
Algorithms and Computation in
Signal Processing

special topic course 18-799B
spring 2005

1st Lecture Jan. 11, 2005

Instructor: Markus Pueschel
TA: Srinivas Chellappa

Motivation and Idea behind this Course

The Problem: Example DFT on Pentium 4

Intel vendor library
(hand-optimized
assembly code)
but also FFTW, SPIRAL
generated code

10x

DFT size

reasonable
implementation
(Numerical recipes.
GNU scientific library)

Ok, but the DFT is kind of complicated,
so let’s take something simpler …

The Problem: Matrix-matrix Multiplication

1000 2000 3000 4000 5000
Size

1000

2000

3000

4000

5000

MFLOPS

Compiler

Model

CGw�S

Unleashed

BLAS

Matrixsize

standard:
triple loop +
compiler
optimization

vendor library
(handoptimized
assembly code)

60x
ATLAS generated code

Why is that?
graph: Pingali, Yotov, Cornell U.

Moore’s Law
Moore’s Law: exponential (x2 in ~18 months) increase
number of transistors/chip

But everything has its price …

so
ur

ce
: S

cie
nt

ific
 A

m
er

ica
n,

 N
ov

 2
00

4,
 p

. 9
8

Moore’s Law: Consequences
Computers are very complex

multilevel memory hierarchy
special instruction sets beyond standard C programming model
undocumented hardware optimizations

Consequences:
Runtime depends only roughly on the operations
Runtime behavior is hard to understand
Compiler development can hardly keep track
The best code (and algorithm) is platform-dependent
It is very difficult to write really fast code

Computers evolve fast
Highly tuned code becomes obsolete almost as fast as it as written

What about the Future?

It gets rather worse:
End of Moore’s Law and proliferation of multicore systems

Scientific American, Nov. 2004: “A Split at the Core,”
subtitle: “[…] that is bad news for the software companies”

Dr. Dobb's Journal, 30(3), March 2005: “The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in Software”

How to produce really fast code?
and with reasonable effort?

Current Research:
New Approaches to Software

Linear Algebra:
LAPACK, ATLAS
BeBOP

Tensor Computations (Quantum Chemistry): Sadayappan, Baumgartner et al. (Ohio
State)
Finite Element Methods: Fenics (U. Chicago)
Signal Processing:

FFTW
SPIRAL
VSIPL (Kepner, Lebak et al., MIT Lincoln Labs)

New Compiler Techniques (Domain aware/specific):
Model-based ATLAS
Broadway (Lin, Guyer, U. Texas Austin)
SIMD optimizations (Ueberhuber, Univ. Techn. Vienna)
Telescoping Languages (Kennedy et al., Rice)

See also upcoming Proceedings of the IEEE special issue
on “Program Generation, Optimization, and Adaptation,”
http://www.ece.cmu.edu/~spiral/special-issue.html

Possible Philosophy?

Present Future

Implementation
Level

starting point: one algorithm/program
high level information destroyed
implementation restricted

Algorithm
Level

algorithm/implementation
codesign

domain knowledge
used for optimization

au
to

m
at

io
n

a
u

t o
 m

 a
 t

i o
 n

a new breed of domain-aware approaches/tools
push automation beyond what is currently possible

applies for software and hardware design alike

Idea of this Course
Writing fast numerical code requires multidisciplinary knowledge of
algorithms, programming/compilers, and computer architecture

Study the interaction of algorithms, implementation, and architecture at
hand of cutting edge adaptive numerical software
Learn a guideline how to write fast code and apply it in a research project

programming/
compilersalgorithms

fast
code
computer

architecture

Course Topics
Foundations of algorithm analysis

cost and complexity, O-calculus, cost analysis through recurrences

Computer architecture
architecture and microarchitecture, memory hierarchy/caches, execution units, special
instruction sets (in particular, short vector instructions)

Compilers
strengths, limitations, guidelines for use

In detail: algorithms, complexity, and
cutting edge adaptive software (extract design principles)

Discrete Fourier transform, other transforms, correlation, filters (FFTW, SPIRAL)
Matrix-matrix multiplication (ATLAS) and possibly other linear algebra functionality
(LAPACK)
Sparse linear algebra (BeBOP)
other as time permits
work towards a guideline for writing fast numerical code
apply that guideline in your research project

About this Course
Requirements

solid C programming skills
matrix algebra
senior or above

Grading
50% research project
20% midterm
20% homework
10% class participation

No textbook
Office Hours: yet to be determined
Website: www.ece.cmu.edu/~pueschel -> teaching -> 18-799B

http://www.ece.cmu.edu/%7epueschel

Research Project

Team up in pairs (preferably)

Topic:
Very fast, ideally adaptive, implementation of (or code generation for) a
numerical problem

End of January/early February:
suggest to me a problem or I give you a problem

Show “milestones” during semester

Write 4 page standard conference paper (template will be provided)

Give short presentation end of April

Midterm

Mostly about algorithm analysis

Some multiple-choice

There is no final exam

Final Exam

Homework

Exercises on algorithm analysis (Math)

Implementation exercises
study the effect of program optimizations, use of compilers, use of special
instructions, etc. (Writing C code + creating runtime/performance plots)
some templates will be provided

Probably: More homework in the beginning, less in the end

Classes/Class Participation

I’ll start on time, duration ~1:30 (without break)
be on time, it’s good style

It is important to attend
many things I’ll teach are not in books
I’ll use part slides part blackboard

Ask questions

I will provide some anonymous feedback mechanism
(maybe every 3-4 weeks)

Motivation from the Applications Side:
Signal Processing

Definitions

Definition: Signal Processing
[The discipline that is concerned with] the representation, transformation,
and manipulation of signals and the information they contain (Oppenheim,
Schafer 1999)

Definition: Signal
(In signal processing) A function over an index domain

Typical examples:

digital signal processing

Examples

Multimedia
Speech (1-D), Image (2-D), Video (3-D)
Quality improvement, compression, transmission

Biometrics
Medical/Bioimaging
Computer vision
Communication

Multimedia: Example Image Compression

Lena Pepper Baboon

512 × 512 × 3 bytes = 768KB
With JPEG, ~32KB

JPEG: How does it Work?
8 x 8 pixel block

2-D DCT

quantization
(lossy)

entropy coding
(lossless)

bit stream

JPEG versus JPEG2000

original: 3MB

JPEG: 19KB (DCT based)

JPEG2000: 19KB (wavelet based)

Multimedia Coding

MPEG-I to MPEG-IV
Includes standards for audio, image and Video
Example: MPEG-II, layer III audio = MP3

Temporal domain Frequency domain Data compression

Analysis filterbankAnalysis filterbank

Perceptual modelPerceptual model

Quantization and
coding

Quantization and
coding Bitstream encodingBitstream encoding

Digital
audio Bitstream

transforms: DFT, MDCT, DCT

Example: Biometrics

Facial Expression

Fingerprints
Illumination

Source: Bhagavatula/Savvides

How does it Work?: Registration

Training Training
Images Images
captured captured
by by
cameracamera

Filter Design Filter Design
ModuleModule

Correlation Correlation
Filter H Filter H
(Template)(Template)

Frequency Frequency
Domain arrayDomain array

Frequency Frequency
Domain arrayDomain array

Frequency Frequency
Domain arrayDomain array

FFTFFT

FFTFFT

FFTFFT

N x N pixelsN x N pixels N x N pixels (complex)N x N pixels (complex)

N x N pixels N x N pixels
(complex)(complex)

Source: Bhagavatula/Savvides

How does it Work?: Identification

Test Image Test Image
captured captured
by by
cameracamera

Correlation Correlation
Filter H Filter H
(Template)(Template)

Frequency Frequency
Domain arrayDomain array

FFTFFT

N x N pixelsN x N pixels

N x N pixelsN x N pixels
Resulting Resulting
Frequency Frequency
Domain arrayDomain array

IFFTIFFT

PSRPSR

Source: Bhagavatula/Savvides

longitudinal slices

Example: Cardiac MRI

short-axis

long-axis

transversal
slices

non-tagged

tagged

Goal: 3D-movie from 2D data
Source: Hsien/Moura

3-D Motion Estimation Procedure

Estimate 2-D
dense disp.

Establish spatial
correspondences

Track temporal
correspondences

Y. Sun, Y.L. Wu, K. Sato, C. Ho, and J.M.F.
Moura, Proc. Annual Meeting ISMRM 2003

Preprocessing
Creating a

fibrous
architecture

Adopting
continuum
mechanics

Minimizing
constrained

energy

U2D

U

Source: Hsien/Moura

Example: MRI

Kidney tracking

MRI

Compensation for motion
Source: Sun/Moura

Example: Bioimaging

Classification

This is Tubulin!

Segmentation

Goal: automatic, fast, reliable
identification of proteins from
their distribution in the cell
Signal processing

Segmentation
Classifikation (Wavelets, Frames)

Source: Kovacevic/Murphy

Images

Source: Kovacevic/Murphy

Example: Computer Vision

Suberbowl 2001 (Kanade et al.)

Plot: Kanade

Example: Communication

Goal: Robustness to losses in transmission

Transform
coder

Transform
decoderNetwork X

Source: Kovacevic

Photo-to-Grandma Problem
Goal: send a digital photo to Italy
Available: FedEx or regular “post channel”

FedEx 99% reliable, cost $39.99
Postal 80% reliable, cost $3.40

1 floppy per envelope only
Photo needs 2 floppies (CDs haven’t been invented yet)

new girlfriend Grandma lives in Italy

Source: Kovacevic

Heterogenous Channel (Dumb Solution)

0.792

0.198

0.008

0.002

cost fixed to
$43.39

Source: Kovacevic

Heterogenous Channel (Smart Solution)

0.792

wavelets
0.198

0.008

0.002

cost fixed to
$43.39

Source: Kovacevic

Summary:
Computational Kernels in Signal Processing

Filter:
FIR, IIR, correlation,
filter banks

Signal transforms:
DFT, DCT, wavelets, frames

Linear algebra:
vector sum,
matrix-vector product,
…
singular value decomposition,
matrix inversion,
…

Coding:
Huffman, arithmetic,
Viterbi, LDPC

Most DSP computation is linear algebra

Numerical Computation Beyond DSP

More than 90% of all numerical computation are linear
algebra computations/algorithms

Sciences: Chemistry, Physics, Biology; Economics;
Engineering; etc.

Implementation
Practically infinite speed requirements

Very large data sets
Realtime

Multitude of platforms
Hardware: ASIC, FPGA
Software

Single vs. multiprocessor computers
Workstation versus embedded processor
Floating point vs. fixed point arithmetic

Combined hardware/software platforms
Problems: Implementation difficult, expensive (time/money),
becomes quickly obsolete

In this course: Single processor workstations

	Algorithms and Computation in Signal Processing special topic course 18-799Bspring 20051st Lecture Jan. 11, 2005
	Motivation and Idea behind this Course
	The Problem: Example DFT on Pentium 4
	The Problem: Matrix-matrix Multiplication
	Moore’s Law
	Moore’s Law: Consequences
	What about the Future?
	Current Research: New Approaches to Software
	Possible Philosophy?
	Idea of this Course
	Course Topics
	About this Course
	Research Project
	Midterm
	Homework
	Classes/Class Participation
	Motivation from the Applications Side: Signal Processing
	Definitions
	Examples
	Multimedia: Example Image Compression
	JPEG: How does it Work?
	JPEG versus JPEG2000
	Multimedia Coding
	Example: Biometrics
	How does it Work?: Registration
	Example: Cardiac MRI
	3-D Motion Estimation Procedure
	Example: MRI
	Example: Bioimaging
	Images
	Example: Computer Vision
	Example: Communication
	Photo-to-Grandma Problem
	Heterogenous Channel (Dumb Solution)
	Heterogenous Channel (Smart Solution)
	Summary:Computational Kernels in Signal Processing
	Numerical Computation Beyond DSP
	Implementation

