
Algorithms and Computation in 
Signal Processing

special topic course 18-799B
spring 2005

5th Lecture Jan. 25, 2005

Instructor: Markus Pueschel
TA: Srinivas Chellappa



Guide to Benchmarking



Guide to Benchmarking: How?
First: Verify your code!

Measure runtime, compare against the best available code
compile other code correctly (as good as possible)
use same timing method
be fair
always sanity check: compare to published results etc.

Measure performance: flops (number floating point ops/second), 
compare to peak performance

needs peak performance
get instruction count statically (cost analysis) or dynamically (tool that counts, or 
replace ops by counters through macros)
Careful: Different algorithms may have different op count, i.e., best flops is not 
always best runtime



Guide to benchmarking: How to measure runtime?
C clock()

process specific, low resolution, very portable

gettimeofday
measures wall clock time, higher resolution, somewhat portable

Performance counter (e.g., TSC on Pentiums)
measures cycles (i.e., also wall clock time), highest resolution, not portable

Careful:
measure only what you want to measure (maybe subtract overhead)
proper machine state (e.g., cold/warm cache)
measure enough repetitions
check how reproducible; if not reproducible: fix it



Guide to Benchmarking: 
How to present results (in writing)?

Specify machine
processor type, frequency
relevant caches and their sizes
operating system

Specify compilation
compiler incl. version
flags

Explain timing method

Plot
Has to be very readable (colors, lines, fonts, etc.)
Choose proper type of plot: message as visible as possible



Guide to Benchmarking: 
How to present results (talking)?

Briefly explain the experiment

Explain x- and y-axis

Say, e.g., “higher is better” if appropriate

If many lines, maybe explain one as example

Extract a message in the end



Example
Performance of code for the discrete cosine transform (DCT):

Platform:
P4 (HT), 3GHz, 
8KB L1, 512KB L2,
WinXP

Compiler:
icc 8.0

Compiler flags:
/QxKW /G7 /O3

Spiral-generated code is a factor of 2 faster
reaches up to 50% of the peak performance



Linear Algebra Software:
LAPACK and BLAS



Linear Algebra Algorithms: Examples

Solving systems of linear equations
Computation of eigenvalues
Singular value decomposition
LU/Cholesky/QR/… decompositions
… and many others

Make up most of the numerical computation across 
disciplines (sciences, computer science, engineering)
Efficient software is extremely relevant



The Path to LAPACK

1960s/70s: EISPACK and LINPACK
libraries for linear algebra algorithms 
Cleve Moler et al.

Problem: 
Implementation “vector-based,” i.e., no locality in data access
Low performance on computers with deep memory hierarchy
Became apparent in the 80s

Solution: LAPACK
Reimplement the algorithms “block-based,” i.e., with locality
End of 1980s, early 1990s
Jim Demmel, Jack Dongarra et al.



LAPACK and BLAS
Basic Idea:

LAPACK
BLAS

static

reimplemented
for each platform

BLAS = Basic Linear Algebra Subroutines link
BLAS1: vector-vector operations (e.g., vector sum)
BLAS2: matrix-vector operations (e.g., matrix-vector product)
BLAS3: matrix-matrix operations (mainly matrix-matrix product)

LAPACK implemented on top of BLAS
as much as possible using block matrix operations (locality) = BLAS 3
Implemented in F77 (enables good compilation)
Open source

BLAS recreated for each platform to port performance

link

http://www.netlib.org/lapack/
http://www.netlib.org/blas/faq.html#1.6%22


Why is BLAS3 so important?

BLAS1: O(n) data, O(n) operations
BLAS2: O(n2) data, O(n2) operations
BLAS3: O(n2) data, O(n3) operations = data reuse = locality!

Give example of blocking for MMM (blackboard)

Blocking (for the memory hierarchy) is the single most 
important optimization for linear algebra algorithms



Matrix-Matrix Multiplication (MMM):
Algorithms and Complexity



MMM by Definition

Cost as computed before
n3 multiplications
n3-n2 additions
= 2n3-n2 floating point operations
=O(n3) runtime

Blocking
Increases locality (see previous example)
Does not decrease cost

Can we do better?



Strassen’s Algorithm
Strassen, V. "Gaussian Elimination is Not Optimal." 
Numerische Mathematik 13, 354-356, 1969

Multiplies two n x n matrices in O(nlog2(7)) ≈ O(n2.808)

Similarities to Karatsuba

linkCheck out algorithm at Mathworld

Breakover point, in terms of cost: n=654, but …
Structure more complex
Numerical stability inferior

Can we do better?

http://mathworld.wolfram.com/StrassenFormulas.html


MMM Complexity: What is known

Coppersmith, D. and Winograd, S. "Matrix Multiplication via 
Arithmetic Programming." J. Symb. Comput. 9, 251-280, 1990

MMM is O(n2.376) and Ω(n2)

It could well be Θ(n2)

Compare this to matrix-vector multiplication, 
which is Θ(n2) (Winograd), i.e., boring

MMM is the single most important computational kernel in 
linear algebra (probably in whole numerical computing)


	Algorithms and Computation in Signal Processing special topic course 18-799Bspring 20055th Lecture Jan. 25, 2005
	Guide to Benchmarking
	Guide to Benchmarking: How?
	Guide to benchmarking: How to measure runtime?
	Guide to Benchmarking: How to present results (in writing)?
	Guide to Benchmarking: How to present results (talking)?
	Example
	Linear Algebra Software:LAPACK and BLAS
	Linear Algebra Algorithms: Examples
	The Path to LAPACK
	LAPACK and BLAS
	Why is BLAS3 so important?
	Matrix-Matrix Multiplication (MMM):Algorithms and Complexity
	MMM by Definition
	Strassen’s Algorithm
	MMM Complexity: What is known

