
Carnegie Mellon

How to Write Fast Code
18-645, spring 2008
26th Lecture, Apr. 21st

Instructor: Markus Püschel

TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)



Carnegie Mellon

Course Evaluations

 Are open now

 Please fill it out



Carnegie Mellon

Research Project
 Project expectations

 Paper templates and instructions on the website

 Poster template soon

• Today

• Papers due (6 pm)

• Last class: 
poster session
Scaife Hall
5:30 – 8:30 pm

• Due:
• Final papers
• Final code



Carnegie Mellon

Today

 Sorting 
(Example of a non-numerical problem)



Carnegie Mellon

Sorting

 Fundamental problem in computer science
 Extensively studied

 Many different algorithms (Wikipedia)

 Comparison based algorithms
 Complexity: Ω(n log(n))

 Quicksort

 Mergesort

 Insertion sort

 Sorting networks

 Other algorithms
 Radix sort

 How to make sorting fast?

Source: Amazon

http://en.wikipedia.org/wiki/Sorting_algorithm


Carnegie Mellon

Performance Issues

 Many algorithms to choose from

 Usually not optimized for the memory hierarchy

Plots: D. Jimenez-Gonzalez, J. Navarro, and J. Larriba-Pey. CC-Radix: A Cache Conscious Sorting Based on 
Radix Sort. In Euromicro Conf. on Parallel Distributed and Network based Processing, pp. 101–108, 2003



Carnegie Mellon

Performance Issues

 Performance may depend on 
 the distribution of input data

 the computing platform

Plots: Xiaoming Li, María J. Garzarán and David Padua, A Dynamically Tuned Sorting Library,
Proc. International Symposium on Code Generation and Optimization (CGO), pp. 111-124, 2004



Carnegie Mellon

Sorting Algorithms and 
Memory Hierarchy Optimizations

 Quicksort

 Mergesort

 Insertion sort

 Sorting networks

 Radix Sort

 Putting it together: adaptive sorting



Carnegie Mellon

Quicksort (Hoare 1961)

 Start on blackboard

 One partitioning step (inplace version)

 Discussion: blackboard

function partition(array, left, right, pivotIndex)

pivotValue := array[pivotIndex] 
swap array[pivotIndex] and array[right] // Move pivot to end
storeIndex := left 

for i from left to right // left ≤ i < right
if array[i] ≤ pivotValue
swap array[i] and array[storeIndex] 
storeIndex := storeIndex + 1 
swap array[storeIndex] and array[right] // Move pivot to its final place

return storeIndex

Source: Wikipedia



Carnegie Mellon

Mergesort (von Neumann 1945)

 Start on blackboard

 Merge function

 Discussion: blackboard

function merge(left,right) 
var list result 
while length(left) > 0 and length(right) > 0 

if first(left) ≤ first(right) 
append first(left) to result 
left = rest(left) 

else
append first(right) to result 
right = rest(right) 

if length(left) > 0 
append rest(left) to result 

if length(right) > 0 
append rest(right) to result 

return result 

Source: Wikipedia



Carnegie Mellon

John von Neumann (1903-1957)

 Hungarian (later American citizen) genius

 Among the first four selected for the 
Institute of Advanced Studies, Princeton 
(with Gödel and Einstein)

 Major contributions in: set theory, functional analysis, 
quantum mechanics, ergodic theory, continuous geometry, 
economics and game theory, computer science, numerical 
analysis, hydrodynamics, statistics
 Founded game theory and applied it to economics

 Von Neumann computer architecture

 Manhattan project



Carnegie Mellon

Insertion Sort

 Pseudocode

 Discussion: blackboard

Source: Wikipedia

function insertionSort(array A) 
for i = 1 to length[A]-1 do 

value = A[i] 
j = i-1 
while j >= 0 and A[j] > value do 

A[j + 1] = A[j]
j = j-1 

A[j+1] = value 



Carnegie Mellon

Sorting Networks

 Start on blackboard

 Example: N = 4, 5 comparators

 Discussion: blackboard

Source: Wikipedia

1

3

2

4

4

1

3

2

1

2

3

4

2

3

1

2

3

4



Carnegie Mellon

Sorting Networks as Basic Blocks

 Example

Source: Xiaoming Li, María J. Garzarán and David Padua, A Dynamically Tuned Sorting Library,
Proc. International Symposium on Code Generation and Optimization (CGO), pp. 111-124, 2004

network unrolled code, scheduled 
for instruction level parallelism


