Algorithms and Computation In
Signal Processing

special topic course 18-799B
spring 2005
21" lecture Mar. 29, 2005

Instructor: Markus Pueschel
Guest instructor: Franz Franchetti
TA: Srinivas Chellappa

Organization

m Overview
= |dea, benefits, reasons, restrictions
= State-of-the-art floating-point SIMD extensions
= History and related technologies
= How to use it

m Writing code for Intel’s SSE
= [nstructions
= Common building blocks
= Examples: WHT, matrix multiplication, FFT

m Selected topics
= BlueGenellL
= Complex arithmetic and instruction-level parallelism
= Things that don't work as expected

m Conclusion: How to write good vector code

Organization

m Overview
= |dea, benefits, reasons, restrictions
= State-of-the-art floating-point SIMD extensions
= History and related technologies
= How to use it

m \Writing code for Intel’s SSE
= [nstructions
= Common building blocks
= Examples: WHT, matrix multiplication, FFT

m Selected topics
= BlueGenel/lL
= Complex arithmetic and instruction-level parallelism
= Things that don't work as expected

m Conclusion: How to write good vector code

SIMD (Signal Instruction Multiple Data)
vector instructions in a nutshell

m \What are these instructions?

= Extension of the ISA. Data types and instructions for parallel computation on short
(2-16) vectors of integers and floats

(M [(e < (e A-way

m Why are they here?

= Useful: Many applications (e.g.,multi media) feature the required fine grain
parallelism — code potentially faster

= Doable: Chip designers have enough transistors available, easy to implement

Overview Vector ISAS

Vendor Name v-way | Precision Processor
Pentium III
Intel SSE 4-way single Pentium 4
Intel SSE2 2-way double Pentium 4
4-way single
Intel SSES3 2_Way double Pentium 4
Itanium
Intel IPF 2-way single Ttanium 2
AMD 3DNow! 2-way single K6
Enhanced K7, Athlon XP
AMD 3DNow! 2-way | single Athlon MP
3DNow! Athlon XP
AMD Professional | 4-way | single Athlon MP
2-way single
AMD AMD64 4-way | single Athlon 64
2-way | double Opteron
Motorola AltiVec 4-way single MPC 74xx G4
IBM AltiVec 4-way single PowerPC 970 G5
IBM Double FPU | 2-way double PowerPC 440 FP2

Evolution of Intel Vector Instructions
m MMX (1996, Pentium)

= |ntegers only, 64-bit divided into 2 x 32to 8 x 8
= MMX register = Float register
= | ost importance due to SSE2 and modern graphics cards

m SSE (1999, Pentium lII)
= Superset of MMX
= 4-way float operations, single precision
= 8 new 128 Bit Register
= 100+ instructions

m SSE2 (2001, Pentium 4)

= Superset of SSE

= “MMX” operating on SSE registers, 2 x 64

= 2-way float ops, double-precision, same registers as 4-way single-precision
m SSE3 (2004, Pentium 4E Prescott)

= Superset of SSE2

= New 2-way and 4-way vector instructions for complex arithmetic

Related Technologies
m Original SIMD machines (CM-2,...)

= Don't really have anything in common with SIMD vector extension

m Vector Computers (NEC SX6, Earth simulator)
= Vector lengths of up to 128
= High bandwidth memory, no memory hierarchy
= Pipelined vector operations
= Support strided memory access

m Very long instruction word (VLIW) architectures (Itanium,...)
= Explicit parallelism
= More flexible
= No data reorganization necessary

m Superscalar processors (x86, ...)

= No explicit parallelism
= Memory hierarchy

SIMD vector extensions borrow multiple concepts

How to use SIMD Vector Extensions?

m Prerequisite: fine grain parallelism
m Helpful: regular algorithm structure

m Easiest way: use existing libraries
Intel MKL and IPP, Apple vDSP, AMD ACML,
Atlas, FFTW, Spiral

m Do it yourself:
= Use compiler vectorization: write vectorizable code

= Use language extensions to explicitly issue the instructions
Vector data types and intrinsic/builtin functions
Intel C++ compiler, GNU C compiler, IBM VisualAge for BGIL,...

= |mplement kernels using assembly (inline or coding of full modules)

Characterization of Available Methods

m Interface used
= Portable high-level language (possibly with pragmas)
= Proprietary language extension (builtin functions and data types)
= Assembly language

m Who vectorizes
= Programmer or code generator expresses parallelism
= Vectorizing compiler extracts parallelism
m Structures vectorized
= Vectorization of independent loops
= |nstruction-level parallelism extraction
m Generality of approach

= General purpose (e.g., for complex code or for loops)
= Problem specific (for FFTs or for matrix products)

Benchmark: DFT, 2-powers

Pseudo Mflop/s
5N Id N / runtime

8000 / ——FFTW 3.0.1
—e—FFTW 3.0.1 SSE
7000 - —e— MKL 6.1 DFTI

== |PP 4.0 inplace

6000 - SPIRAL
5000 - SPIRAL w/vect C
—— SPIRAL SSE

—— Numerical Recipies

3000

2000]’

1000 i S,
o‘/‘—'\rﬁjrl
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Id N

Single precision code

 limitations of compiler vectorization
e Spiral code competitive with the best

P4, 3.0 GHz,
icc 8.0

Vendor code:
hand-tuned
assembly?

Higher is better

Problems

Correct data alignment paramount

m Reordering data kills runtime
m Algorithms must be adapted to suit machine needs
m Adaptation and optimization is machine/extension dependent

m Thorough understanding of ISA + Micro architecture required

One can easily slow down a program by vectorizing it

Organization

m Overview
= |dea, benefits, reasons, restrictions
= State-of-the-art floating-point SIMD extensions
= History and related technologies
= How to use it

m Writing code for Intel’'s SSE
= |nstructions
= Common building blocks
= Examples: WHT, matrix multiplication, FFT

m Selected topics
= BlueGenel/L
= Complex arithmetic and instruction-level parallelism
= Things that don't work as expected

m Conclusion: How to write good vector code

Intel Streaming SIMD Extension (SSE)

m Used syntax: Intel C++ compiler
= Datatype: m128 d; // ={float d3, d2, dl, dO}
= Intrinsics: _mm_add_ps(), _mm_mul _ps(),..
= Dynamic memory: _mm_malloc(), _mm free()

m Instruction classes
= Memory access (explicit and implicit)
= Basic arithmetic (+, -, *)
= Expensive arithmetic (1/x, sqrt(x), min, max, /, 1/sqrt)
= |ogic (and, or, xor, nand)
= Comparison (+, <, >, ...)
= Data reorder (shuffling)

|

Blackboard

	Algorithms and Computation in�Signal Processing��special topic course 18-799B�spring 2005�21th lecture Mar. 29, 2005��Instruct
	Organization
	Organization
	SIMD (Signal Instruction Multiple Data) �vector instructions in a nutshell
	Overview Vector ISAs
	Evolution of Intel Vector Instructions
	Related Technologies
	How to use SIMD Vector Extensions?
	Characterization of Available Methods
	Benchmark: DFT, 2-powers
	Problems
	Organization
	Intel Streaming SIMD Extension (SSE)
	Blackboard

