only provides a very rough estimate of the actual performance. We investigate this

further by designing experiments that focus on determining the performance of transform-domain

154

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

size (log
2
n)

T
ra

ns
fo

rm
−

do
m

ai
n/

tim
e−

do
m

ai
n

ru
n

tim
es

Full−Dense
Half−Dense
Quarter−Dense
Base

(a) Xeon-1.7

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

size (log
2
n)

tr
an

sf
or

m
 /

tim
e−

do
m

ai
n

ru
n

tim
es

dense
half−dense
best time−domain

(b) P4B-3.0-win

Figure 7.12: Comparison of time-domain and transform-domain methods for circulant matrices.

algorithms for circulant matrices, that represent circular convolutions used in transform-domain

methods. We explore cases of circulants that are fully “dense” in the sense that they contain no zero

entries, “half-dense” circulants with half of the entries being zero, and similarly defined “quarter-

dense” circulants. The motivation for performing these experiments is that the circulant matrices

constructed from overlap-save and circular convolution techniques have at least half of their entries

equal to zero, as we discussed earlier in this section, and possibly more zeros if the overhead arising

from the embedding is a deciding factor in efficiency of these methods.

Circular convolution. We search over different time-domain strategies for full-dense, half-

dense, and quarter-dense circulant transforms, which include the blocking rule (5.74) and rule (5.66)

that implements the circulant through the filter transform. We then compare the results with

the best found frequency domain implementation using rule (5.72). To investigate the discrepancy

between the results obtained for time-domain and frequency-domain methods on different platforms,

we choose two platforms: Xeon-1.7, and P4B-3.0-win.

The first experiment compares the run time of the full-dense circulant transform implemented in

the time domain using the blocking rule (5.74), and in the transform domain using rule (5.72). The

graph 7.12(a) shows that, for Xeon-1.7, the blocking methods outperform the transform method up

to size 24. Starting from size 25, the transform method is better and steadily improves for larger

sizes, as expected by its cost of only O (n log n). We saw in Figure 7.11 that, for FIR filter transform,

the cross-over point between time and transform-domain methods is at the filter length 128. This is

not surprising because we have to keep in mind that the transform-domain methods for filters induce

circulant matrices with at least half of their entries zero, and additional overhead. We implement

half-dense and quarter-dense circulants using rules (5.74) and (5.66) and again compare the run

times with the transform methods. For half-dense circulants, the transform method outperforms

time-domain methods only for size 128 and higher, whereas for quarter-dense circulants the cross-

over point is before size 256. This result suggests that the filters are implemented in the transform

domain by reducing large filters into filters of size similar to the filter length b ∼ k, leading to

155

circulants that are close to being half dense.

We perform the same experiment with fully dense and half-dense circulants on P4B-3.0-win

platform. From graph 7.11(b), we observe that the transform method outperforms time-domain

methods for filter lengths larger than 64. Graph 7.12(b) shows the results for half-dense and fully

dense circulants. For fully dense circulants, the crossover point is between sizes 4 and 8, whereas for

half-dense circulants just above size 32. This is again consistent with the results obtained from FIR

filter experiments.

7.3.5 Comparison of all methods for FIR filters

Determining the right implementation strategy is highly dependent on the chosen computer platform

and used compiler. To summarize, we compare results using three different approaches: 1) time-

domain methods including overlap-save, blocking, and nesting rules, 2) Karatsuba methods that

combine Karatsuba decomposition rule with best time-domain methods, and 3) transform-domain

methods using RDFT convolution rule (5.72). In Figure 7.1, we show the comparison of all three

methods on Athlon-1.73 for four different filter lengths: 16, 32, 64, and 128.

For a filter with 16 coefficients, the best blocking strategy outperforms both Karatsuba methods

and the transform-based methods, with the latter being considerably slower as we expected based

on the earlier results we showed in Figure 7.11. For a filter of length 32 the transform and time-

domain methods compete against each other, as we have seen in experimental results comparing

time and transform-domain methods on Athlon in Figure 7.11. However, the Karatsuba method is

a clear winner for this filter lengths. The graph 7.1(c) shows that the transform-domain approach

is competitive with the best Karatsuba method for filter length 64. Finally, in graph 7.1(d), we

show the results obtained for a 128-tap filter. The transform-domain method for this filter length

outperforms all other methods.

The Athlon example shows that the best found implementation depends on the filter size and

length and that all included rules and methods are used in constructing the optimized implemen-

tation at some point. In Table 7.4, we illustrate the diversity of considered platforms by specifying

the best found implementation for all different filter lengths.

Table 7.4: Best found methods for FIR filter transform of various lengths on different platforms.

16-tap 32-tap 64-tap 128-tap

Xeon-1.7 Blocking Blocking Blocking RDFT

Athlon-1.73 Karatsuba/Blocking Karatsuba Karatsuba/RDFT RDFT

P4B-3.0-win Blocking Karatsuba RDFT RDFT

Macintosh Karatsuba Karatsuba RDFT RDFT

P4E-3.6 Blocking Karatsuba Karatsuba RDFT

We note that the best found methods are different across different filter lengths for all listed

platforms on which we ran experiments. As two extreme cases we emphasize results for Xeon-1.7

and Macintosh. On Xeon, blocking strategies are fastest up to filter length 128, after which the

156

transform-domain methods take over. Karatsuba methods are never found on Xeon. In contrast,

methods based on Karatsuba rule are fastest on Macintosh for filter lengths 16 and 32. For a filter

of length 64 and higher, the RDFT-based approach is providing the best performance.

7.4 DWT Methods on Multiple Platforms

In Section 7.2, we performed benchmarks for our automatically generated DWT code. We saw that

our code either outperforms the hand-coded IPP function DWT or stays competitive for most DWT

sizes and considered wavelet bases. In this section, we further investigate the efficiency of specific

methods for implementing the DWTs across different platforms and different wavelet bases. Our goal

is not to determine the efficiency of a particular method on any given platform but to demonstrate

the richness of algorithms found by our automatic implementation and search and show that various

factors affect the optimal solution for a particular platform. We perform experiments for the periodic

DWT defined in (6.27) for three different wavelet bases:

• Rational 5/3 biorthogonal symmetric wavelet where the lowpass and the highpass filters are

given as

h(z) = − 1
8z

2 + 1
4z +

3
4 + 1

4z
−1 − 1

8z
−2

g(z) = 1
4z

2 − 1
2z +

1
4

• Daubechies 9/7 biorthogonal wavelets used in JPEG2000 standard [17].

• Daubechies 30 orthogonal wavelets with coefficients given in [87]

7.4.1 Evaluation of DWT implementation methods

We compared three different methods determined by the top-level DWT rule:

1. Mallat method. We use rule (6.37) to compute the DWTper
n,j (h(z), g(z)) for the set of chosen

wavelets

2. Polyphase method. We use the Polyphase rule (6.44) to decompose DWTper
n,1(h(z), g(z)) into

four circulant transforms. This rule is a gateway to the entire space of FIR filtering algorithms,

including transform-domain algorithms and Karatsuba methods.

3. Lifting scheme. Rule (6.54) is used to decompose DWTper
n,1(h(z), g(z)) into lifting steps. This

method reduces the arithmetic cost of the computation asymptotically by 50%.

Figure C.2 shows three graphs with relative run times of polyphase and lifting scheme methods

with respect to the run time of Mallat method for three different wavelets on P4B-3.0-win platform.

For all experiments the degree of unrolling was set to 1024, i.e., for blocks of size 32× 32. The top

graph displays the results for rational 5/3 wavelet. For smaller sizes 22 to 25, the lifting scheme

achieves the fastest run times; however, for all larger sizes, Mallat method is the best found approach.

In this case, the lifting scheme method includes two lifting steps and reduces the arithmetic cost by

about 30% but is still slower for larger transforms because increased critical path offsets the cost

advantage.

157

For Daubechies 9/7 wavelets, the liftin4g scheme features three lifting steps and still performs

slower than Mallat method, except for sizes 28 and 29. It is interesting to note that, in this case,

the polyphase method plays important role for smaller size (16–128). Since the downsampled filter

lengths for the polyphase method are very short (4 and 3 taps for highpass even and odd filters,

respectively), most of the sophisticated filtering techniques do not apply in this case. It is therefore

surprising that the polyphase method outperforms Mallat method because it mainly serves as a

gateway to advanced filtering techniques. Since code is completely unrolled for sizes 128 and smaller,

it is probable that the polyphase rule schedules the computations in a way that is preferable for

P4B-3.0-win architecture and Intel-win compiler.

Finally, graph C.2(c) shows results for Daubechies 30 wavelet, which features longer highpass and

lowpass filters with 30 taps. In this case, lifting scheme outperforms all other methods and provides

the speedup of more than two times over Mallat method. Polyphase approach also improves over

Mallat method since, in this case, sophisticated filtering techniques, such as Karatsuba methods, are

found. However, the filter lengths are still not enough for transform-domain methods to be efficient,

and on this platform and this wavelet basis, the lifting scheme approach is the best implementation

strategy.

We perform the same experiment on Athlon-1.73 and the results are shown in Figure C.3 in

Appendix C. The comparison of methods follows a similar pattern as for P4B-3.0-win platform;

however, we point out to several differences. Both the lifting scheme and the polyphase methods

outperform Mallat method for Daubechies 9/7 wavelet for sizes up to 28. For Daubechies 30 wavelet,

the lifting scheme is the best approach for sizes 27 to 212, but for larger DWT sizes polyphase method

with better filtering techniques is a better solution.

On Macintosh, even for rational 5/3 wavelet, the lifting scheme implementation provides faster

run times up to size 26. These results are shown in Figure C.4 in Appendix C. However, for

Daubechies 9/7 wavelet, the polyphase method is fastest for sizes 26 to 211. Furthermore, it is

interesting to note that the lifting and the polyphase methods compete for Daubechies 30 for most

sizes. The fastest implementation alternates between these two methods as the size of the transform

increases.

Performance of different lifting scheme strategies. We perform experiments to determine

the performance of various lifting schemes that can be derived for the same DWT based on the

degrees of freedom in dividing Laurent polynomials. Detailed analysis and explanation of how to

obtain different lifting schemes is provided in Appendix A. It turns out that different factorizations

of the DWT into lifting steps leads to different implementations and different run times. To illustrate

the concept, we measure the run times of all possible lifting schemes for the DWT with Daubechies

9/7 wavelet on Xeon-1.7. Out of all 27 possible lifting schemes, only one preserves the symmetry

of the lifting step filters. All lifting schemes have either four or five lifting steps. In Figure C.1 we

show the histogram of the run times obtained for all lifting scheme factorizations. We emphasize

that the spread in run times is almost a factor of five between the fastest and the slowest lifting

scheme. Among the fastest lifting schemes is the symmetric one, which also have only four lifting

steps. Note that some of the schemes are measured twice and appear two times in the histogram.

158

7.5 Compiler Issues

We have already seen that the run times and the best found algorithms vary significantly between

different, and even very similar architectures. We now investigate the effects of different compilers

and compiler options on performance.

The first experiment compares the run times of the best found time-domain and the best-found

Karatsuba algorithms compiled by two compilers: icc-8.0-lin and gcc-O1-3.3 (see Table 7.2). Fig-

ure 7.13 shows the relative run times on P4-1.6-lin platform obtained by dividing the run time

obtained by the gcc compiler and the run time when the icc compiler is used. Interestingly, when

the best blocking and nesting strategies are implemented, the Intel icc compiler provides faster run

time, and more so when the filter is shorter. For a filter of length 16, Intel compiler reduces the run

time by as much as 30% over the gcc compiled code. On the other hand, for Karatsuba methods,

the GNU compiler produces faster code for both filter lengths.

2 4 6 8 10 12 14 16 18 20
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

size (log
2
n)

gc
c

/ i
cc

 r
un

 ti
m

es

16 taps
32 taps
16 taps Karatsuba
32 taps Karatsuba

Figure 7.13: Comparison of run times for time-domain and Karatsuba methods compiled by icc-8.0-

lin and by gcc-O1-3.3 compilers on P4-1.6-lin platform

In the second experiment, we compare the results on Macintosh for time-domain and Karatsuba

methods for FIR filters obtained for the same GNU C compiler using two different compiler options:

gcc-mac-O1 and gcc-mac-O3. Figure 7.14 shows measured relative run times of code compiled using

gcc-mac-O3 options with respect to code compiled using gcc-mac-O1 options. The left-hand side

graph illustrates the results for time-domain methods. For shorter filters, lower compiler optimization

options gcc-mac-O1 achieve faster run times, but for a 64-tap filter, gcc-mac-O3 options achieve the

speedup over gcc-mac-O1 by almost two times. For Karatsuba methods, however, gcc-mac-O3

improves the run time for all three filter lengths. A speedup of two times is obtained for a 64-tap

filter, but much less for a filter of length 32.

We showed that the choice of compiler and used compiler options can considerably affect the

runtime performance. Even more interesting is the fact that the improvement is sometimes un-

predictable and that more sophisticated compiler optimization techniques can lead to slower run

159

times, as was the case for blocking and nesting strategies shown in graph 7.14(a). This provides yet

another dimension in searching the space of implementations. Even though our framework does not

provide the mechanism for searching over different compiler options, experiments like these can help

in determining reasonable compiler flags to achieve high performance.

2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

size (log
2
n)

−
O

3
ru

n
tim

e
/ −

O
1

ru
n

tim
e

16 taps
32 taps
64 taps

(a) time-domain methods

2 4 6 8 10 12 14 16 18 20

0.4

0.6

0.8

1

1.2

1.4

size (log
2
n)

−
O

3
ru

n
tim

e
/ −

O
1

ru
n

tim
e

16 taps
32 taps
64 taps

(b) Karatsuba methods

Figure 7.14: Effect of compiler options gcc-mac-O1 and gcc-mac-O3 on the run time of: (a) time-

domain methods, and (b) Karatsuba methods for filters on Macintosh platform.

7.5.1 Compiler vectorization

Finally, we conduct a set of experiments on P4E-3.6 platform that provides a set of special vector

instructions. To fully utilize vector instruction sets, special optimizations have to be performed on

the algorithmic level to identify basic computational blocks that can be efficiently vectorized [47].

General purpose compilers, such as Intel C++ 8.1, provide code optimizations that operate on the

code level and attempt to utilize special instructions to speed up code. P4E-3.6 provides 2-way

vectorizing instructions for double precision code, which we use in our experiments. This means,

theoretically, a speedup of two times is achievable by using vector instructions.

The experiments on P4E-3.6 are run using Intel C++ 8.1 compiler with Intel-SSE3 compiler flags

that enable vector instructions assembled from scalar code. Figure 7.15 shows the speedups for FIR

filters of lengths 16, 32, 64, and 128 obtained using internal compiler vectorization methods. We

observe that the maximum speedup does not exceed 15% for most sizes. For a 64-tap filter, the

speedup obtained by compiler vectorization methods is almost negligible. This suggests that the

vectorization has to be performed on the algorithmic level to enable compiler to make full use of

special instructions, similar to largely successful efforts for the DFT transform algorithms in [47].

7.6 Concluding Remarks

In this chapter, we performed experiments with our framework for FIR filters and DWTs integrated

into the SPIRAL system to determine the quality of our automatically generated and platform-tuned

160

2 4 6 8 10 12 14
0.95

1

1.05

1.1

1.15

1.2

1.25

size (log
2
n)

S
pe

ed
−

up
 S

S
E

3/
sc

al
ar

16 taps
32 taps
64 taps
128 taps

Figure 7.15: SSE3 vectorization speedup for FIR filters obtained by Intel-SSE3 compiler

code. Our goal was to demonstrate the main advantages of our system that tunes software imple-

mentations for filtering and wavelet kernels to different architectures. At this point, we summarize

these advantages.

1. Our framework, together with the SPIRAL system, enables automatic generation of the en-

tire space of fast algorithms and implementation choices providing the user with the readily

available C or Fortran code.

2. The system automatically tunes code for filtering and wavelet transforms to the platform on

which it they are to be implemented.

3. Our automatically generated and tuned code for FIR filters and DWTs competes or even

outperforms hand-tuned software routines developed by algorithm and architecture experts

and teams of programmers employed by Intel. The benchmarks were conducted on both Intel

and non-Intel platforms.

4. Recursive application of rules we defined in our framework generates a space of algorithms

that is created by a surprising combination of the existing algorithms found in the literature.

It is conceivable that some of these algorithms generated by a machine have never been tried

before by human programmers, even though all of the captured methods are well-known to

signal processing experts. The richness and the extent of the search space is often enough to

match the human ingenuity in achieving high performance.

To illustrate the richness of our search space and the scale of the performance gains obtained

by search, we generate a large number of random rule trees that describe different algorithms for

161

0 5 10 15
0

10

20

30

40

50

60

70

run time (us)

of

 r
ul

e
tr

ee
s

(a) Filter Filt128(h(z))

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

run time (us)

of

 r
ul

e
tr

ee
s

(b) DWT
per
128(h(z), g(z))

Figure 7.16: Run times of randomly generated rule trees for: (a) FIR filter transform of size 128

and 17 filter taps on P4C-3.2, and (b) Daubechies 9-7 DWT of size 64 on Xeon-1.7.

implementing FIR filters and DWTs. We choose a filter transform of size 128 with 16 filter coef-

ficients, switch on all available rules, and randomly generate around 700 rule trees. We compile

and measure all rule trees and create a histogram of obtained run times shown on the left side of

Figure 7.16. We note that there is a difference of almost an order of magnitude between the slowest

and the fastest rule tree, which implies that the search can improve the speed of the execution by

several times. As a side issue, we mention that the random rule tree generator does not generate a

uniform distribution and favors simple rule trees, such as the base case rule (5.49). Since for this

small and short filter transforms base case rule provides already reasonable run time, the whole

histogram is skewed slightly towards faster rule trees. The same experiment is performed for the

periodic DWT of size 128 with Daubechies 9/7 wavelet. Graph 7.16(b) shows the run time spread

histogram for about 300 randomly generated rule trees. In this case, the performance spread is even

more dramatic than for FIR filters. The slowest and the fastest rule tree have run times that are

different by more than 30 times.

162

CHAPTER 8

CONCLUSION

Automatic code generation and tuning is one of the most exciting and challenging problems in

the high-performance computing community. It frees software developers from tedious and time-

consuming tasks of tuning the software implementations to a specific target platform. Automatic

tuning creates portable numerical libraries that achieve high performance across most of the current

hardware platforms and, with little additional effort, across many future architectures.

The SPIRAL system provides a suitable framework for automatic generation and tuning of

implementations for digital signal processing (DSP) transforms. In Chapter 2, we discussed many

features and modules of SPIRAL, including the generator of formulas representing the algorithms,

formula compiler, evaluation module, and search engine. Together, these modules enable automatic

generation of algorithms, translation into code, and optimization of implementations for the target

computer platform by search.

To enable SPIRAL to generate tuned filtering and wavelet kernels, we designed a new framework

to represent FIR filters and discrete wavelet transforms (DWTs) in SPIRAL and to formulate the

existing fast algorithms using the rule formalism. We designed the breakdown rules to allow the

formula generator to span the space of algorithms that we believe are good candidates for the fastest

run times on most general purpose computer platforms.

We expressed most of the known algorithms in a unique form using the mathematical language

we developed in Chapters 4, 5, and 6. We design more than 40 rules to span the entire space

of possible candidates for the fastest algorithm. For example, rules (5.56) and (5.57) defined on

page 106 in combination with rule (5.65) on page 109 provide important block convolution methods

known in the literature as the overlap-save and the overlap-add methods. Unlike the explanations

and formulas used in the literature (e.g., [38]), the rules clearly demonstrate that the two methods

are each other’s transposes and that they block the computations for input and output locality.

Further, they exactly define the operations that need to be performed and capture the structural

information of the computations that the SPL compiler can use to, for example, determine the size

of the loops and how to loop the computations.

We implemented the transforms and the rules in the SPIRAL’s formula generator, paying special

attention to optimizing the rules so that they can be properly handled by the formula optimization

block (see Figure 2.1 on page 14). One such optimization is fusion of the downsampling operator

shown in equation (6.39). Next, we verified the rules for mathematical correctness using the SPI-

RAL’s verification and debugging tools (see Section 2.4). When necessary, we designed templates

163

for translating the mathematical formulas into the programming language and also verified whether

the formulas produced the desired code.

For some rules, such as the blocking rules from Section 5.2.7, we adjusted the storing methods

and the search strategies to enable more efficient optimization and faster convergence. Further

speedup of search was accomplished by restricting the applicability of rules to transforms for which

the rule is truly efficient. For example, Filter Circulant rule (5.65) was restricted to transform sizes

n and filter lengths k whose ratio n/k and k/n is below certain threshold. In the first case, the rule

would lead to circulants that are too sparse, whereas in the latter case, to a large overhead.

By accomplishing the above tasks, we enabled SPIRAL to generate code for FIR filters, including

code for linear and circular convolutions, and filter banks, as well as code for a class of orthogonal

and biorthogonal discrete wavelet transforms for different signal models. We next highlight the

contributions of the work presented in this thesis.

8.1 Major Contributions

By enabling automatic generation of platform-adapted implementations for FIR filters and the

DWTs using SPIRAL, we have considerably closed the gap between: 1) existing software libraries

for numerical implementation of digital filters and DWTs that provide portability but limited per-

formance, and 2) hand-tuned libraries for filtering and wavelet kernels that achieve high performance

for a small set of chosen platforms usually provided by the hardware vendor.

We summarize our achievements in this thesis.

1. We automatically generate C or Fortran code for

• linear convolution of FIR filters and compact support signals.

• linear convolution of FIR filters and infinite or infinitely extended signals on finite number

of output points.

• circular convolution or any type of generalized convolution, such as symmetric convolu-

tion.

• single-stage and multi-stage DWT for

(a) finite support signals,

(b) infinite and infinitely extended signals, and

(c) periodically extended signals.

• DWTs for any type of orthogonal and biorthogonal wavelets.

2. Our automatically generated code is obtained by searching in a comprehensive space of algo-

rithms and implementation choices in order to achieve high performance. Benchmark tests

show that our code is competitive, and often outperforms hand-coded libraries devel-

oped by teams of programmers and algorithm and architecture experts. The impact of such

automated high-performance code generator system on the development of numerical soft-

ware libraries is substantial. The cost of developing numerical libraries can be substantially

reduced by deploying our system on current and future computer platforms and avoid the

164

continuous cycle of coding, testing, and debugging for each and every newly developed archi-

tecture.

3. Our system automatically implements most well-known algorithms for FIR filtering

including:

• overlap-save and overlap-add methods,

• transform-domain methods, including the complex and real DFT, and the discrete Hartley

transform methods,

• radix-n divide-and-conquer or Karatsuba recursive methods,

• blocking and nesting techniques for cache and register locality,

and algorithms for DWTs including:

• efficient direct implementation using Mallat recursions,

• polyphase implementation of the filter bank,

• lifting scheme algorithms for all possible factoring schemes,

• lattice factoring algorithms.

Code is generated and available to the user for “free” enabling fast implementation and testing

of most available methods.

4. Furthermore, the combination of all of the above algorithms using recursive application of

breakdown rules enables new algorithms to be automatically developed and tested. Search

in the comprehensive space of implementations often finds solutions that are hardly ever con-

sidered by a human programmer.

By developing a suitable framework for representing FIR filtering and DWT algorithms and

integrating this framework into SPIRAL, we enabled the SPIRAL system to automatically generate,

translate and search for most efficient implementations on the platform of choice. We believe this

provides the first truly automatic performance tuning system for filtering and wavelet numerical

kernels. Our system generates code that is optimized for the target platform by considering a vast

space of alternative solutions. The end result is that our system achieves very high performance

comparable with hand-optimized numerical libraries for FIR filters and DWTs.

8.2 Limitations of the Current Framework

We enabled SPIRAL to generate code for most of the well-known methods for implementing filter-

ing and wavelet algorithms. However, we point out to several limitations of the current SPIRAL

framework, as well as limitations in scope of our FIR filter and DWT framework.

The mathematical framework and the rule formalism we developed for FIR filters and the DWTs

is sufficient to represent most of the existing algorithms for one-dimensional convolution operators

and discrete wavelet transforms.

Wavelet packets. In addition to the presented material, with a slight modification of the rules

introduced in Chapter 6, our framework is able to generate code for arbitrary wavelet packets. For

165

example, Mallat rule (6.37) can be modified so that it expands the high-pass branch of the wavelet

tree shown in Figure 3.3.

DWTper
n,j (h(z), g(z))→

(
In⊕DWTper

n,j−1(h(z), g(z))
)
·DWTper

n,1(h(z), g(z)) (8.1)

Combining these two rules, we can expand the tree into any possible wavelet packet tree.

Multi-dimensional transforms. Even though we provide rules for generation of algorithms

for 1-D transforms and filters, a simple extension of the rules as

T1−D
n → Rtype

{

T′r, . . . ,T
(n)
t

}

T2−D
n → Rtype

{

T′r, . . . ,T
(n)
t

}

⊗Rtype

{

T′r, . . . ,T
(n)
t

} (8.2)

will generate code for 2-D or any n-dimensional convolution and DWT as long as the filters or

the wavelet bases are separable [16, 109]. This approach is only one of various implementation

strategies for 2-D transforms, and often suboptimal. Additional research effort is required to allow

automatic optimization of code for 2-D filters and DWTs. Furthermore, the current framework does

not support non-separable multi-dimensional transforms.

M-channel filter banks. Our framework allows generation of code for 2-band wavelet trans-

forms. The generalization to M -band DWTs is straightforward for some of the rules such as the

Mallat rules, but requires considerably more effort for the lifting method and adaptation of the

formula optimization rules.

Special instruction sets. In Chapter 2, we briefly discussed that SPIRAL generates im-

plementations that support vector instruction (SIMD) and fused multiply-add (FMA) instruction

extensions for a few trigonometric transforms. Since the filtering and wavelet kernels exhibit differ-

ent algorithm structure, additional research is required to fully automate the generation of SIMD

and FMA code. Because of the regularity of the direct implementation for convolutions and filter

banks, it is conceivable that the special instruction sets can be efficiently utilized, making the more

sophisticated techniques, such as divide-and-conquer methods less relevant.

8.3 Future Work

Based on the work in this thesis, future research can proceed in several directions. We suggested

in the previous section that there are several limitations of the current framework. We believe

that a significant improvement in both the quality of implementation and the scope of the possible

applications can be achieved by addressing these issues. We list some of these issues in their order

of importance.

1. Code vectorization. Since a growing number of computer platforms supports SIMD instruc-

tions, a considerable speedup can be obtained by designing the framework that will support

vector code for filtering and wavelet kernels. Vendor libraries, such as Intel’s IPP, suggest that

the speedup is close to the theoretical peak improvement for the particular instruction set.

166

2. 2-D convolutions and wavelet transforms. 2-D convolutions and DWTs are extensively

used in image processing applications, such as the JPEG2000 image coding standard [17]. The

problem of tuning the implementations for 2-D transforms offers many additional opportunities

for instruction parallelism and pipelining. For example, see [27, 28].

3. Wavelet packets. With little effort, the current framework can be extended in the direction

of generating code for arbitrary wavelet packets. The system can be then used to generate

efficient implementations by searching over both the fastest implementations and the best

wavelet packet basis using any criterion (e.g., [83]) by including it in the cost function of the

SPIRAL’s optimization problem [13].

4. Other generalizations of the current framework. The current framework can be further

extended to generate implementations for M-channel filter banks and wavelet systems, com-

plex wavelets, second-generation wavelets, overcomplete wavelet representations (frames), and

directional wavelets [110].

167

APPENDIX A

LIFTING SCHEME FACTORIZATIONS

The lifting scheme (LS) factorization of polyphase matrices wit the paraunitary property was intro-

duced in Chapter 3 on page 64. The foundation of the LS is established in the common Euclidean

algorithm (EA) for Laurent polynomials. Since the division of Laurent polynomials allows a certain

degree of freedom, different factorization schemes can be derived for the same polyphase matrix. We

next explore these degrees of freedom.

A.1 Euclidean Algorithm

Consider two polynomials a(z) and b(z) in R[z] with degrees deg(a) = n and deg(b) = m, respectively.

The division with a remainder can always be performed as

a(z) = q(z) · b(z) + r(z) (A.1)

where q(z) is the quotient and r(z) is the remainder. As long as the degree of the remainder is

deg(r) < m, the division is unique. The division can continue recursively until it is performed

without the remainder to find the greatest common divisor (gcd) of a(z) and b(z). The algorithm

proceeds as follows

1. a(z) = q1(z) · b(z) + r1(z) →
[

a(z)

b(z)

]

=

[

1 q1(z)

0 1

][

r1(z)

b(z)

]

2. b(z) = q2(z) · r1(z) + r2(z) →
[

r1(z)

b(z)

]

=

[

1 0

q2(z) 1

][

r1(z)

r2(z)

]

3. r1(z) = q3(z) · r2(z) + r3(z) →
[

r1(z)

r2(z)

]

=

[

1 q3(z)

0 1

][

r3(z)

r2(z)

]

...
...

M. rM−2(z) = qM (z) · rM−1(z) + 0
...

rM−1 = gcd(a(z), g(z)) →
[

a(z)

b(z)

]

=

[

1 q1(z)

0 1

]

· · ·
[

1 0

qM (z) 1

][

rM−1(z)

0

]

(A.2)

The Euclidean algorithm described above can be described in the matrix format as shown on the

right side of (A.2). Each of the triangular polynomial matrices is one lifting step matrix. Since the

polyphase matrix is paraunitary, the synthesis filters are not independent of the analysis filter s and

168

a slight modification of the Euclidean algorithm gives the lifting scheme (3.97) with M + 1 lifting

steps.

A.2 Division of Laurent polynomials

However, since the filters are represented by Laurent polynomials h(z) =
∑b

k=a hkz
−k ∈ R[z, z−1]

whose degree is defined as deg(h) = |b−a|, the division in (A.1) is not unique. Consider the following

example.

Example A.1. Consider two polynomials

a(z) = − 1
8z
−1 + 3

4 − 1
8z, b(z) = 1

4 + 1
4z.

There are precisely three different ways perform the division (A.1) in this case

a(z) =
(
− 1

2z
−1 + 7

2

) (
1
4 + 1

4z
)
− z

a(z) =
(
− 1

2z
−1 − 1

2

) (
1
4 + 1

4z
)
+ 1

a(z) =
(

7
2z
−1 − 1

2

) (
1
4 + 1

4z
)
− z−1

For standard polynomials the division proceeds by reducing the degree of the dividing polynomial

at every stage by matching the highest degree with the highest degree of the divisor. With Laurent

polynomials the degree reduction can occur by matching either the lowest or the highest degree

at each step of the division. The upper limit on the number of possible divisions for two Laurent

polynomials is established by the following lemma.

Lemma A.1 (Upper bound on the number of possible Laurent polynomial divisions).

Let R[z, z−1] be the ring of Laurent polynomials and let a(z), b(z) ∈ R[z, z−1] be two polynomials

with degrees deg(a) = n and deg(b) = m, where n ≥ m. The number of different divisions with the

remainder K is bounded by

1 ≤ K ≤ n−m+ 2 (A.3)

up to a scaled monomial Czk.

Proof. The division with the remainder gives a(z) = q(z) · b(z) + r(z), where q(z) is the quotient

and r(z) is the remainder with the minimum degree. The remainder degree is always less than m

since, otherwise, we can write

r(z) = q1(z) · b(z) + r1(z)⇒ a(z) = (q(z) + q1(z)) · b(z) + r1(z)

and r1(z) would have a lower degree. It follows directly that deg(bq) = n and that deg(q) = n−m
since deg(bq) = deg(b) deg(q) is satisfied for Laurent polynomials. Since r(z) = a(z) − b(z)q(z)

it is clear that b(z) · q(z) has to annihilate n − deg(r) outer terms in a(z). Unlike the standard

polynomials where only the highest degrees are cancelled, for Laurent polynomials there is a choice

between annihilating either the highest or the lowest degree terms, including all their combinations.

Let us choose the maximum degree deg(r) = m − 1. In this case the number of required

annihilated terms is s = n− (m− 1). In general, we can choose to cancel s− t highest degree terms

169

and t lowest degree terms, where 0 ≤ t ≤ s. There are s+1 different choices. To see that this is the

upper bound, let us consider two cases

(i) deg r = m− 1

Since the number of choices for cancelling the terms is n −m + 2 in this case, it is also the

maximum number of different divisions assuming that we annihilate only one term at a time.

(ii) deg r < m− 1

The long division proceeds as follows

1. a(z) = q1(z) · b(z) + r1(z) deg(r1) < n

2. r1(z) = q2(z) · b(z) + r2(z) deg(r2) < deg(r1)
...

until deg rk < m. Then r(z) = rk(z) and q(z) =
∑

i qi(z). Since deg(rk−1) ≥ m there can be

at most n−m+1 steps in the division and exactly that many independent terms to annihilate,

which brings total to n−m+2 choices using the same argument as for the deg r = m− 1 case.

The difference here is that when some of the n −m + 1 independent terms are canceled the

dependent terms also get canceled, but the maximum cannot exceed n+m− 1.

¥

In the Example A.1 the number of different divisions meets the upper bound of n − m + 2 =

2− 1 + 2 = 3.

A.3 Lifting scheme factorizations

Lemma A.2 (Upper bound on the number of lifting steps). Given the polynomials a(z)

and b(z) of degrees n and m, the Euclidean algorithm terminates in at most m + 1 steps and the

maximum number of lifting steps S is bounded by m+ 2, i.e.,

M ≤ deg(b) + 1, S ≤ deg(b) + 2

Proof. At each step of the Euclidean algorithm in (A.2) the degree of the remainder is reduced by

at least one since deg(ri−1) < deg(ri). Since the algorithm starts with r1(z) of degree at most m−1

and terminates when rM (z) = 0, meaning that the degree of rM−1 has to be at least equal to zero,

the number of the divisions can be at most m+1 with the equality when the degree of the remainder

is reduced by one at each step. The number of lifting steps is then bounded by m+ 2 according to

(A.2). ¥

We can now combine the two lemmas to find the upper bound on the number of possible lifting

steps factorizations.

Lemma A.3 (Upper bound on the number of factorization schemes). Given the Laurent

polynomials a(z) and b(z) with degrees n and m, respectively, where n > m, the number of different

lifting schemes or the ways to perform the Euclidean algorithm is bounded from the above as

L ≤ (n−m+ 2) · 3M−2 (A.4)

170

where M = m+ 1 is the maximum number of lifting steps.

Proof. (i) Let us first assume that at each division in the Euclidean algorithm the degree of the

remainder is reduced by one, i.e., deg(ri+1) = deg(ri)−1 starting from r1(z) with the maximum

degree m− 1. According to Lemma A.2 the number of lifting steps is exactly m+ 1. At each

step of the EA we have a choice of how to do the division of Laurent polynomials bounded by

K ≤ n−m+ 2 as suggested by Lemma A.1.

For the first division shown in the first equation of (A.2) the number of possible divisions is

N1 ≤ n −m + 2. Since deg(r1) = m − 1, in the second step the number of possible divisions

of b(z) and r1(z) is N2 ≤ m− deg(r1) + 2 = 3. By assumption, the degree of each subsequent

remainder is reduced by one so that the number of divisions stays bounded byNi ≤ 2−1+2 = 3.

The last step M = m− 1 in the EA is trivial since rM (z) is a monomial and there is only one

choice on how to perform it. When we sum the choices in all steps we obtain

L =

M∏

i=1

Ni ≤ (n−m+ 2) · 3 · 3 · · · 3
︸ ︷︷ ︸

M−2

·1 = (n−m+ 2) · 3M−2 (A.5)

(ii) Let us now show that this is also the upper bound if we drop the assumption of reducing the

degree of the remainder by one at each step of the EA. Assume that for some step of the EA

the degree is reduced by t+1, i.e., deg(rk+1) = deg(rk)−1−t. According to Lemma A.1, in the

next step rk−1(z) = rk(z)qk+1(z)+ rk−1(z) the maximum number of divisions is Nk+1 ≤ t+3.

The algorithm can now terminate in at most m+ 1− t steps leading to the upper bound of

L ≤ (n−m+ 2) · 3 · 3 · · · 3
︸ ︷︷ ︸

M−2−t

·(3 + t) < (n−m+ 2) · 3M−2 (A.6)

and the upper bound is lower than in (A.5). Therefore, the number of choices cannot be

increased by reducing the degree of the remainders by more than one, so the case (i) provides

the global upper bound.

¥

The number of lifting schemes grows exponentially with the degree of the polynomials. Different

lifting schemes have different properties. For example, the number of lifting schemes for Daubechies

9-7 wavelets meets the upper bound of 27 different factorizations since deg(he) = 4, deg(ho) = 3

so L ≤ (4 − 3 + 1) · 32 = 27. Since the filters have linear phase, it is advantageous to preserve this

property for the lifting steps. However, this is possible using only one out of 27 different schemes,

which is incidentally the one used in the JPEG2000 standard. Different lifting schemes are especially

important for wavelet transforms mapping integers to integers [111].

For the polyphase matrices representing wavelet systems, the EA can proceed either with the

even and odd lowpass or the highpass filters, as we explained in Section 3.2.5. For example, we can

employ the EA on lowpass he(z) and ho(z) defined as (3.38), where the highpass ge(z) and go(z)

can be updated at each step of the division using the relation (3.94). We end this section with an

illustrative example

171

Example A.2. Consider the lowpass and the highpass filters

h(z) = − 1
8z
−2 + 1

4z
−1 + 3

4 + 1
4z − 1

8z
2

g(z) = 1
4z
−2 − 1

2z
−1 + 1

4

Their downsampled versions are

he(z) = − 1
8z
−1 + 3

4 − 1
8z ho(z) =

1
4 + 1

4z

ge(z) =
1
4z
−1 + 1

4 go(z) = − 1
2

We apply the Euclidean algorithm on he(z) and ho(z). According to Lemma A.2, the maximum

number of lifting steps is S =M +1 = m+2 = 3. Three different division strategies from these two

polynomials were given in Example A.1. By choosing the second strategy we obtain the decomposition

[

he(z) ho(z)

ge(z) go(z)

]

=

[

1 0

0 − 1
2

][

1 1
4 + 1

4z

0 1

][

1 0

− 1
2 − 1

2z
−1 1

]

with only two lifting steps. This is below the upper bound. However, if we choose the first division

in Example A.1 we obtain the following factorization

[

he(z) ho(z)

ge(z) go(z)

]

=

[

−z 0

0 1
2z
−1

][

1 0

4z 1

][

1 − 1
4 − 1

4z
−1

0 1

][

1 0
7
2 − 1

2z
−1 1

]

There are exactly three lifting steps in this case which equals the upper bound. The total number of

different schemes is bounded by L ≤ (2− 1 + 2) · 32−2 = 3. There is another lifting scheme arising

from the third division strategy in Example A.1, so this upper bound L = 3 is also reached in this

example.

172

APPENDIX B

GENERALIZED KARATSUBA METHODS

In Chapter 3 we introduced divide-and-conquer or Karatsuba methods for decomposing filtering

operations into shorter filters to reduce the arithmetic cost. In Section 3.1.6 we presented the case

when the filter is split into its even and odd coefficients (3.39) leading to a radix-2 implementation.

The method can be generalized in many directions. We already mentioned that even for radix-2

approach different strategies can be used to combine the products of downsampled filters and down-

sampled signals leading to different radix-2 schemes. For example, the scheme shown in Figure 3.2

we shall refer to as the standard form, where a different scheme can easily be obtained by transposing

the graph [57]. Another way to generalize the algorithm is to increase the downsampling factor to

obtain higher-radix implementations, and even further by having a different downsampling factor

for the input and the output. In this section, we present a scheme to derive higher-radix Karatsuba

algorithms in the standard form, and provide the cost analysis for the general case.

B.1 Standard Radix-n Karatsuba Algorithm

Consider two polynomials h(z) and x(z). We are interested in computing the product y(z) = h(z) ·
x(z) in an efficient way. Let us represent each of the polynomials using downsampled decomposition

with the factor n.

h(z) =

n−1∑

i=0

hi(z
n)z−i, x(z) =

n−1∑

i=0

xi(z
n)z−i, y(z) =

n−1∑

i=0

yi(z
n)z−i (B.1)

where, for example,

hi(z) =
n−1∑

j=0

hnj+iz
−j (B.2)

By multiplying the two polynomials h(z) · x(z) in this form and grouping the terms we obtain

the following set of equations

y0(z) = h0(z)x0(z) + [h1(z)xn−1(z) + h2(z)xn−2(z) + · · ·+ hn−1(z)x1(z)] z
−1

y1(z) = [h0(z)x1(z) + h1(z)x0(z)] + [h2(z)xn−1(z) + · · ·+ hn−1(z)x2(z)] z
−1

...
...

yn(z) = hn−1(z)x0(z) + hn−2(z)x1(z) + · · ·+ h1(z)xn−2(z) + h1(z)xn−2(z)

(B.3)

where we also made the substitution z = zn.

173

The decomposition can be compactly represented in the matrix form

y(z) =














h0(z) hn−1(z)z
−1 · · · h2(z)z

−1 h1(z)z
−1

h1(z) h0(z)
. . . h2(z)z

−1

...
. . .

. . .
. . .

...

hn−2(z)
. . . h0(z) hn−1(z)z

−1

hn−1(z) hn−2(z) · · · h1(z) h0(z)














· x(z) (B.4)

In the rest of this presentation we shall drop the argument z to save space, assuming that all terms

represent polynomials.

The main idea in the Karatsuba decomposition is to use the direct products of the form hi · xi
as many times as possible by combining and expressing the cross-products as

hi · xj + hj · xi = (hi + hj) · (xi + xj)− hi · xi − hj · xj (B.5)

Assuming that we can precompute hi + hj and that the direct products hi · xi have already been

computed in one of other outputs, we reduce the number of multiplications from two to only one

(hi + hj) · (xi + xj) with two new additions.

Example B.1. Let us examine cases when n = 3 and n = 4. When n = 3 we have the following set

of equations.

y0 = h0x0 + [h1x2 + h2x1] z
−1

y1 = [h0x1 + h1x0] + h2x2z
−1

y2 = h2x0 + h1x1 + h0x2

(B.6)

Using (B.5) we can express (B.6) as

y0 = h0x0 + [(h1 + h2)(x1 + x2)− h1x1 − h2x2] z
−1

y1 = [(h0 + h1)(x0 + x1)− h0x0 − h1x1] + h2x2z
−1

y2 = h1x1 + (h0 + h2)(x0 + x2)− h0x0 − h2x2

(B.7)

which in the matrix form yields

y(z) =







1 z−1 z−1 0 0 1

1 1 z−1 1 0 0

1 1 1 0 1 0






diag{h0, h1, h2, h0+h1, h0+h2, h1+h2}














1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

0 1 1














· x(z) (B.8)

Instead of 9 polynomial multiplications, 6 additions, and two shifts, radix-3 Karatsuba decomposition

requires 6 multiplications, 12 additions, and 3 shifts.

In the case n = 4 we have the following equations

y0 = h0x0 + [h1x3 ++h2x2 + h3x1] z
−1

y1 = [h0x1 + h1x0] + [h2x3 + h3x2] z
−1

y2 = [h2x0 + h1x1 + h0x2] + h3x3z
−1

y4 = h3x0 + h2x1 + h1x2 + h0x3

(B.9)

174

that can be expressed using the cross product decomposition

y0 = h0x0 + [h2x2 + (h1 + h3)(x1 + x3)− h1x1 − h3x3] z
−1

y1 = [(h0 + h1)(x0 + x1)− h0x0 − h1x1] + [(h2 + h3)(x2 + x3)− h2x2 − h3x3] z
−1

y2 = [h1x1 + (h0 + h2)(x0 + x2)− h0x0 − h2x2] + h3x3z
−1

y4 = (h0 + h3)(x0 + x3)− h0x0 − h3x3 + (h1 + h2)(x1 + x2)− h1x1 − h2x2

(B.10)

The original 16 multiplications and 12 additions are reduced to 10 multiplications and 24 additions.

B.2 Radix-n Karatsuba Cost Analysis

Let the input sequence x(z) be of length N = nr and the filter h(z) of length L = ns. The number

of operations per output point for a straightforward multiplication is L multiplications and L − 1

additions. Radix-n Karatsuba method break down the problem into multiplications of polynomials

hi(z) and xi(z) of size n
s−1 and nr−1, respectively.

According to (B.3) and (B.5) and from Example B.1 we can see that the computations are broken

down into three stages: input additions, multiplication with downsampled polynomials, and output

additions. The number of direct products hi(z)xi(z) is n where the number of all possible products

of pairs (hi + hj)(xi + xj) is n(n− 1)/2.

1. Input additions. There are precisely n(n − 1)/2 input additions of the form xi(z) + xj(z).

Since each xi(z) is N/n long, there are N(n− 1)/2 additions in total, or

Ci
a(n) =

1

2
(n− 1)

per output point.

2. Output additions. From (B.3), if n is odd there is precisely (n − 1)/2 cross product pairs

of the form hi · xj + hj · xi that can be decomposed using (B.5). In the case n is even, the

equations in (B.3) have n/2− 1 cross-product pairs if the output index in yi is even and n/2

pairs if the index is odd, making the average number of cross-product pairs again (n− 1)/2.

Since the decomposition in (B.5) introduces one new addition per cross-product pair, there are

(n− 1)/2 new adds in addition to the previous n− 1 yielding a total of

Co
a(n) =

3

2
(n− 1)

3. Polynomial products. There are n(n + 1)/2 total polynomial products of downsampled

polynomials. The number of required total multiplications and additions is therefore

Ct
m(n,N,L) =

n(n+ 1)

2
· N
n
· L
n
, Ct

a(n,N,L) =
n(n+ 1)

2
· N
n
·
(
L

n
− 1

)

or

Cm(n,L) =
n+ 1

2n
L, Cp

a(n,L) =
n+ 1

2
·
(
L

n
− 1

)

per output point

175

We can now summarize the total number of multiplications and additions per output point for the

radix-n Karatsuba algorithm

Ca(n,L) = 2(n− 1)
︸ ︷︷ ︸

i/o

+
n+ 1

2
·
(
L

n
− 1

)

︸ ︷︷ ︸

filters

adds

Cm(n,L) =
n+ 1

2n
L

︸ ︷︷ ︸

filters

mults

(B.11)

Example B.2. In the case n = 2 the costs are

Ca(2, L) = 2 +
3

2

(
L

2
− 1

)

Cm(2, L) =
3

4
L

When the filter is very short L = 2 then the total cost is C(2, 2) = 3.5 operations per point whereas

the direct implementation requires only 3 operations per point. Hence, Karatsuba method should be

used only when L > 2.

Furthermore, for any radix n it is never advantageous to use the Karatsuba algorithm when L = n

since in that case
Ca(n, n) = 2(n− 1)

Cm(n, n) =
n+ 1

2

and the total cost is greater than 2n− 1 for the direct multiplication.

Of course, the radix-n Karatsuba method can be applied recursively. The number of additions

and multiplications in that case is computed by solving the recursive equations

Ca(n,L) = 2(n− 1) +
n(n+ 1)

2
· Ca(n,L/n)

Cm(n,L) =
n(n+ 1)

2
· Cm(n,L/n)

(B.12)

For K levels of recursion we obtain

C(K)
a (n,L) =

K∑

k=1

(
n(n+ 1)

2

)k−1
2(n− 1)

nk−1
+

(
n(n+ 1)

2

)K

· Ca(n,L/nk)

C(K)
m (n,L) =

(
n(n+ 1)

2

)K

· Cm(n,L/nK)

(B.13)

If the filters at the K-th level are computed using the direct multiplications then the costs become

C(K)
a (n,L) =

(
n+ 1

2

)K (
L

nK
− 1

)

+ 4 ·
[(

n+ 1

2

)K

− 1

]

C(K)
m (n,L) =

(
n+ 1

2

)K (
L

nK

)
(B.14)

Since the cost obviously decreases with every step of the recursion it is advantageous to proceed

with the full recursion down to the point where the length of the downsampled filters is L/nK = n,

176

as we discussed in Example B.2. In that case, the costs are minimized:

C(s−1)
a (n,L) = (n− 1)

(
n+ 1

2

)s−1

+ 4 ·
[(

n+ 1

2

)s−1

− 1

]

C(s−1)
m (n,L) = n

(
n+ 1

2

)s−1

,

(B.15)

where L = ns.

For radix-2 algorithm the cost of total recursion is then

C(s−1)
a (2, ns) =

(
3

2

)s−1

+ 4 ·
[(

3

2

)s−1

− 1

]

C(s−1)
m (2, ns) = 2

(
3

2

)s−1

,

with the total of

C(s−1)(2, ns) = 7

(
3

2

)s−1

− 4

operations (adds and mults) as opposed to 2 · 2s − 1 for the direct multiplication.

177

APPENDIX C

RESULTS OF FIR FILTER TRANSFORM AND DWT
EXPERIMENTS

1 2 3 4 5 6 7

x 10
−6

0

2

4

6

8

10

12

14

16

run times (s)

of

 r
ul

e
tr

ee
s

Figure C.1: Runtime comparison of all lifting scheme factorizations for Daubechies 9/7 wavelet

transform

178

2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

size (log
2
n)

re
la

tiv
e

ru
n

tim
es

 v
s.

 M
al

la
t m

et
ho

d

Lifting
Polyphase
Mallat

(a) rational 5/3

2 4 6 8 10 12 14
0.5

1

1.5

2

2.5

3

3.5

4

size (log
2
n)

re
la

tiv
e

ru
n

tim
es

 v
s.

 M
al

la
t m

et
ho

d

Lifting
Polyphase
Mallat

(b) Daubechies 9/7

5 6 7 8 9 10 11 12 13 14
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

size (log
2
n)

re
la

tiv
e

ru
n

tim
es

 v
s.

 M
al

la
t m

et
ho

d

Lifting
Polyphase
Mallat

(c) Daubechies 30

Figure C.2: Comparison of Mallat, Lifting and Polyphase rules on P4B-3.0-win.

179

2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

size (log
2
n)

re
la

tiv
e

ru
n

tim
es

 v
s.

 M
al

la
t m

et
ho

d

Lifting
Polyphase
Mallat

(a) rational 5/3

4 6 8 10 12 14 16 18
0.5

1

1.5

2

2.5

3

3.5

4

size (log
2
n)

re
la

tiv
e

ru
n

tim
es

 v
s.

 M
al

la
t m

et
ho

d

Lifting
Polyphase
Mallat

(b) Daubechies 9/7

5 6 7 8 9 10 11 12 13 14
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

size (log
2
n)

re
la

tiv
e

ru
n

tim
es

 v
s.

 M
al

la
t m

et
ho

d

Lifting
Polyphase
Mallat

(c) Daubechies 30

Figure C.3: Comparison of Mallat, Lifting and Polyphase rules on Athlon-1.73.

180

2 4 6 8 10 12 14 16 18
0.5

1

1.5

2

2.5

3

3.5

4

size (log
2
n)

re
la

tiv
e

ru
n

tim
es

 v
s.

 M
al

la
t m

et
ho

d

Lifting
Polyphase
Mallat

(a) rational 5/3

4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4

size (log
2
n)

re
la

tiv
e

ru
n

tim
es

 v
s.

 M
al

la
t m

et
ho

d

Lifting
Polyphase
Mallat

(b) Daubechies 9/7

5 6 7 8 9 10 11 12 13 14
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

size (log
2
n)

re
la

tiv
e

ru
n

tim
es

 v
s.

 M
al

la
t m

et
ho

d

Lifting
Polyphase
Mallat

(c) Daubechies 30

Figure C.4: Comparison of Mallat, Lifting and Polyphase rules on Macintosh.

181

2 4 6 8 10 12 14 16 18
600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

size (log
2
n)

P
se

ud
o

M
F

LO
P

S

Rational 5/3
Daubechies 9/7
Daubechies 30

(a) P4B-3.0-win

2 4 6 8 10 12 14 16
200

400

600

800

1000

1200

1400

1600

1800

2000

size (log
2
n)

P
se

ud
o

M
F

LO
P

S

rational 5/3
Daubechies 9/7
Daubechies 30

(b) Athlon-1.73

0 2 4 6 8 10 12 14 16 18
100

150

200

250

300

350

400

size (log
2
n)

P
se

ud
o

M
F

LO
P

S

Rational 5/3
Daubechies 9/7
Daubechies 30

(c) Macintosh

Figure C.5: Performance of DWT algorithms on different platforms.

182

BIBLIOGRAPHY

[1] R. C. Whaley and J. Dongarra, “Automatically Tuned Linear Algebra Software (ATLAS),” in
Proc. Supercomputing, 1998. math-atlas.sourceforge.net.

[2] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical optimization of software
and the ATLAS project,” Parallel Computing, vol. 27, no. 1–2, pp. 3–35, 2001. Also available
as University of Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000 . www.netlib.
org/lapack/lawns/lawn147.ps.

[3] J. Bilmes, K. Asanović, C. Chin, and J. Demmel, “Optimizing matrix multiply using PHiPAC:
a portable, high-performance, ANSI C coding methodology,” in Proc. Supercomputing, ACM
SIGARC, 1997. www.icsi.berkeley.edu/~bilmes/phipac.

[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide. Philadelphia,
PA: Society for Industrial and Applied Mathematics, third ed., 1999.

[5] E.-J. Im and K. Yelick, “Optimizing Sparse Matrix Computations for Register Reuse in SPAR-
SITY,” in Proc.Int. Conf. on Computational Science, pp. 127–136, 2001.

[6] R. Vuduc, J. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and B. Lee, “Performance optimiza-
tions and bounds for sparse matrix-vector multiply,” in Proc. Supercomputing, (MD, USA),
November 2002.

[7] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, R. C. Whaley, and
K. Yelick, “Self adapting linear algebra algorithms and software,” Proceedings of the IEEE:
Special Issue on Program Generation, Optimization, and Adaptation, 2005. (to appear).

[8] M. Frigo and S. G. Johnson, “FFTW: An adaptive software architecture for the FFT,” in Int.
Conf. Acoustics, Speech, and Signal Processing, vol. 3, pp. 1381–1384, 1998. www.fftw.org.

[9] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc. IEEE Special
Issue on Program Generation, Optimization, and Adaptation, vol. 93, no. 2, 2005.

[10] D. Mirković and S. L. Johnsson, “Automatic Performance Tuning in the UHFFT Library,” in
Proc. ICCS, LNCS 2073, pp. 71–80, Springer, 2001.

[11] J. M. F. Moura, J. Johnson, R. W. Johnson, D. Padua, V. Prasanna, M. Püschel, and M. M.
Veloso, “ SPIRAL: Portable Library of Optimized Signal Processing Algorithms,” 1998. www.
spiral.net.

[12] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, and
R. W. Johnson, “SPIRAL: A Generator for Platform-Adapted Libraries of Signal Processing
Algorithms,” International Journal of High Performance Computing Applications, vol. 18,
no. 1, pp. 21–45, 2004.

[13] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer, J. Xiong,
F. Franchetti, A. Gačić, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo, “Spiral:
Code generation for DSP transforms,” Proc. IEEE Special Issue on Program Generation,
Optimization, and Adaptation, Invited Paper, 2005. to appear.

[14] C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transforms:
A Primer. Upper Saddle River, New Jersey: Prentice Hall, 1998.

[15] G. Strang and T. Nguyen, Wavelets and Filter Banks. Wesley, 1998.

[16] M. Vetterli and J. Kovačević, Wavelets and Subband Coding. Englewood Cliffs: Prentice Hall,
1995.

183

[17] International Organization for Standardization and International Electrotechnical Commis-
sion., ISO/IEC 15444-1:2000, Information technology - JPEG 2000 image coding system -
Part 1: Core coding system.

[18] “Wavelet toolbox.” MathWorks. http://www.mathworks.com/products/wavelet.

[19] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps,” Journal of
Fourier Analysis and Applications, vol. 4, no. 3, pp. 247–269, 1998.

[20] G. Fernández, S. Periaswamy, and W. Sweldens, “LIFTPACK: A software package for
wavelet transforms using lifting,” in Wavelet Applications in Signal and Image Processing
IV (M. Unser, A. Aldroubi, and A. F. Laine, eds.), pp. 396–408, Proc. SPIE 2825, 1996.

[21] “Wavelet explorer.” Wolfram Research. http://www.wolfram.com/products/applications/
wavelet/.

[22] J. Buckheit, S. Chen, D. Donoho, I. Johnstone, and J. Scargle, WaveLab Reference manual.
Technical report, 1995. http://www-stat.stanford.edu/wavelab.

[23] “Lastwave.” http://www.cmap.polytechnique.fr/~bacry/LastWave/.

[24] J. E. Fowler, “QccPack: An open-source software library for quantization, compression, and
coding,” in Proc. SPIE 4115 (A. G. Tescher, ed.), pp. 294–301, August 2000.

[25] M. D. Adams, ISO/IEC 1/SC 29/WG 1, JasPer Software Reference Manual (Version 1.700.0).
International Organization for Standardization and International Electrotechnical Commis-
sion.

[26] A. F. Breitzman, Automatic Derivation and Implementation of Fast Convolution Algorithms.
PhD thesis, Computer Science, Drexel University, 2003.

[27] D. Chaver, C. Tenllado, L. Piñuel, M. Prieto, and F. Tirado, “Wavelet transform for large
scale image processing on modern microprocessors.,” in VECPAR, pp. 549–564, 2002.

[28] C. Tenllado, D. Chaver, L. P. nuel, M. Prieto, and F. Tirado, “Vectorization of the 2D wavelet
lifting transform using SIMD extensions,” in Proc. Int. Parallel and Distributed Processing
Simposium, April 2003.

[29] Intel Corp., Real and Complex FIR filter Using Streaming SIMD Extensions - Intel application
note AP-809. http://developer.intel.com.

[30] B. Singer and M. M. Veloso, “Automating the Modeling and Optimization of the Performance
of Signal Transforms,” IEEE Trans. on Signal Processing, vol. 50, no. 8, pp. 2003–2014, 2002.

[31] G. E. Révész, Introduction to Formal Languages. McGraw-Hill, 1983.

[32] A. Graham, Kronecker Products and Matrix Calculus with Applications. New York: John
Wiley & Sons, Ellis Horwood Series in Mathematics and Its Applications, 1981.

[33] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier
series,” Math. of Computation, vol. 19, pp. 297–301, 1965.

[34] J. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, “A methodology for designing,
modifying, and implementing Fourier transform algorithms on various architectures,” IEEE
Trans. on Circuits and Systems, vol. 9, no. 4, pp. 449–498, 1990.

[35] R. Tolimieri, M. An, and C. Lu, Algorithms for discrete Fourier transforms and convolution.
Springer, 2nd ed., 1997.

[36] C. Van Loan, Computational Framework of the Fast Fourier Transform. Siam, 1992.

184

[37] J. Johnson and M. Püschel, “In search for the optimal Walsh-Hadamard transform,” in Proc.
IEEE Int. Conf. Acoust. Speech Sign. Process., vol. IV, pp. 3347–3350, 2000.

[38] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Prentice-Hall, 2nd ed.,
1999.

[39] F. Franchetti, Y. Voronenko, and M. Püschel, “Loop merging for signal transforms,” in Proc.
ACM SIGPLAN Conf. on Programming Language Design and Implementation, 2005. submit-
ted for publication.

[40] The GAP Team, University of St. Andrews, Scotland, GAP—Groups, Algorithms, and Pro-
gramming, 1997. www-gap.dcs.st-and.ac.uk/~gap/.

[41] M. Frigo, “A fast Fourier transform compiler,” in Proc. ACM SIGPLAN conference on Pro-
gramming Language Design and Implementation, pp. 169–180, 1999.

[42] J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPL: A Language and Compiler for DSP
Algorithms,” in Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 298–308, 2001.

[43] N. Rizzolo and D. Padua, “Hilo: High level optimization of FFTs,” in Proc. Workshop on
Languages and Compilers for Parallel Computing, 2004. (to appear).

[44] Y. Voronenko and M. Püschel, “Automatic Generation of Implementations for DSP Trans-
forms on Fused Multiply-Add Architectures,” in Proc.Int. Conf. Acoustics, Speech, and Signal
Processing, 2004.

[45] F. Franchetti, H. Karner, S. Kral, and C. W. Ueberhuber, “Architecture Independent Short
Vector FFTs,” in Proc.ICASSP, vol. 2, pp. 1109–1112, 2001.

[46] F. Franchetti and M. Püschel, “A SIMD Vectorizing Compiler for Digital Signal Processing
Algorithms,” in Proc. IPDPS, pp. 20–26, 2002.

[47] F. Franchetti and M. Püschel, “Short Vector Code Generation for the Discrete Fourier Trans-
form,” in Proc. IPDPS, pp. 58–67, 2003.

[48] R. E. Bellman and S. E. Dreyfuss, Applied Dynamic Programming. New Jersey: Princeton
University Press, 1962.

[49] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading,
MA: Addison-Wesley, 1989.

[50] B. Singer and M. Veloso, “Stochastic search for signal processing algorithm optimization,” in
Proc. Supercomputing, 2001.

[51] D. Sepiashvili, “ Performance models and search methods for optimal FFT implementations,”
Master’s thesis, ECE Dept., Carnegie Mellon University, 2000.

[52] G. Haentjens, “An investigation of recursive FFT implementations,” Master’s thesis, ECE
Dept., Carnegie Mellon University, 2000.

[53] S. A. Martucci, “Symmetric convolution and the discrete sine and cosine transforms,” IEEE
Trans. on Signal Processing, vol. 42, no. 5, pp. 1038–1051, 1994.

[54] M. Püschel and J. M. F. Moura, “Algebraic theory of signal procesing,” submited to IEEE
Transactions on Image Processing, p. 66, December 2004.

[55] M. Püschel and J. M. F. Moura, “The algebraic approach to the discrete cosine and sine
transforms and their fast algorithms,” SIAM Journal of Computing, vol. 32, no. 5, pp. 1280–
1316, 2003.

185

[56] R. C. Agarwal and J. W. Cooley, “New algorithms for digital convolution,” IEEE Trans. on
Acoustics, Speech, and Signal Processing, vol. ASSP-25, no. 5, pp. 392–410, 1977.

[57] Z. J. Mou and P. Duhamel, “Fast FIR filtering: algorithms and implementations,” Signal
Process., vol. 13, no. 4, pp. 377–384, 1987.

[58] R. C. Agarwal and C. S. Burrus, “Fast one-dimensional digital convolution by multi-
dimensional techniques,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP-
22, no. 1, pp. 1–10, 1974.

[59] H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms. Springer, 1981.

[60] R. E. Blahut, Fast Algorithms for DIgital Signal Processing. Reading, MA: Addison-Wesley,
1985.

[61] D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, vol. 2. Addison-
Wesley, 3rd ed., 1997.

[62] M. Vetterli, “Running FIR and IIR filtering using multirate filter banks,” IEEE Trans. on
Acoustics, Speech, and Signal Processing, vol. 36, pp. 730–738, May 1988.

[63] Z. J. Mou and P. Duhamel, “A unified approach for the fast FIR filtering algorithms,” in Proc.
ICASSP, pp. 1914–1917, April 1988.

[64] S. Winograd, “Some bilinear forms whose multiplicative complexity depends on the field of
constants,” Math. Syst. Theor., vol. 10, pp. 169–180, 1977.

[65] J. Hong, M. Vetterli, and P. Duhamel, “Basefield transforms with the convolution property,”
Proc. of the IEEE, vol. 82, pp. 400–412, March 1994.

[66] N.-C. Hu and O. K. Ersoy, “Fast computation of real discrete Fourier transform for any number
of data points,” IEEE Trans. on Circuits and Systems, vol. 38, pp. 1280–1292, Nov. 1991.

[67] V. Britanak and K. R. Rao, “The fast generalized discrete Fourier transforms: A unified ap-
proach to the discrete sinusoidal transforms computation,” Signal Processing, vol. 79, pp. 135–
150, 1999.

[68] R. N. Bracewell, The Hartley Transform. New York: Oxford University Press, 1986.

[69] P. Duhamel and M. Vetterli, “Improved Fourier and Hartley transform algorithms: applica-
tions to cyclic convolution of real data,” IEEE Trans. on Acoust. Speech and Sign. Process.,
vol. ASSP-35, pp. 818–824, June 1987.

[70] G. Bi and Y. Chen, “Fast generalized DFT and DHT algorithms,” Signal Processing, vol. 65,
pp. 383–390, March 1998.

[71] I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Comm. on Pure and
Appl. Math., vol. 4, pp. 909–996, Nov. 1988.

[72] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,”
IEEE Trans. on Pattern Anal. and Machine Intell., vol. 11, pp. 674–693, July 1989.

[73] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals. Englewood Cliffs, NJ:
Prentice Hall, 1978.

[74] H. Guo and S. C. Burrus, “Waveform and image compression with the Burrows Wheeler trans-
form and the wavelet transform,” in Proc. IEEE Int. Conf. Imag. Process., (Santa Barbara),
pp. 26–29, Oct. 1997.

[75] A. Said and W. A. Perlman, “An image multiresolution representation for lossles and lossy
image compression,” IEEE Trans. on Image Processing, vol. 5, pp. 1303–1310, Sept. 1996.

186

[76] D. L. Donoho, “Denoising by soft-thresholding,” IEEE Trans. on Information Theory, vol. 41,
pp. 613–627, May 1995.

[77] G. Beylkin and J. M. Keiser, “On the adaptive numerical solution for nonlinear partial differ-
ential equations in wavelet bases,” Journ. Comp. Phys., vol. 132, pp. 233–259, 1997.

[78] W. Dahmen, A. Durdila, and P. Oswald, eds., Multiscale Wavelet Methods for Partial Differ-
ential Equations. San Diego: Academic Press, 1997.

[79] G. Bachman, L. Narici, and E. Beckenstein, Fourier and Wavelet Analysis. New York:
Springer-Verlag, 2000.

[80] R. H. Bamberger, S. L. Eddins, and V. Nuri, “Generalized symmetric extension for size-limited
multirate filter banks,” IEEE trans. on image process., vol. 3, pp. 82–87, Jan. 1994.

[81] V. Silva and L. de Sá, “General method for perfect reconstruction subband processing of finite
length signals using linear extensions,” IEEE trans. on signal processing, vol. 47, September
1999.

[82] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Prentice-Hall, 1993.

[83] K. Ramchandran and M. Vetterli, “Best wavelet packet bases in a rate-distortion sense,” IEEE
Trans. on Image Processing, vol. 2, pp. 160–174, April 1993.

[84] K. Ramchandran, M. Vetterli, and C. Herley, “Wavelets, subband coding, and best bases,”
Proc. of the IEEE, vol. 84, pp. 541–559, April 1996.

[85] J. M. Saphiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE Trans.
on Signal Processing, vol. 41, no. 12, pp. 3445–3462, 1993.

[86] C. Herley and M. Vetterli, “Orthogonal time-varying filter banks and wavelet packets,” IEEE
Transactions on Signal Processing, vol. 42, pp. 2650–2663, October 1994.

[87] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA: SIAM, CMBS series, 1992.

[88] P. Steffen, P. N. Heller, R. A. Gopinath, and C. S. Burrus, “Theory of regular M-band wavelet
bases,” IEEE Trans. on Signal Processing, vol. 41, pp. 3497–3511, December 1993.

[89] I. W. Selesnick, “Parametrization of orthogonal wavelet systems,” tech. rep., ECE Dept. and
Computational Mathematics Library, Rice University, Houston, TX, May 1997.

[90] R. A. Gopinath, J. E. Odegard, and C. S. Burrus, “Optimal wavelet representation of signals
and the wavelet sampling theorem,” IEEE Trans. on Circuits and Systems II, vol. 41, pp. 262–
277, April 1994.

[91] A. Cohen, I. Daubechies, and J. C. Feauveau, “Biorthogonal bases of compactly supported
wavelets,” Comm. on Pure and Aplied Math., vol. 45, pp. 485–560, 1992.

[92] C. M. Brislawn, J. N. Bradley, R. J. Onyshczak, and T. Hopper, “The FBI compression
standard for digitized fingerprint images,” in Proc. SPIE Conf. 2847, Appl. Digital Image
Process. XIX, 1996.

[93] G. Beylkin, R. R. Coifman, and V. Rokhlin, “Fast wavelet transforms and numerical algo-
rithms,” Comm. Pure and Appl. Math., vol. 44, pp. 141–183, 1991.

[94] C. S. Burrus and J. E. Odegard, “Wavelet systems and zero moments,” IEEE Trans. Sign.
Process., 1996.

[95] M. Bellanger, G. Bonnerot, and M. Coudreuse, “Digital filtering by polyphase network: Ap-
plication to sample rate alteration and filter banks,” IEEE Trans.on Acoust. Speech and Sign.
Process., vol. ASSP-24, pp. 109–114, April 1976.

187

[96] M. Vetterli and D. L. Gall, “Perfect reconstruction FIR filter banks: some properties and fac-
torizations,” IEEE Trans. on Acoustics, SPeech and SIgnal Processing, vol. ASSP-37, pp. 1057–
1071, July 1989.

[97] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes.
Cambridge Univ. Press, 1989.

[98] M. Lounsbery, T. D. DeRose, and J. Warren, “Multiresolution surfaces of arbitrary topological
type,” Trans. on Graphics, vol. 16, no. 1, pp. 34–73, 1997.

[99] T. G. Marshall, “U-L block-triangular matrix and ladder realizations of subband coders,” in
Proc. IEEE ICASSP, vol. III, pp. 177–180, 1993.

[100] I. Shah and T. A. Kalker, “On ladder structures and linear phase conditions fo bi-orthogonal
filter banks,” in Proc. IEEE ICASSP, vol. 3, pp. 181–184, 1994.

[101] R. Calderbank, I. Daubechies, W. Sweldens, and B. L. Yeo, “Wavelet transforms that map
integers to integers,” Applied and Computational Harmonic Analysis, vol. 5, no. 3, pp. 332–369,
1998.

[102] V. K. Goyal, “Transform coding with integer to integer transforms,” IEEE Transactions on
Information Theory, vol. 46, pp. 465–473, March 2000.

[103] K. M. Hoffman and R. Kunze, Linear Algebra. Prentice-Hall, 2nd ed., 1971.

[104] K. Taswell and K. C. McGill, “Algorithm 735: Wavelet transform algorithms for finite-duration
discrete-time signals,” ACM Trans. on Math. Softw., vol. 20, pp. 398–412, Sept. 1994.

[105] K. C. McGill and C. Taswell, “Length-preserving wavelet transform algorithms for zero-padded
and linearly-extended signals,” tech. rep., Veterans Affairs Medical Center, Palo Alto, CA,
1992.

[106] A. Cohen, I. Daubechies, and P. Vial, “Wavelets and wavelet transforms on an interval,” Appl.
Comput. Harmon. Anal., vol. 1, pp. 54–81, 1993.

[107] G. Karlsson and M. Vetterli, “Extension of finite length signals for sub-band coding,” Signal
Processing, vol. 17, pp. 161–168, 1989.

[108] ACOVEA: Analysis of computer options via evolutionary algorithm, 2004. http://www.

coyotegulch.com/acovea/.

[109] A. K. Jain, Fundamentatls of Digital Image Processing. Upper Saddle River, NJ: Prentice-Hall,
1989.

[110] F. C. A. Fernandes, R. L. C. van Spaendonck, and C. S. Burrus, “A new framework for complex
wavelet transforms,” IEEE Trans. on Signal Processing, vol. 51, pp. 1825–1837, July 2003.

[111] D. Stefaniou and I. Tabus, “Euclidean lifting schemes for I2I wavelet transform implementa-
tions,” Studies in Informatics and Control, vol. 11, pp. 255–270, September 2002.

188

