18-645/SP07: How to Write Fast Code Assignment 1 Due Date: Thu Jan 31 6:00pm http://www.ece.cmu.edu/~pueschel/teaching/18-645-CMU-spring08/course.html

Submission instructions: If you have an electronic version of your assignment (preferably made using L^{AT}_{EX} , but other forms, including scanned copies are okay), email them to: <schellap+18645-assign1@andrew.cmu.edu>. Paper submissions need to be dropped off with one of the TAs at PH-B10 or with Carol Patterson at PH-B15. Late submissions will not be graded.

1. (9 pts) Show that the following identities hold by determining the explicit constants c and n_0 that are a part of the definition of O.

(a)
$$n + 1 = O(n)$$

(b)
$$n^3 + 2n^2 + 3n + 4 = O(n^3)$$

- (c) $n^5 = O(n^{\log_2 n})$
- 2. (14 pts) You know that O(n + 1) = O(n). Similarly, simplify the following as much as possible and briefly justify.
 - (a) O(100)
 - (b) O(100 + (1/n))
 - (c) $O(3n^2 + \sqrt{n})$
 - (d) $O(\log_3(n))$
 - (e) $O(n^{2.1} + n^2 \log(n))$
 - (f) O(mn+n)
 - (g) $O(m\log(n) + n\log(m) + n)$
- 3. (9 pts)
 - (i) In class, you learned that $\Theta(log_a n) = \Theta(log_b n)$ for a, b > 1. Does $\Theta(a^n) = \Theta(b^n)$ hold? Justify your answer.
 - (ii) Show that for k > 0, $\alpha > 1$: $n^k = O(\alpha^n)$ (i.e., polynomial functions grow slower than exponential functions).
 - (iii) Find a function f(n) such that f(n) = O(1), f(n) > 0 for all n, and $f(n) \neq \Theta(1)$. Justify the answer.
- 4. (18 pts) Give asymptotic bounds (O, Ω , or Θ) for T(n) in each of the following recurrences. Make your bounds as tight as possible. Justify your answers.
 - (a) $T(n) = 2T(n/2) + n^2$.
 - (b) T(n) = T(9n/10) + n.
 - (c) $T(n) = 16T(n/4) + n^2$.
 - (d) $T(n) = 7T(n/3) + n^2$.
 - (e) $T(n) = 2T(n/4) + \sqrt{n}$.
 - (f) $T(n) = 4T(n/2) + n^2 \log n$.
- 5. (10 pts) Solve 4(a) exactly for T(1) = 1 asumming $n = 2^k$.

6. (15 pts) Consider two polynomials: $h(x) = h_{n-1}x^{n-1} + \dots + h_0$ and $p(x) = p_{n-1}x^{n-1} + \dots + p_0$ of the same degree n-1.

Compute the exact (arithmetic) cost

C(n) =(number of additions, number of multiplications)

for multiplying the polynomials

- (a) by definition;
- (b) using the Karatsuba algorithm, recursively applied, assuming $n = 2^k$.
- 7. (15 pts) Solve the recurrence $f_0 = 1$, $f_1 = 1$, $f_n = f_{n-1} + 2f_{n-2}$, using the method of generating functions.
- 8. (10 pts) Consider a polynomial of the third degree: $a(x) = a_0 + xa_1 + x^2a_2 + x^3a_3$.
 - (a) Compute the exact (arithmetic) cost

D =(number of additions, number of multiplications) :

for evaluating a(x) at a point $x = x_0$

- i. by definition (in a straightforward way, without using any tricks)
- ii. if the polynomial is expressed as: $a(x) = a_0 + x(a_1 + x(a_2 + xa_3))$
- (b) Now, determine the cost D of evaluating an *n*-th degree polynomials $p(x) = a_0 + \cdots + a_n x^n$ using the same trick as in ii. above. The method is called Horner's scheme.