Carnegie Mellon

) B

How to Write Fast Code

18-645, spring 2008
19th Lecture, Mar. 26"

Instructor: Markus Puschel
TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)



Carnegie Mellon

) ERGNEERRE

Summer Research Project

m Preferred: undergraduate student

m Fulltime (40 hours/week), 3 months

m Pay: standard CMU (somewhere between 10 and 15/hour)
m Requirement: good standing in this class, overall GPA > 3.5

m Why?
= Research experience, maybe even publication
" Good for grad school



Carnegie Mellon

) B

Today

m How to get a fast DFT: FFTW (version 2.x)
Focus on scalar code

m References
= FFTW website
= M. Frigo: A fast Fourier transform compiler



http://www.fftw.org/
http://portal.acm.org/citation.cfm?id=301661

Carnegie Mellon

) B

Optimizations

m Locality of data access (reuse)
m Precomputing constants
m Fast basic blocks

m Adaptivity



Carnegie Mellon

) B

Optimizations

m Locality of data access (reuse)

= Blackboard
m Precomputing constants
m Fast basic blocks

m Adaptivity



Carnegie Mellon

) B

Optimizations

m Locality of data access (reuse)
m Precomputing constants
m Fast basic blocks

m Adaptivity



Carnegie Mellon

Q) B

Precomputing Constants

m The “twiddle” matrix T produces multiplications by
constants that are sines and cosines:

v[i] = sin(i-pi/128) -x[i]

Very expensive! (remember HW 2)

m Solution:
= Precompute once and store in table
" Reuse many times

= Assumes transform is used many times (what if not?)



Carnegie Mellon

) B

Optimizations

m Locality of data access (reuse)
m Precomputing constants

m Fast basic blocks

"= The FFTW codelet generator

m Adaptivity



Carnegie Mellon

) ERGNEERRE

Basic Block Optimizations for FFTs

m Problem: similar to MMM

= We do not want to recurse all the wayton =2

" |nfrastructure produces overhead = destroys performance.

m Solution:

= Unrolled DFT code for fixed small sizes (< 32 say).
In FFTW called codelets

m Optimization for these blocks is much harder than for the
micro MMMs in MMM

m Again, compilers often don’t do a good job on unrolled code
= Doing it by hand you get a crisis (62 functions! Why 627?)

m Solution: Code generator/optimizer for small sizes



Carnegie Mellon

) ERGNEERRE
FFTW Codelet Generator

FFT codelet Codelet for DFT,

N —
generator Twiddle codelet for DFT,

DAG DFT,
N —p ——> Simplifier =™ Scheduler —

generator DAG DAG code

m DAG: directed acyclic graph
= Represents a DFT algorithm (the dataflow)
= Nodes: load, store, adds, mults by constant

m Give example on blackboard



) ERGNEERRE
DAG Generator

m Knows FFTs: Cooley-Tukey, split-radix, Good-Thomas,
Rader, represented in sum notation

ni—1 no—1

S lz: Jok1 22: Joko Jik1

Ynojr1+io — Wry Lnqko+k1%no Wny
k1=0 kr=0

m For given n, suitable FFTs are recursively applied to yield n
(real) expression trees fory,, ..., y,,1

m Trees are fused to an (unoptimized) DAG



) ERGNEERRE

Simplifier
m Applies:

= algebraic transformations

= common subexpression elimination (CSE)

= DFT-specific optimizations
m Algebraic transformations

= Simplify mults by O, 1, -1

= Distributivity law: kx + ky = k(x +y), kx + Ix = (k + I)x
May destroy common subexpressions and thus increase op count!

= Canonicalization: (x-y), (y-x) to (x-y), -(x-y)
m CSE: standard

= E.g.,two occurrences of 2x+y: assign new temporary variable

m DFT specific optimizations
= All numeric constants are made positive
= Reason: constants need to be loaded into registers, too
= CSE also on transposed DAG



Carnegie Mellon

A B
Scheduler

m Determines in which sequence the DAG is unparsed to C
(topological sort of the DAG)
Goal: minimizer register spills

m If Rregisters are available, then a 2-power FFT needs at
least Q(nlog(n)/R) register spills [1]
Same holds for a fully associative cache

m FFTW’s scheduler achieves this (asymptotic) bound
independent of R

m Sketch it on blackboard

[1] Hong and Kung: “I/O Complexity: The red-blue pebbling game”



http://portal.acm.org/citation.cfm?id=802486&dl=GUIDE&coll=GUIDE&CFID=61071109&CFTOKEN=73538984
http://portal.acm.org/citation.cfm?id=802486&dl=GUIDE&coll=GUIDE&CFID=61071109&CFTOKEN=73538984
http://portal.acm.org/citation.cfm?id=802486&dl=GUIDE&coll=GUIDE&CFID=61071109&CFTOKEN=73538984
http://portal.acm.org/citation.cfm?id=802486&dl=GUIDE&coll=GUIDE&CFID=61071109&CFTOKEN=73538984

Carnegie Mellon

) B

Codelet Examples

m Notwiddle 2
m Notwiddle 3
m Twiddle 3

m Notwiddle 32

m Techniques not seen before:
= Scoping (variables only defined where they occur)
Purpose: simplifies dependency analysis

= Single static assignment (SSA) style: Each variable has only one
single definition in the code
Purpose: no artificial dependencies


../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_2.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_2.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_2.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_3.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_3.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/n1_3.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/t1_3.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/m1_32.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/m1_32.c
../../../../../teaching/18-645-CMUspring08/19-26Mar08/m1_32.c

Carnegie Mellon

) B

Optimizations

m Locality of data access (reuse)
m Precomputing constants

m Fast basic blocks

m Adaptivity

= Start on blackboard



Carnegie Mellon

) ERGNEERRE

Dynamic Programming (DP)

m An algorithmic technique to solve optimization problems

m Definition: DP solves an optimization problem by caching
and reusing subproblem solutions (memoization) rather
than recomputing them

m Well-suited for all divide-and-conquer algorithms with a
degree of freedom in the divide step

m Inherent assumption: Best solution is independent of the
context in which the problem has to be solved



) ERGNEERRE
DP for FFTs

m Goal: Find the best recursion strategy for a DFT of size 2¥,
computed with the Cooley-Tukey FFT

m Assume the best recursions for sizes 21,...,2%! are already
computed

m Split DFT 2Xin all k-1 possible ways and use the best
recursions for the smaller DFTs.

m The fastest of these k-1 algorithms is the solution for 2k

m Cost: (k-1)+(k-2)+...+1 = O(k?) for size 2k



) ENEEERRE
DP for FFTs (cont’d)

m In FFTW: Essentially as described on the previous slide,
except left DFT is of size < 64 (since twiddle codelet)

m Does DP assumption hold for FFTs?
"= Not clear. In particular the best FFT could depend on the stride.
= But works well in practice and is fast



Carnegie Mellon

Q} Electrical & Computer
ENGINEERING

Performance (Scalar Code)

DFT on 2.66 GHz Core2 Duo (32-bit Windows XP, Single Core, x87)

performance [Gflop/s]

3.5

FFTW 3.1.2
(double-precision, out-of-place)

3.0

2.5

Recursive Radix-4 FFT
(double-precision, out-of-place)

2.0
1.5
1.0
0.5
0.0 r

2 4 6 8 10 12 14 16 18 20 22 24
log,(input size)

The code for radix-4 FFT is in the tutorial



MMM

Sparse MVM

Carnegie Mellon

) B

DFT

Cache
optimization

Register
optimization

Optimized basic
blocks

Other
optimizations

Adaptivity

Atlas

Blocking

Blocking

Sparsity/Bebop
Blocking

(rarely useful)

Blocking
(sparse format)

FFTW

recursive FFT,
fusion of steps

Scheduling
small FFTs

Unrolling, instruction ordering, scalar replacement,
simplifications (for FFT)

Search: blocking
parameters

Search: register

blocking size

Precomputation of
constants

Search: recursion
strategy




