
Algorithms and Computation in
Signal Processing

special topic course 18-799B
spring 2005

21th lecture Mar. 29, 2005

Instructor: Markus Pueschel
Guest instructor: Franz Franchetti

TA: Srinivas Chellappa



Organization
Overview

Idea, benefits, reasons, restrictions
State-of-the-art floating-point SIMD extensions
History and related technologies
How to use it

Writing code for Intel’s SSE 
Instructions
Common building blocks
Examples: WHT, matrix multiplication, FFT

Selected topics
BlueGene/L
Complex arithmetic and instruction-level parallelism
Things that don’t work as expected

Conclusion: How to write good vector code



Organization
Overview

Idea, benefits, reasons, restrictions
State-of-the-art floating-point SIMD extensions
History and related technologies
How to use it

Writing code for Intel’s SSE 
Instructions
Common building blocks
Examples: WHT, matrix multiplication, FFT

Selected topics
BlueGene/L
Complex arithmetic and instruction-level parallelism
Things that don’t work as expected

Conclusion: How to write good vector code



SIMD (Signal Instruction Multiple Data) 
vector instructions in a nutshell

What are these instructions? 
Extension of the ISA. Data types and instructions for parallel computation on short 
(2-16) vectors of integers and floats

Why are they here?
Useful: Many applications (e.g.,multi media) feature the required fine grain 
parallelism – code potentially faster
Doable: Chip designers have enough transistors available, easy to implement

+ x 4-way



Overview Vector ISAs



Evolution of Intel Vector Instructions
MMX (1996, Pentium)

Integers only, 64-bit divided into 2 x 32 to 8 x 8
MMX register = Float register
Lost importance due to SSE2 and modern graphics cards

SSE (1999, Pentium III)
Superset of MMX
4-way float operations, single precision
8 new 128 Bit Register
100+ instructions

SSE2 (2001, Pentium 4)
Superset of SSE
“MMX” operating on SSE registers, 2 x 64
2-way float ops, double-precision, same registers as 4-way single-precision

SSE3 (2004, Pentium 4E Prescott)
Superset of SSE2
New 2-way and 4-way vector instructions for complex arithmetic



Related Technologies
Original SIMD machines (CM-2,…)

Don’t really have anything in common with SIMD vector extension
Vector Computers (NEC SX6, Earth simulator)

Vector lengths of up to 128
High bandwidth memory, no memory hierarchy
Pipelined vector operations
Support strided memory access

Very long instruction word (VLIW) architectures (Itanium,…)
Explicit parallelism
More flexible
No data reorganization necessary

Superscalar processors (x86, …)
No explicit parallelism
Memory hierarchy

SIMD vector extensions borrow multiple concepts



How to use SIMD Vector Extensions?

Prerequisite: fine grain parallelism

Helpful: regular algorithm structure

Easiest way: use existing libraries 
Intel MKL and IPP, Apple vDSP, AMD ACML, 
Atlas, FFTW, Spiral

Do it yourself:
Use compiler vectorization: write vectorizable code
Use language extensions to explicitly issue the instructions
Vector data types and intrinsic/builtin functions
Intel C++ compiler, GNU C compiler, IBM VisualAge for BG/L,…
Implement kernels using assembly (inline or coding of full modules)



Characterization of Available Methods
Interface used

Portable high-level language (possibly with pragmas)
Proprietary language extension (builtin functions and data types)
Assembly language

Who vectorizes
Programmer or code generator expresses parallelism
Vectorizing compiler extracts parallelism

Structures vectorized
Vectorization of independent loops
Instruction-level parallelism extraction

Generality of approach
General purpose (e.g., for complex code or for loops)
Problem specific (for FFTs or for matrix products)



0

1000

2000

3000

4000

5000

6000

7000

8000

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ld N

Ps
eu

do
 M

flo
p/

s
5 

N
 ld

 N
 / 

ru
nt

im
e

FFTW 3.0.1
FFTW 3.0.1 SSE
MKL 6.1 DFTI
IPP 4.0 inplace
SPIRAL
SPIRAL w/vect C
SPIRAL SSE
Numerical Recipies

Higher is better

Vendor code:
hand-tuned
assembly?

Benchmark: DFT, 2-powers P4, 3.0 GHz, 
icc 8.0

Single precision code

• limitations of compiler vectorization
• Spiral code competitive with the best



Problems

Correct data alignment paramount

Reordering data kills runtime

Algorithms must be adapted to suit machine needs

Adaptation and optimization is machine/extension dependent

Thorough understanding of ISA + Micro architecture required

One can easily slow down a program by vectorizing it



Organization
Overview

Idea, benefits, reasons, restrictions
State-of-the-art floating-point SIMD extensions
History and related technologies
How to use it

Writing code for Intel’s SSE 
Instructions
Common building blocks
Examples: WHT, matrix multiplication, FFT

Selected topics
BlueGene/L
Complex arithmetic and instruction-level parallelism
Things that don’t work as expected

Conclusion: How to write good vector code



Intel Streaming SIMD Extension (SSE)

Used syntax: Intel C++ compiler
Data type: __m128 d; // ={float d3, d2, d1, d0}
Intrinsics: _mm_add_ps(), _mm_mul_ps(),…
Dynamic memory: _mm_malloc(), _mm_free()

Instruction classes
Memory access (explicit and implicit)
Basic arithmetic (+, -, *)
Expensive arithmetic (1/x, sqrt(x), min, max, /, 1/sqrt)
Logic (and, or, xor, nand)
Comparison (+, <, >, …)
Data reorder (shuffling)



Blackboard


	Algorithms and Computation in�Signal Processing��special topic course 18-799B�spring 2005�21th lecture Mar. 29, 2005��Instruct
	Organization
	Organization
	SIMD (Signal Instruction Multiple Data) �vector instructions in a nutshell
	Overview Vector ISAs
	Evolution of Intel Vector Instructions
	Related Technologies
	How to use SIMD Vector Extensions?
	Characterization of Available Methods
	Benchmark: DFT, 2-powers
	Problems
	Organization
	Intel Streaming SIMD Extension (SSE)
	Blackboard

