Algorithms and Computation in Signal Processing

special topic course 18-799B spring 2005 28th Lecture Apr. 21, 2005

Instructor: Markus Pueschel TA: Srinivas Chellappa

LU Factorization and Related Problems (cont'd)

Complexity

Source: Buergisser, Clausen, Shokrollahi "Algebraic Complexity Theory," Springer 1997, pp. 426

Definition: P(n), n > 0, a sequence of problems (n = problem size), complexity measure = number of adds + mults, then

$w(P) = inf(g | complexity(P(n)) = O(n^g))$

Problems:

- MMM(n): multiplying two n x n matrices
- MInv(n): inverting an n x n matrix
- PLU(n): computing PLU factorization of an n x n matrix
- Det(n): computing the determinant of an n x n matrix

Complexity Results

Example (we had that before): 2 ≤ w(MMM(n)) < 2.38</p>

```
Theorem:
w(MMM(n)) = w(MInv(n)) = w(PLU(n)) = w(Det(n))
```

Cost of usual implementations:

- $MMM(n) = 2n^3 + O(n^2)$
- $MInv(n) = 8/3 n^3 + O(n^2)$
- $PLU(n) = 2/3 n^3 + O(n^2)$
- Det(n) = 2/3 n³ + O(n²)

Small Guide to Presentations

Importance of Presentations

- In contrast to a paper or other technical writing, you present your work and yourself
- People remember good presentations
- "Good" means: good content, well presented, on welldesigned slides.
 Contents or looks alone does not cut it.
- Many of my colleagues and I put a lot of effort in each presentation, and at the beginning of a career it's even more important

Presentations are very important

Small Guide Overview

■ The "Physical" Presentation

Contents

Looks

The Physical Presentation

Use the right tools:

- Laptop (and know how to use it), laser pointer
- Ideally: remote mouse
- Bring talk on USB key as backup
- Be reasonably dressed
- Start with introducing yourself and state the presentation title
- Acknowledge your co-authors!
- Speak clearly, not too fast
- Don't talk to the floor etc., look at audience and slides
- Don't put your hands in your pockets, don't cross your arms

Small Guide Overview

The "Physical" Presentation

Contents

Contents: Organization of the Talk

- In the beginning you have to get across (without details) what you are actually doing and why and why it is important, e.g.
 - Motivation
 - Why is it important
 - Problem statement + maybe hint to solution
- You need an overview slide either right in the beginning or after the above
 - Short talks (<= 20 min) one time may be enough</p>
 - Longer talks: this slide should appear at the beginning of each section

Typical organization:

- Motivation and problem statement
- Background
- Your contribution
- Results
- Conclusions

Slide numbers may be useful

Typical Overview Slide (assuming motivation and problem statement done)

- Background on signal transforms and SPIRAL
- Loop merging in SPIRAL using Sigma-SPL
- Experimental results and benchmarks

Conclusions

Contents: Text

Use text only as needed, pictures are often better

Use bullets

- Don't write full, long sentences
- If you have a full slide of text, let it appear (not fly in) bullet by bullet
- Define acronyms

Technical Contents

Don't try to get every detail across, it's the main idea that you have to get across

The key to successfully getting technical contents across: use the power of the medium:

- Visualization
- Visualization
- Visualization
- That includes properly used animations
- Properly used means: animation is used to better visualize not to fancify trivial things

Contents: Miscellaneous

- Don't loose people after a few slides, sequence of presented material has to be logical
- Mention related work and cite like [Miller and Smith ITC 03], use "et al." only if necessary
- In the conclusions repeat the main messages that you want the people to remember after the talk
- You may want to have some backup slides for questions that you expect

Small Guide Overview

The "Physical" Presentation

Contents

Looks

The Looks (The Design)

As important as contents

Design includes master style, colors, fonts, pictures, graphics, viewgraphs

Don't put too much stuff into one slide

 Standard style: Black text (not blue, green, etc.) on white background or bright text on dark background

The Looks: Fonts

- Use a sans serif font, often bold is the best choice
 - Sans serif font Arial
 - Sans serif font Arial Narrow
 - Serif font Times
 - For code Courier bold is best
 - I am not a fan of fonts like this
- Don't use small text (this here is 24pt)
- Use only one font (max. two if you have to, but then be consistent in use)
- If you have many formulas or sophisticated ones: Get texpoint
- Math in text: make italic

The Looks: Colors

- Colors are good, but
- Don't use more than 2 colors (I usually stick with one) and make sure they fit together.
 Exception: In diagrams, figures etc., where more colors enhance presentations
 For example, in a block diagram, does every block need a different color? Usually not.
- Be consistent in color use (e.g., in this presentation I emphasize text using always red)
- I use pastel color very sparsely only as background

The Looks: Graphics and Tables

Make sure they look good

Colors

• Format, e.g., jpeg only for images

Thin lines usually look bad

Powerpoint

Use latest version if possible (~\$10 in computer store)

Use properly (i.e., don't hard code)

- Slide master
- Slide layout
- Style (format -> slide design)

In bulleted lists

- Format using ruler (no space-space-space...)
- shift+enter makes a line break without new bullet