Carnegie Mellon

) B

How to Write Fast Code

18-645, spring 2008
16t Lecture, Mar. 17t

Instructor: Markus Puschel
TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)

Carnegie Mellon

Q) B

Today

m Guide to benchmarking and making nice plots
m Starting on transforms

m Rough plan for the next lectures
= Next “homework” is working on project

" Transforms and filters (same as: correlation, interpolation, stencil,
polynomial multiplication)

= Another round of one-on-one meetings

= Shared memory parallelization, other functionality, advanced
topics

= Discuss project presentations

Carnegie Mellon
). Electrical & Computer
A BReienme

Benchmarking

m Before you start

m Type 1: Evaluation of the performance of your code
(no external competitor)

m Type 2: Comparisons against other code
(you want to show your code is better)

m Presenting your results (plots)
" |n writing
= Talking
= Making nice plots

Carnegie Mellon

) B

Before You Start

m Verify your code!
= And that very carefully
= |tis utterly embarrassing to publish or present meaningless results

Carnegie Mellon

Q) B

Evaluating Your Own Code

m Measure
" Runtime
= Performance (floating point cost by analysis or instrumenting your code)
= Percentage of peak

m Make sure you use your compiler properly
= QOptimization flags (e.g., try -02, -03, specify platform if possible)
= For compiler vectorization and written vector code see vector lecture

Carnegie Mellon

) ERGNEERRE

Comparison Against Other Code

= Be fair! .

= Make sure the comparison is apples to apples

= Your code computes exactly the same
= Same interface (e.g., order of input array, data structures)
= Compile other code properly (maybe specific flags are specified)
= Use the same timing method
= Always do a sanity check: compare to published results etc.
= Apply obvious, easy optimizations also to the competitor code!
(but say so when you report)
m Compare against the fastest available code

m Report performance if possible
= But use same op count for computing (so it’s inverse runtime)
= Shows efficiency of code besides who is better
= Yields higher is better plots (psychologically more intuitive)

Carnegie Mellon
). Electrical & Computer
A BReienme

How to Present Results in Writing

m Specify machine
" processor type, frequency
" relevant caches and their sizes
" operating system

m Specify compilation
= compilerincl. version
= flags

m Explain timing method

m Plot
= Has to be very readable (colors, lines, fonts, etc.)
= Discuss interesting aspects of plots and extract a main message
" Choose proper type of plot: message as visible as possible

Carnegie Mellon

) ERGNEERRE

How to Present Results Talking

Briefly explain the experiment
Explain x- and y-axis

N

N

m Say, e.g., “higher is better” if appropriate

m Give an example: this line/point means that
H

Discuss plot and extract a message in the end

1500
Platform:

P4 (HT), 3GHz,
8KB L1, 512KB L2,
WinXP

Performance of the
discrete cosine transform:

1000}

w
Message: %

. . = Compiler:
*Spiral code is 2x faster 500 icc 8.0
*reaches up to 50% of peak - EEE}B%}%“&S’

o - oat)
" @ |PP 4.0 (float) cOmpiIer flags:
% 25 s s 4 45 5 55 s [/QXKW/G7 /03

k= Iogz(size)

Carnegie Mellon

. A EREEERRE
Plots: The Basics
m Very readable

= Title, x-label, y-label need to be there

= Fonts large enough

" Enough contrast line to background (e.g., no yellow on white please)
® Enough difference between lines
" Proper number format (where appropriate)

= No: 13.254687; yes: 13.25

= No: 2.0345e-05 s; yes: 20.3 us

= No: 100000 B; maybe: 100,000 B; yes: 100 KB

m Clearly shows the message

= Proper type of plot (line, bars, properly ordered)
= All the above

" Check it: you know the message; does it jump in your face?
m Beautiful

"= Tough, but all the above makes it more beautiful, more later

Carnegie Mellon

A ERGRERE
Example: Mediocre Plot
Well, 3 years ago I thought it is a good one ©

1500
1000}
%)
o
O
—
L
2 . AN
—A- SPIRAL (double)
.m IPP 4.0 (double)
e 5 - —w— SPIRAL (float)
§ : : @ IPP 4.0 (float)
0 ! | ! ! ! | |
2 2.5 3 35 4 45 5 55 6

k= Iog2(size) \
Except for this

How do we make it better?

Carnegie Mellon

{) Electrical & Computer
ENGINEERING

Example I: Good Plot

left alignment attractive font (avoid Roman, Arial)
lgives sophisticated look l
grid lines do not compete with data
Mid-semester grades 18-645, spring 2008 different visual “layer”
y-label horizontal: ——> number of people l
readable without 12

spine damage

10
8
no y-axis =——>

(superfluous) 6
4
2

O [T

A

A- B C D
grade

<—— attractive color
desaturated, does not blind you

<&—— shades are attractive
but don’t overuse

ENGINEERING

Q} Electrical & Computer
Example ll: Good Plot

no legend

Discrete cosine transform 2 (DCT-2) connection labels ¢ lines immediate

Performance [Gflop/s]
8

background/grid lines inverted

another way of layering
6

Generated library

2 & -«
AN - Intel IPP 5.2

consistent I.ln('e sty!es 3 // \v/
to distinguish
(color is much better though) o4 : : : : :
4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k
input size

L

Carnegie Mellon

A Briomieame

Example lll: Good Plots

R rei H H HH H - DFT 256 IP Core: Spiral generated vs. Xilinx Logicore
DFT 256 (single precision floating point) on Xilinx Virtex-4 platforms Inverse performance (2p) versus arem, Parcto optimal designs . e
throughput [million samples per second] performance [Gflop/s] el e damond): g piral generate
1800 %0 @ (circle): not streamed, gap = latency @ (diamond): streame: [Xilinx Logicore 3.2
4 Spiral generated FFT, not fully streamed Gap [microseconds]
1600 mSpiral generated FFT, fully streamed 80 8
A FFT from 4DSP [http://www.4dsp.com/fft.htm] \
7
1400 70 582 slices, 2 BRAM
——————67] slices, 3 BRAM
1200 60 6

1000 50 5
800 40 4
T 938slices, 4 BRAM
600 30 3 1666 slices, 7 BRAM
32 multipliers o/ 1201 slices, 4 BRAM
40 multipliers o grRAM e
400 36 BRAM 20 2

/

200 T 10
0 . ; | ' 0 et ¥ * 1
0 10,000 20,000 30,000,40,000 50,000 60,080 70,000 8,000 90,000 10,000 15,000 20,000 25,000

) Area [slices]
area [slices]

* additional information can be packed into a plot

* but use different visual layers

* and make sure it is readable

* good for print publications or web (reader has time to study)

Carnegie Mellon

Q) B

Good Plots: Advanced Principles

m No Roman or other serif font, avoid Arial if possible
= Calibri (Office 2007)

= Myriad M serif

= Verdana _
: M sans serif

= Gill Sans

m Layering
= Grid lines, axes, etc. should not compete with data lines for attention
= More care necessary when more information is packed into plot
® Good example for layering: maps

m Alignment

= Title, horizontal y-label: left (general design principle)
= x-label, vertical y-label: center

Carnegie Mellon

({) Electrical & Com ter
ENGlNEER

Good Plots: Advanced Principles

m Colors
. . . Colors @
= Use them, except for most print publication it [o | o
= Don’t use fully saturated colors > | s
= Use somewhat desaturated colors > u I
. Get rid Of Chart junk Colaor model: __
_— Hue:
" Maximize: sat = _
(ink used on data)/(ink used on the rest) " .

Carnegie Mellon

Q} Electrical & Computer
ENGINEERING

Keep in Mind

Quality of .
presentation Quality
A A
perfect
you get judged by the area
{]
> - - = >
Technical content Homework Paper. Time spent
(please) Presentation

Left plot based on a discussion with Jim Bain

Carnegie Mellon

Q) B

Tools and More Information

m Software for making plots
= Matlab (plots by default ugly, but totally configurable, scriptable)
= Excel (2003: by default ugly but a little clicking, get Office 2007!)
= Gnuplot (totally configurable, scriptable, only for linux really)

= For highest quality | use: Excel to get it roughly right, then copy-
paste into Adobe lllustrator for fine-tuning (everything editable)

m How to learn more

= |Look how good magazines do it (Economist, National Geographic,
NY Times, ...)

= Edward Tufte:
= Visual display of quantitative information

= Beautiful evidence

® See also: Guide to making nice tables

http://www.amazon.com/Visual-Display-Quantitative-Information-2nd/dp/0961392142/ref=pd_bbs_sr_1?ie=UTF8&s=books&qid=1205683504&sr=8-1
http://www.amazon.com/Beautiful-Evidence-Edward-R-Tufte/dp/0961392177/ref=pd_sim_b_img_3
http://www.ece.cmu.edu/~pueschel/teaching/guides/guide-tables.pdf

Carnegie Mellon

) B

Transforms

Carnegie Mellon

) B

The Protagonists: Linear Transforms

m Mathematically: Change of basis
Two “schools” of representation

Yo 0
Y1 nd x1
y = : Yk = b 0Ty T = :
: = :
Yn—1 Ln—1

Summation formula

y =Tz T = [ty /]

Matrix-vector product

m Used in signal processing, scientific computing, ...
m Example: Discrete Fourier transform (DFT)

DFT, = [e—Qkfwi/n] 0<k.l<n

Carnegie Mellon

Q} Electrical & Com ter
ENGINEER

Transforms: Examples

m More than 30 transforms in the literature

DFT, = [e2kmi/ "lo<k,e<n .
. " feos 20kt g < |8 universal tool
7 k0<k f<n> k£ _sin 21:{:5’ B> L%J
DHT = |cos(2kfr/n) +5in(2k€ﬂ/n)] o<k ien
_ [WHT,,, WHT,; I
WHT, = WHT,), —WHT, " WHT, = DFT,
IMDCT, = |cos((2k+ 1)(2(+ 1+ n)r/4n)| O<heomO<ten MPEG
DCT-2, = :cos(k(zé—l- 1)ﬁ/2n)]0 ttem JPEG
DCT-3,, = DCT—ZnT (transpose)
DCT-4, = |cos((2k+1)(20+ V)x/4n)| _, ,

Carnegie Mellon

) B

Fast Transform Algorithms

m Reduce runtime from O(n?) to O(n log(n))
m > 200 publications on transform algorithms

m Example: Cooley-Tukey fast Fourier transform (FFT)
Again two schools:

ni1—1 no—1
S IZ J2k1 QZ J2ko | 71k1
Ynoji1+jo — W Lnikot+kWno ~ | Wny

k1=0 k=0

sequence of summations

DF T = L7 (In; ® DF T,)T (DF Ty @ Iny)

matrix factorization

arnegie Mello

Nfg—1

+ Z _\'(.'-'Jru\-ﬂ‘z"‘—w

(a—1)/2

SE ()

DCT, type IlI
e (q—1)/2 oy \ {02 AT (20 + 1)(2iN/q)
2iN T(2n+ 1)(2iN/q) "C0S ———(———
» LYpP + oy X5 e T AL
=0 v Njg=1 (q=1)/2

Ty ak
- > Z {0 con T o 11

T(2n+ 1)k
2(N/q)

N/q (q /2 2N
= (4)'[,\'(’_'“:)
=1 =1 v

— Ty sin 2 sin 2E L cos

1 . | q 2N
w(2n + 1)k

" R

II. THE ODD-FACTOR ALGORITHM
The length-V IDCT of mput sequence X (k) 1s defined by

iy (2 1)k
=3 X(k) cos "‘"_';:r,) 0<n<N-1 (1)

k=0

z(n)
(a—1)/2
where sequence length V 1s an arbitrarily composite integer expressed + E

by i=0

- N/q—1
m(2n 4
xH[2¢+])“
i=1

N=2"x

g=2" @ = 5 Uk cos TRy,

k=0

next homework

It is noted that mpul x[(2i + 1IN/
defining Si(k) = X(2iN/g+ k) + .
X(2iN/q+ k) — X(2iN/q — k). wh
have

Algorithm
derivation

(a—1)/2

X+ Y (-

ot Ty Just kidding ©

=0

Therefore, (6) can be computed by a le

(20 + 17k

 Fast implementation of this algorithm:

sequence length that 1s a power of odd integers. Therefore, the odd-
factor algorithm is general and particularly suited to sequence length
containing any possible combination of odd factors. Fig. 1 shows an
example for N = 27. In principle, the proposed odd-factor algorithm
is the reverse process of the FDCT algorithm presented in [12]

For a composite sequence length contamning both odd and even
factors, the radix-2 and the odd-factor algorithms can be jointly
used. In principle. the decomposition process can be carried out in
many ways. However, a lower count of operations is obtained if the

dewmpoimon process alan\ mlh the ascending order of the factors

£oar T g L

~+*1 operations, we
wowth rate with
L it was proved
{ 1s proportional
hich shows the
r of arithmetic
that the growth
mce lengths for
llest growth rate
hat the smallest
lgorithm before
is. In summary.
IT of arbitranly

JCT is reached:;
the odd-factor

ing (4) and (5). we form two new sequences defined by Gin,m) = (=1)" Z WI(N/q—k.in) cos T (14) There are many ways of using the twiddle factors m (11) and (13)
) a{qn +m)+ wlqgn+q—m —1) k=0 2N) Que mu]lipllcguou is needed if the product of two twiddle factors
Fin.m)= 5 which is a length-N/q IDCT. The final IDCT outputs can be obtained these equations is precalculated. Hence, the decomposition costs
mutually prime). The IDCT can be decomposed mto 1 — 2ok by (6) and h are as follows,
F - — zin)k B - - . -
q-—1 = Z X (k) cos 1 SN - 1) (g — 1)(N/q—0.5) additions are needed for (7)
.r'(rju + —)) k=0 - a(gn +m)=F(n,m)+ Gln,m) 2) (¢—1){2N/q—1) additions are needed for m = 0 in (11), and
\7‘- cos T(2n 4+ 1)k (%) rlgn+q—m—1)=Flu.m)—Glu.m) (¢ — 1)N/q additions are for each value of m = 1,---, (4 —
(2 . TN a9 . r 5 3 inlications
_ Z X (k) cos < g + 1)k) 2(N/q) 0<m<(g—3)/2. 0<n<Ng—1. (15) 3)/2. Furthermore. (N — q) 4+ 0.5(¢ — 1) multiplications are
= 2(N/q) Gl = Hantm) = |
: (n,m) = ————————— -
x{qn +m) =q)+0.5(g—1)
N a2 D (g 1— 2m)k N-—1 t=0.--.(qg—
=3 X(k) con THERH D L0 i “ = Z X (k) sin
2 yplca erivation SUch papers
rign+q—m—1) sin ;[)’{n\-; J
N— q
_ 2 Y (k) - cos wlg2n+ 1)+ (¢ — 1 —2m)]k) .
= X 2 Y eame =012 0 REOCENT research at
decomposed mto O lp-1
where for (3)~(5). n = 010 N/g — 1 and m: = 0 to (g — 3)/2.
Equation (3) can be rewritten mto Nfg=t [la=1}/2 9 ° L L) ° e (11
Form = «(« Simplifies derivation
(i 737) 2% 0
9
a(2iN
i fap '(-'-?,QM
(24 21
-2 2 () -« . * Explains origin
k=1 =1 i
w3 (-
T(2n 4+ 1)(2IN/q+ k)
Cos
2(N/q) .
e g o WENAE) | e——— : ey 9
+ -\'(-7 —/.) - “LV/g) Wik,m)= + T (=1 Ti(k) sin = } cos—— k=1,---,Nfg—1 a3
; q o 2; (=1 P 2N /a
o w(2n+ 1)k p

2 1)(2iN/q— k)
cos 7‘” nt 12N/ }

ak 2
+ X (k) cos 25 cos T
N/a) ; 2N 2(N/q)

a—1)/2 e
3 X :J sin
1

a(2i—1)

% k= N/q.

G. Bi “Fast Algorithms for the Type-Ill DCT of Composite Sequence Lengths” IEEE Trans. SP 47(7) 1999

http://www.ece.cmu.edu/~smart/index.html

Carnegie Mellon

) B

Discrete Fourier Transform (DFT)

m Blackboard

