
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008

5th Lecture, Jan. 30th

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)

Carnegie Mellon

Technicalities

 Research project

 First homework:

After your name, write number of hours you needed

http://www.ece.cmu.edu/~pueschel/teaching/18-645-CMU-spring08/course.html

Carnegie Mellon

Today

 Runtime/performance measurement of numerical code

 Cache behavior of code

Carnegie Mellon

Runtime versus Performance

 We consider numerical programs

 Example: Computing MMM by definition

 Two measures: runtime and performance

 Runtime

 Measured in seconds

 Is what ultimately matters

 Performance

 Usually: measured in floating point operations per second = flop/s (or Mflop/s, Gflop/s)

 Floating point operations = additions + multiplications (arithmetic cost)

 Assumes negligible amount of divisions, sin, cos, ….

 Gives you an idea how much room for improvement when comparing to theoretical peak

performance of your machine

 Careful: higher performance ≠ shorter runtime (Why?)

Carnegie Mellon

Example: MMM Performance

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

theoretical peak performance

 Exact operations count is known: 2n3, so performance (here in Gflop/s)

can be computed from runtime

 Fast code reaches 85% of peak!

Carnegie Mellon

Example: DFT Performance

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

..

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single precision)

Gflop/s

 Exact operations count is not known: somewhere between 4 to 5nlog2(n)

 So 5nlog2(n) is used in all cases: preserves runtime relationship

 Fast code reaches only up to 40 to 50% of peak, drop for large sizes

Carnegie Mellon

Summary

 Showing performance is often preferrable to showing runtime
 If it is computed using the same flops (arithmetic cost) formula for all

implementations

 Preserves runtime relationship between different implementations
(performance ≈ inverse runtime)

 Gives an idea of absolute quality (how far from peak?)

 Yields “higher is better” plots: psychologically preferrable to “lower is better”
plots

 Question: What percentage of peak is achievable for a given
algorithm?

 Answer: It depends on
 Reuse (memory hierarchy)

 Regular fine grain parallelism (vector instructions)

 Coarse grain parallelism (multiple threads)

Carnegie Mellon

Reuse

 Cache misses

 Deteriorate performance: Much more expensive than adds and mults

 Ideally:

 Every data element is brought into cache once

 All computation that needs it is performed before it is evicted from cache

 Means only one compulsory miss

 Miss time overcompensated by computation time, but there are limitations

 Reuse: The reuse of an O(f(n)) algorithm is given by

O(f(n)/n)

 Intuitively measures how often every input element is on average needed in

the computation

 Can also be measured exactly: Arithmetic cost of algorithm divided by n

Carnegie Mellon

CPU bound versus Memory bound

 Definitions are not precise

 An algorithm with high reuse is called CPU bound

 Most time is spent computing

 Will run faster if CPU is faster

 An algorithm with low reuse is called memory bound

 Most time spent transferring data in the memory hierarchy

 Will run faster if memory bus is faster

 Examples: (blackboard)

 MMM, DFT, MVM

Carnegie Mellon

Effects

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

..

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single precision)

Gflop/s

MMM: O(n) reuseFFT: O(log(n)) reuse

80-85% peak

Performance can be maintained
Cache miss time compensated/hidden

by computation

40-50% peak

Performance drop outside L2 cache
Most time spent transferring data

Carnegie Mellon

Actual Benchmarking (Read Section 3.2 in Tutorial)

 First: Verify your code!

 Measure runtime in seconds for a set of relevant input sizes

 Determine performance: flop/s

(number floating point ops/second)

 Needs arithmetic cost:

 Obtained statically (cost analysis since you understand the algorithm)

 or dynamically (tool that counts, or replace ops by counters through macros)

 Compare to theoretical peak performance

 Careful: Different algorithms may have different op count, i.e., best flop/s is not

always best runtime

Carnegie Mellon

Guide to benchmarking: How to measure runtime?

 C clock()

 process specific, low resolution, very portable

 gettimeofday

 measures wall clock time, higher resolution, somewhat portable

 Performance counter (e.g., TSC on Pentiums)

 measures cycles (i.e., also wall clock time), highest resolution, not portable

 Careful:

 measure only what you want to measure

 ensure proper machine state

(e.g., cold or warm cache = input data is or is not in cache)

 measure enough repetitions

 check how reproducible; if not reproducible: fix it

 Getting proper measurements is not easy at all!

Carnegie Mellon

Example: Timing MMM

 Assume MMM(A,B,C,n) computes

C = C + AB, A,B,C are nxn matrices

double time_MMM(int n)

{ // allocate

double *A=(double*)malloc(n*n*sizeof(double));

double *B=(double*)malloc(n*n*sizeof(double));

double *C=(double*)malloc(n*n*sizeof(double));

// initialize

for(int i=0; i<n*n; i++){

A[i] = B[i] = C[i] = 0.0;

}

init_MMM(A,B,C,n); // if needed

// warm up cache (for warm cache timing)

MMM(A,B,C,n);

// time

ReadTime(t0);

for(int i=0; i<TIMING_REPETITIONS; i++)

MMM(A,B,C,n);

ReadTime(t1);

// compute runtime

return (double)((t1-t0)/TIMING_REPETITIONS);

}

Carnegie Mellon

Problems with Timing

 Too few iterations: inaccurate non-reproducible timing

 Too many iterations: system events interfere

 Machine is under load: produces side effects

 Multiple timings performed on the same machine

 Bad data alignment of input/output vectors: align to multiples of cache

line (on Core: address is divisible by 64)

 Time stamp counter (if used) overflows

 Machine was not rebooted for a long time: state of operating system

causes problems

 Computation is input data dependent: choose representative input data

 Computation is inplace and data grows until an exception is triggered

(computation is done with NaNs)

 You work on a laptop that has dynamic frequency scaling

 Solution: check whether timings make sense, are reproducible

Carnegie Mellon

Cache Behavior of Code

 Blackboard

 Small example

 Data reuse and neighbor reuse

 Sequential access

 Strided access

