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Motivation and lIdea behind this Course



The Problem: Example DFT on Pentium 4

8000 T T
- Intel vendor library
7000 gy § e
. (hand-optimized
7 -
¢ sooof o ' assembly code)
. - ‘- but also FFTW, SPIRAL
el generated code
ER
E 40001 .
3 E
S 3000 .
% . :
S 2000f
Q ‘-".
[ ]
1000} . reasonable
U L bt sl Al TR PSR . .
y--* $--e--y implementation
0 : : : : : : :
4 6 8 10 12 14 16 (Numerical recipes.
109, (size) GNU scientific library)
DFT size

Ok, but the DFT is kind of complicated,
so let’s take something simpler ...



The Problem: Matrix-matrix Multiplication
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Why is that?
graph: Pingali, Yotov, Cornell U.



Moore’s Law

m Moore’s Law: exponential (x2 in ~18 months) increase

number of transistors/chip
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But everything has its price ...

source: Scientific American, Nov 2004, p. 98



Moore's Law: Consequences

m Computers are very complex

= multilevel memory hierarchy
= gspecial instruction sets beyond standard C programming model
= undocumented hardware optimizations

m Consequences:

Runtime depends only roughly on the operations
Runtime behavior is hard to understand

Compiler development can hardly keep track

The best code (and algorithm) is platform-dependent
It is very difficult to write really fast code

m Computers evolve fast
= Highly tuned code becomes obsolete almost as fast as it as written



What about the Future?

m [t gets rather worse:
End of Moore’s Law and proliferation of multicore systems

= Scientific American, Nov. 2004: “A Split at the Core,”
subtitle: “[...] that is bad news for the software companies”

= Dr. Dobb's Journal, 30(3), March 2005: “The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in Software”

How to produce really fast code?
and with reasonable effort?



Current Research:
New Approaches to Software

Linear Algebra:
= [LAPACK, ATLAS
= BeBOP

Tensor Computations (Quantum Chemistry): Sadayappan, Baumgartner et al. (Ohio
State)

Finite Element Methods: Fenics (U. Chicago)

Signal Processing:
= FFTW
=  SPIRAL
= VSIPL (Kepner, Lebak et al., MIT Lincoln Labs)
New Compiler Techniques (Domain aware/specific):
= Model-based ATLAS
= Broadway (Lin, Guyer, U. Texas Austin)
= SIMD optimizations (Ueberhuber, Univ. Techn. Vienna)
= Telescoping Languages (Kennedy et al., Rice)

See also upcoming Proceedings of the IEEE special issue
on “Program Generation, Optimization, and Adaptation,”
http://www.ece.cmu.edu/~spiral/special-issue.html



Possible Philosophy?
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a new breed of domain-aware approaches/tools
push automation beyond what is currently possible
applies for software and hardware design alike



|dea of this Course

m Writing fast numerical code requires multidisciplinary knowledge of
algorithms, programming/compilers, and computer architecture

programming/
compilers

computer
architecture

m Study the interaction of algorithms, implementation, and architecture at
hand of cutting edge adaptive numerical software

m Learn a guideline how to write fast code and apply it in a research project



Course Topics

m Foundations of algorithm analysis

cost and complexity, O-calculus, cost analysis through recurrences

m Computer architecture

architecture and microarchitecture, memory hierarchy/caches, execution units, special
Instruction sets (in particular, short vector instructions)

m Compilers

strengths, limitations, guidelines for use

m In detail: algorithms, complexity, and
cutting edge adaptive software (extract design principles)

Discrete Fourier transform, other transforms, correlation, filters (FFTW, SPIRAL)

Matrix-matrix multiplication (ATLAS) and possibly other linear algebra functionality
(LAPACK)

Sparse linear algebra (BeBOP)

other as time permits

work towards a guideline for writing fast numerical code
apply that guideline in your research project



About this Course

m Requirements

= solid C programming skills
= matrix algebra
= senior or above

m Grading
= 50% research project
= 20% midterm
= 20% homework
= 10% class participation

m No textbook
m Office Hours: yet to be determined
m Website: -> teaching -> 18-799B


http://www.ece.cmu.edu/%7epueschel

Research Project

Team up in pairs (preferably)

m Topic:
Very fast, ideally adaptive, implementation of (or code generation for) a
numerical problem

m End of January/early February:
suggest to me a problem or | give you a problem

m Show “milestones” during semester
m Write 4 page standard conference paper (template will be provided)

m Give short presentation end of April



Midterm

m Mostly about algorithm analysis

m Some multiple-choice

Final Exam

m There Is no final exam



Homework

m Exercises on algorithm analysis (Math)

m Implementation exercises

= study the effect of program optimizations, use of compilers, use of special
Instructions, etc. (Writing C code + creating runtime/performance plots)

= some templates will be provided

m Probably: More homework in the beginning, less in the end



Classes/Class Participation

m I'll start on time, duration ~1:30 (without break)
= be on time, it's good style

m [t is important to attend
= many things I'll teach are not in books
= ['ll use part slides part blackboard

m Ask questions

m | will provide some anonymous feedback mechanism
(maybe every 3-4 weeks)



]

Motivation from the Applications Side:
Signal Processing



Definitions

m Definition: Signal Processing

= [The discipline that is concerned with] the representation, transformation,

and manipulation of signals and the information they contain (Oppenheim,
Schafer 1999)

m Definition: Signal
= (In signal processing) A function over an index domain
s: I —-K, i s()

Typical examples:

digital signal processing




Examples

m Multimedia
= Speech (1-D), Image (2-D), Video (3-D)
= Quality improvement, compression, transmission

m Biometrics

m Medical/Bioimaging
m Computer vision

m Communication




Multimedia: Example Image Compression

Baboon

512 x 512 x 3 bytes = 768KB
With JPEG, ~32KB



JPEG: How does it Work?
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JPEG versus JPEG2000

original: 3MB

JPEG: 19KB (DCT based)

JPEG2000: 19KB (wavelet based)



Multimedia Coding

m MPEG-I| to MPEG-IV
m Includes standards for audio, image and Video
m Example: MPEG-II, layer Il audio = MP3

Digital i7ati .
%- Analysis filterbank | Quantization and » Bitstream encoding ¥ Bitstream
audio coding
Perceptual model T
Tempdal domain Frequency domain Data compression

transforms: DFT, MDCT, DCT



_ = Illumination
Fingerprints

Source: Bhagavatula/Savvides



How does it Work?: Registration
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How does it Work?: Identification
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Source: Bhagavatula/Savvides



Example: Cardiac MR

long-axis
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longitudinal slices Goal: 3D-movie from 2D data
Source: Hsien/Moura



3-D Motion Estimation Procedure

Estimate 2-D Establish spatial Track temporal
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Source: Hsien/Moura



Example: MRI

Compensation for motion
Source: Sun/Moura



Example: Bioimaging

m Goal: automatic, fast, reliable
Identification of proteins from
their distribution in the cell

m Signal processing
= Segmentation
= (Classifikation (Wavelets, Frames)

This is Tubulin!

Source: Kovacevic/Murphy
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Source: Kovacevic/Murphy



Example: Computer Vision

Suberbowl 2001 (Kanade et al.)

Plot; Kanade



Example: Communication

m Goal: Robustness to losses In transmission
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Source: Kovacevic



Photo-to-Grandma Problem

= Goal: send a digital photo to Italy
= Available: FedEx or regular “post channel”
»  FedEx 99% reliable, cost $39.99
» Postal 80% reliable, cost $3.40
= 1 floppy per envelope only
= Photo needs 2 floppies (CDs haven't been invented yet)

| fi_K 23
¢ . I{
Ry J R
new girlfriend Grandma lives in Italy

Source: Kovacevic



Heterogenous Channel (Dumb Solution)

cost fixed to
$43.39

0.002

Source: Kovacevic



Heterogenous Channel (Smart Solution)

0.008

cost fixed to
$43.39

0.002

Source: Kovacevic



Summary:
Computational Kernels in Signal Processing

singular value decomposition,
matrix inversion,

Filter: Signal transforms:

FIR, lIR, correlation, DFT, DCT, wavelets, frames
filter banks

Linear algebra: Coding:

vector sum, Huffman, arithmetic,
matrix-vector product, Viterbi, LDPC

Most DSP computation is linear algebra



Numerical Computation Beyond DSP

m More than 90% of all numerical computation are linear
algebra computations/algorithms

m Sciences: Chemistry, Physics, Biology; Economics;
Engineering; etc.



Implementation

m Practically infinite speed requirements
= Very large data sets
= Realtime

m Multitude of platforms
= Hardware: ASIC, FPGA
= Software
= Single vs. multiprocessor computers
= \Workstation versus embedded processor
= Floating point vs. fixed point arithmetic
= Combined hardware/software platforms

m Problems: Implementation difficult, expensive (time/money),
becomes quickly obsolete

In this course: Single processor workstations
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