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Summer Research Project

 Preferred: undergraduate student

 Fulltime (40 hours/week), 3 months

 Pay: standard CMU (somewhere between 10 and 15/hour)

 Requirement: good standing in this class, overall GPA > 3.5

 Why?
 Research experience, maybe even publication

 Good for grad school



Carnegie Mellon

Today

 How to get a fast DFT: FFTW (version 2.x)
Focus on scalar code

 References
 FFTW website

 M. Frigo: A fast Fourier transform compiler

http://www.fftw.org/
http://portal.acm.org/citation.cfm?id=301661
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Precomputing Constants

 The “twiddle” matrix T produces multiplications by 
constants that are sines and cosines: 

y[i] = sin(i·pi/128)·x[i]

Very expensive! (remember HW 2)

 Solution: 
 Precompute once and store in table

 Reuse many times

 Assumes transform is used many times (what if not?)
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Optimizations

 Locality of data access (reuse)

 Precomputing constants

 Fast basic blocks

 The FFTW codelet generator

 Adaptivity
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Basic Block Optimizations for FFTs

 Problem: similar to MMM 

 We do not want to recurse all the way to n = 2

 Infrastructure produces overhead = destroys performance.

 Solution:

 Unrolled DFT code for fixed small sizes (≤ 32 say). 
In FFTW called codelets

 Optimization for these blocks is much harder than for the 
micro MMMs in MMM

 Again, compilers often don’t do a good job on unrolled code

 Doing it by hand you get a crisis (62 functions! Why 62?)

 Solution: Code generator/optimizer for small sizes
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FFTW Codelet Generator

 DAG: directed acyclic graph
 Represents a DFT algorithm (the dataflow)

 Nodes: load, store, adds, mults by constant

 Give example on blackboard

DAG
generator

Simplifier Schedulern
DFTn

codeDAG DAG

FFT codelet
generator

n
Codelet for DFTn

Twiddle codelet for DFTn
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DAG Generator

 Knows FFTs: Cooley-Tukey, split-radix, Good-Thomas, 
Rader, represented in sum notation

 For given n, suitable FFTs are recursively applied to yield n 
(real) expression trees for y0, …, yn-1

 Trees are fused to an (unoptimized) DAG
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Simplifier
 Applies:

 algebraic transformations

 common subexpression elimination (CSE)

 DFT-specific optimizations

 Algebraic transformations
 Simplify mults by 0, 1, -1

 Distributivity law: kx + ky = k(x + y), kx + lx = (k + l)x
May destroy common subexpressions and thus increase op count!

 Canonicalization: (x-y), (y-x) to (x-y), -(x-y)

 CSE: standard
 E.g., two occurrences of 2x+y: assign new temporary variable

 DFT specific optimizations
 All numeric constants are made positive

 Reason: constants need to be loaded into registers, too

 CSE also on transposed DAG



Carnegie Mellon

Scheduler
 Determines in which sequence the DAG is unparsed to C

(topological sort of the DAG)
Goal: minimizer register spills

 If R registers are available, then a 2-power FFT needs at 
least Ω(nlog(n)/R) register spills [1]
Same holds for a fully associative cache

 FFTW’s scheduler achieves this (asymptotic) bound 
independent of R

 Sketch it on blackboard

[1] Hong and Kung: “I/O Complexity: The red-blue pebbling game” 

http://portal.acm.org/citation.cfm?id=802486&dl=GUIDE&coll=GUIDE&CFID=61071109&CFTOKEN=73538984
http://portal.acm.org/citation.cfm?id=802486&dl=GUIDE&coll=GUIDE&CFID=61071109&CFTOKEN=73538984
http://portal.acm.org/citation.cfm?id=802486&dl=GUIDE&coll=GUIDE&CFID=61071109&CFTOKEN=73538984
http://portal.acm.org/citation.cfm?id=802486&dl=GUIDE&coll=GUIDE&CFID=61071109&CFTOKEN=73538984


Carnegie Mellon

Codelet Examples

 Notwiddle 2

 Notwiddle 3

 Twiddle 3

 Notwiddle 32

 Techniques not seen before:
 Scoping (variables only defined where they occur)

Purpose: simplifies dependency analysis

 Single static assignment (SSA) style: Each variable has only one 
single definition in the code
Purpose: no artificial dependencies

../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_2.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_2.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_2.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_3.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_3.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_3.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/t1_3.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/m1_32.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/m1_32.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/m1_32.c
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Optimizations

 Locality of data access (reuse)

 Precomputing constants

 Fast basic blocks

 Adaptivity

 Start on blackboard
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Dynamic Programming (DP)

 An algorithmic technique to solve optimization problems

 Definition: DP solves an optimization problem by caching 
and reusing subproblem solutions (memoization) rather 
than recomputing them

 Well-suited for all divide-and-conquer algorithms with a 
degree of freedom in the divide step

 Inherent assumption: Best solution is independent of the 
context in which the problem has to be solved
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DP for FFTs

 Goal: Find the best recursion strategy for a DFT of size 2k, 
computed with the Cooley-Tukey FFT

 Assume the best recursions for sizes 21,…,2k-1 are already 
computed

 Split DFT 2k in all k-1 possible ways and use the best 
recursions for the smaller DFTs. 

 The fastest of these k-1 algorithms is the solution for 2k

 Cost: (k-1)+(k-2)+…+1 = O(k2) for size 2k
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DP for FFTs (cont’d)

 In FFTW: Essentially as described on the previous slide, 
except left DFT is of size ≤ 64 (since twiddle codelet)

 Does DP assumption hold for FFTs?
 Not clear. In particular the best FFT could depend on the stride.

 But works well in practice and is fast
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Performance (Scalar Code)

The code for radix-4 FFT is in the tutorial
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MMM
Atlas

Sparse MVM
Sparsity/Bebop

DFT
FFTW

Cache 
optimization

Blocking
Blocking 

(rarely useful)

recursive FFT, 
fusion of steps

Register 
optimization

Blocking
Blocking 
(sparse format)

Scheduling
small FFTs

Optimized basic 
blocks

Unrolling, instruction ordering, scalar replacement, 
simplifications (for FFT)

Other 
optimizations

— —
Precomputation of 
constants

Adaptivity
Search: blocking 
parameters

Search: register 
blocking size

Search: recursion 
strategy


