Algorithms and Computation in
Signal Processing

special topic course 18-799B
spring 2005
18t Lecture Jan. 11, 2005

Instructor: Markus Pueschel
TA: Srinivas Chellappa

|

Motivation and lIdea behind this Course

The Problem: Example DFT on Pentium 4

8000 T T
- Intel vendor library
7000 gy § e
. (hand-optimized
7 -
¢ sooof o ' assembly code)
. - ‘- but also FFTW, SPIRAL
el generated code
ER
E 40001 .
3 E
S 3000 .
% . :
S 2000f
Q ‘-".
[]
1000} . reasonable
U L bt sl Al TR PSR . .
y--* $--e--y implementation
0 : : : : : : :
4 6 8 10 12 14 16 (Numerical recipes.
109, (size) GNU scientific library)
DFT size

Ok, but the DFT is kind of complicated,
so let’s take something simpler ...

The Problem: Matrix-matrix Multiplication

MFLOPS

5000
a000 |
3000 |
2000

1000 |

vendor library
(handoptimized
assembly code)

A A A A AP AT AGGPAWITLN
A A A s 0 SNIINTIND,

—4— BLAS

AILAS generated code

—A— CGw/S

[T A _ standard:
1000 2000 3000 5000 triple loop +

Matrixsize Compi_ler |
optimization

Why is that?
graph: Pingali, Yotov, Cornell U.

Moore’s Law

m Moore’s Law: exponential (x2 in ~18 months) increase

number of transistors/chip

I Improvements in
chip architecture

[l Increasesin

Theoretical Maximum Performance
[million operations per second)
-
o
o
Ll

[
(=]
NN |

Longer pipeline,
double-speed
arithmetic

1996 1998 2000 2002 2004

Year

But everything has its price ...

source: Scientific American, Nov 2004, p. 98

Moore's Law: Consequences

m Computers are very complex

= multilevel memory hierarchy
= gspecial instruction sets beyond standard C programming model
= undocumented hardware optimizations

m Consequences:

Runtime depends only roughly on the operations
Runtime behavior is hard to understand

Compiler development can hardly keep track

The best code (and algorithm) is platform-dependent
It is very difficult to write really fast code

m Computers evolve fast
= Highly tuned code becomes obsolete almost as fast as it as written

What about the Future?

m [t gets rather worse:
End of Moore’s Law and proliferation of multicore systems

= Scientific American, Nov. 2004: “A Split at the Core,”
subtitle: “[...] that is bad news for the software companies”

= Dr. Dobb's Journal, 30(3), March 2005: “The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in Software”

How to produce really fast code?
and with reasonable effort?

Current Research:
New Approaches to Software

Linear Algebra:
= [LAPACK, ATLAS
= BeBOP

Tensor Computations (Quantum Chemistry): Sadayappan, Baumgartner et al. (Ohio
State)

Finite Element Methods: Fenics (U. Chicago)

Signal Processing:
= FFTW
= SPIRAL
= VSIPL (Kepner, Lebak et al., MIT Lincoln Labs)
New Compiler Techniques (Domain aware/specific):
= Model-based ATLAS
= Broadway (Lin, Guyer, U. Texas Austin)
= SIMD optimizations (Ueberhuber, Univ. Techn. Vienna)
= Telescoping Languages (Kennedy et al., Rice)

See also upcoming Proceedings of the IEEE special issue
on “Program Generation, Optimization, and Adaptation,”
http://www.ece.cmu.edu/~spiral/special-issue.html

Possible Philosophy?

Present

Algorithm -

Level starting point: one algorithm/program

» high level information destroyed
» implementation restricted

Implementation
Level

automation

| a

Future

n|

»
»

algorithm/implementation /
codesign

» domain knowledge
used for optimization

P
<

utomatio

a new breed of domain-aware approaches/tools
push automation beyond what is currently possible
applies for software and hardware design alike

|dea of this Course

m Writing fast numerical code requires multidisciplinary knowledge of
algorithms, programming/compilers, and computer architecture

programming/
compilers

computer
architecture

m Study the interaction of algorithms, implementation, and architecture at
hand of cutting edge adaptive numerical software

m Learn a guideline how to write fast code and apply it in a research project

Course Topics

m Foundations of algorithm analysis

cost and complexity, O-calculus, cost analysis through recurrences

m Computer architecture

architecture and microarchitecture, memory hierarchy/caches, execution units, special
Instruction sets (in particular, short vector instructions)

m Compilers

strengths, limitations, guidelines for use

m In detail: algorithms, complexity, and
cutting edge adaptive software (extract design principles)

Discrete Fourier transform, other transforms, correlation, filters (FFTW, SPIRAL)

Matrix-matrix multiplication (ATLAS) and possibly other linear algebra functionality
(LAPACK)

Sparse linear algebra (BeBOP)

other as time permits

work towards a guideline for writing fast numerical code
apply that guideline in your research project

About this Course

m Requirements

= solid C programming skills
= matrix algebra
= senior or above

m Grading
= 50% research project
= 20% midterm
= 20% homework
= 10% class participation

m No textbook
m Office Hours: yet to be determined
m Website: -> teaching -> 18-799B

http://www.ece.cmu.edu/%7epueschel

Research Project

Team up in pairs (preferably)

m Topic:
Very fast, ideally adaptive, implementation of (or code generation for) a
numerical problem

m End of January/early February:
suggest to me a problem or | give you a problem

m Show “milestones” during semester
m Write 4 page standard conference paper (template will be provided)

m Give short presentation end of April

Midterm

m Mostly about algorithm analysis

m Some multiple-choice

Final Exam

m There Is no final exam

Homework

m Exercises on algorithm analysis (Math)

m Implementation exercises

= study the effect of program optimizations, use of compilers, use of special
Instructions, etc. (Writing C code + creating runtime/performance plots)

= some templates will be provided

m Probably: More homework in the beginning, less in the end

Classes/Class Participation

m I'll start on time, duration ~1:30 (without break)
= be on time, it's good style

m [t is important to attend
= many things I'll teach are not in books
= ['ll use part slides part blackboard

m Ask questions

m | will provide some anonymous feedback mechanism
(maybe every 3-4 weeks)

]

Motivation from the Applications Side:
Signal Processing

Definitions

m Definition: Signal Processing

= [The discipline that is concerned with] the representation, transformation,

and manipulation of signals and the information they contain (Oppenheim,
Schafer 1999)

m Definition: Signal
= (In signal processing) A function over an index domain
s: I —-K, i s()

Typical examples:

digital signal processing

Examples

m Multimedia
= Speech (1-D), Image (2-D), Video (3-D)
= Quality improvement, compression, transmission

m Biometrics

m Medical/Bioimaging
m Computer vision

m Communication

Multimedia: Example Image Compression

Baboon

512 x 512 x 3 bytes = 768KB
With JPEG, ~32KB

JPEG: How does it Work?

8 x 8 pixel block

!

2-D DCT

|

quantization
(lossy)

7

entropy coding
(lossless)

]

bit stream

JPEG versus JPEG2000

original: 3MB

JPEG: 19KB (DCT based)

JPEG2000: 19KB (wavelet based)

Multimedia Coding

m MPEG-I| to MPEG-IV
m Includes standards for audio, image and Video
m Example: MPEG-II, layer Il audio = MP3

Digital i7ati .
%- Analysis filterbank | Quantization and » Bitstream encoding ¥ Bitstream
audio coding
Perceptual model T
Tempdal domain Frequency domain Data compression

transforms: DFT, MDCT, DCT

_ = Illumination
Fingerprints

Source: Bhagavatula/Savvides

How does it Work?: Registration

Training
Images
captured
by
camera

b |

I

FFT

N x N pixels

Ay
FFT Frequency
| Domain array \
Ay -
FET Correlation
Frequency . Filter H

Domain array

(Template)

y 4
Frequency / I

Domain array N x N pixels

(complex)

I

N x N pixels (complex)

Source: Bhagavatula/Savvides

How does it Work?: Identification

Image
captured
by
camera

el FFT

Frequency
Domain array

Resulting
Frequency .
Domain array

Correlation [

Filter H IFFT
(Template) \

Source: Bhagavatula/Savvides

Example: Cardiac MR

long-axis

Superior
Yena Ca?"

e | trgnsversal
e~ slices

\

longitudinal slices Goal: 3D-movie from 2D data
Source: Hsien/Moura

3-D Motion Estimation Procedure

Estimate 2-D Establish spatial Track temporal

r dense disp. -1 r correspondences -1 r correspondences -1

oo escecs ‘:o Loe :‘ ccec’mes oo AL BT L) .:~o.o°o" oo efe8 %0 e
0 .‘ . " . e'e 0 ovo 0 0% %% W% % .’?} eeccpocoe
..,-co.Ooooo.‘o.oo:oooo ’:....:_.."'a,. ,0.030.0.:‘:0'0. .1....0!.0.0 A'o.u.o..:'.‘o:o.o.&x
e o = . 0 FI TPy
EAXY XX XYY X Lo e o’go eoomocos o7’ .‘.“’. .'c. .‘.‘.’ .‘:ﬁ’ C DO
i Peccogtoccopocedgecccecses Javs .0‘.. oo g% Po o oot oo tnsseeses ¥
2% .’ r ’. o 9.0':.0 o.'o edoeede !o o e ’3 Ceddgeee
90 esecose ’: o deoe :’50 eoe'me s oo TS W2 ¥ A.o :" fate., . “
R cOB000 ’:o O 000HN00050000M slelo wo'sl’s 'c; y’?. XX IAOR U
® .’ _’ .. o o :’Q'o:' & o'. O:Q < o’! o . ’3’ o.o'.o: oS _o. oS s :’Q'o:' g oS _o. < o“-.‘_.

Minimizing
constrained
energy

L

2D Creating a

Preprocessing

Y. Sun, Y.L. Wu, K. Sato, C. Ho, and J.M.F.
Moura, Proc. Annual Meeting ISMRM 2003

fibrous
architecture

Adopting

continuum
mechanics

Source: Hsien/Moura

Example: MRI

Compensation for motion
Source: Sun/Moura

Example: Bioimaging

m Goal: automatic, fast, reliable
Identification of proteins from
their distribution in the cell

m Signal processing
= Segmentation
= (Classifikation (Wavelets, Frames)

This is Tubulin!

Source: Kovacevic/Murphy

Giantin gppl130 Lysosomal

*’{r o

— |

Endosomal Tubulin

Source: Kovacevic/Murphy

Example: Computer Vision

Suberbowl 2001 (Kanade et al.)

Plot; Kanade

Example: Communication

m Goal: Robustness to losses In transmission

>

Transform

‘5 Trangorm
decoder

coder
—_— »

v

J,

‘5

d

o

P

Source: Kovacevic

Photo-to-Grandma Problem

= Goal: send a digital photo to Italy
= Available: FedEx or regular “post channel”
» FedEx 99% reliable, cost $39.99
» Postal 80% reliable, cost $3.40
= 1 floppy per envelope only
= Photo needs 2 floppies (CDs haven't been invented yet)

| fi_K 23
¢ . I{
Ry J R
new girlfriend Grandma lives in Italy

Source: Kovacevic

Heterogenous Channel (Dumb Solution)

cost fixed to
$43.39

0.002

Source: Kovacevic

Heterogenous Channel (Smart Solution)

0.008

cost fixed to
$43.39

0.002

Source: Kovacevic

Summary:
Computational Kernels in Signal Processing

singular value decomposition,
matrix inversion,

Filter: Signal transforms:

FIR, lIR, correlation, DFT, DCT, wavelets, frames
filter banks

Linear algebra: Coding:

vector sum, Huffman, arithmetic,
matrix-vector product, Viterbi, LDPC

Most DSP computation is linear algebra

Numerical Computation Beyond DSP

m More than 90% of all numerical computation are linear
algebra computations/algorithms

m Sciences: Chemistry, Physics, Biology; Economics;
Engineering; etc.

Implementation

m Practically infinite speed requirements
= Very large data sets
= Realtime

m Multitude of platforms
= Hardware: ASIC, FPGA
= Software
= Single vs. multiprocessor computers
= \Workstation versus embedded processor
= Floating point vs. fixed point arithmetic
= Combined hardware/software platforms

m Problems: Implementation difficult, expensive (time/money),
becomes quickly obsolete

In this course: Single processor workstations

	Algorithms and Computation in Signal Processing special topic course 18-799Bspring 20051st Lecture Jan. 11, 2005
	Motivation and Idea behind this Course
	The Problem: Example DFT on Pentium 4
	The Problem: Matrix-matrix Multiplication
	Moore’s Law
	Moore’s Law: Consequences
	What about the Future?
	Current Research: New Approaches to Software
	Possible Philosophy?
	Idea of this Course
	Course Topics
	About this Course
	Research Project
	Midterm
	Homework
	Classes/Class Participation
	Motivation from the Applications Side: Signal Processing
	Definitions
	Examples
	Multimedia: Example Image Compression
	JPEG: How does it Work?
	JPEG versus JPEG2000
	Multimedia Coding
	Example: Biometrics
	How does it Work?: Registration
	Example: Cardiac MRI
	3-D Motion Estimation Procedure
	Example: MRI
	Example: Bioimaging
	Images
	Example: Computer Vision
	Example: Communication
	Photo-to-Grandma Problem
	Heterogenous Channel (Dumb Solution)
	Heterogenous Channel (Smart Solution)
	Summary:Computational Kernels in Signal Processing
	Numerical Computation Beyond DSP
	Implementation

