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ABSTRACT 
 
The current state of the art Matrix-Matrix-Multiplication 
(MMM) kernel is known as ATLAS, which generates the 
best performing MMM code by search. However, today’s 
computer architecture changes rapidly and it is hard to 
generate a high performance code without knowing how 
to use the new instruction sets. Since ATLAS does not 
make use of blocking for L2 cache, or SSE/SSE2 
instruction, we are encouraged to improve ATLAS to 
obtain higher MMM performance than that of the original 
ATLAS. Our experiment result shows that we can obtain 
high performance using SSE/SSE2 which is available on 
the new generations of Pentium. 

 

1. INTRODUCTION 
 
1.1 Motivation 
  
The matrix-matrix-multiplication (MMM) kernel has been 
widely used in numerical computing. There have been a 
lot of efforts to generate optimized code for different 
architectures. One distinguishable attempt is the ATLAS 
project. However, ATLAS does not take advantage of 
some of the new features of state-of-the-art processors. 
Thus, we want to create a better code generator that makes 
use of such advanced features. 
 
1.2 Previous Work and State of the Art 
 
The current state-of-the-art platform adaptation and code 
generation for the MMM is ATLAS. ATLAS uses register 
blocking, L1-cache blocking, instruction skewing and 
loop unrolling techniques to generate a fast code that are 
suitable for each platform. However, ATLAS does not 
block for L2-cache, and does not generate code that uses 
SSE / SSE2 instructions that are present in some of the 
new architectures such as Pentium 4. Since Pentium 4 is 
the most widely used architecture today, the lack of 
support for SSE instruction is a big disadvantage, because 
the use of SSE can dramatically increase the performance. 

The L2-cache blocking improves performance when the 
matrix size is too big to fit in L1 cache. Most of the recent 
architectures have multiple levels of memory hierarchy, 
and L2-cache is very common, and some recent 
architecture also has L3-cache. 
 
1.3 What I Am Going to Do 
 
We want to make a self platform adapting code generator 
for MMM, which supports the L2 cache blocking and SSE 
instructions on top of all of the current ATLAS features.  
 
1.4 Organization of the Paper 
 
In section 2, we provide the background on the matrix 
matrix multiplication and its cost analysis. We explain our 
methods in section 3, then present the results in section 4. 
Section 5 concludes the paper, and section 6 is the 
references we used.  

 
2. NECESSARY BACKGROUND 

 
2.1 Matrix Matrix Multiplication 
 
The MMM can be performed by the following equation.  
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where Cij is each entry of result matrix and Aik. BBkj are 
each entry of input matrices. For each entries of the output 
matrix, the computation requires n additions and n 
multiplication, where n is the size of the matrix. 
 
2.2 Cost Analysis 
 
The arithmetic cost of multiplying an n x n by an n x n is 
2n3 – n2 by definition. For each entry in the result matrix 
C, a row vector of matrix A and a column vector of matrix 
B is multiplied together, thus it requires n multiplications. 
After multiplication, we need to sum up the multiplied 
values of the vector requiring n-1 additions. There are n2 
entries in the result matrix C, so the total cost of the 
MMM is n2(n + n – 1) = 2n3 – n2. 



 
 

3. METHOD 
 
3.1 Our version of ATLAS 
 
We first tried to implement most of the current features of 
ATLAS in our own code. The current ATLAS performs 
the following major optimizations to generate the optimal 
code. Each optimization is parametrized with the 
parameters specified. 

• Register Blocking (Nu, Mu) 
• L-1 Cache Blocking (NB) B

• Loop Unrolling  (Ku) 
• Instruction Skewing (Ls) 

We implemented all of the above optimizations with 
exception of the Instruction Skewing. However, it was 
very hard to achieve the high performance that ATLAS 
can generate in limited time we had on this project. In 
addition, some of the optimizations done in ATLAS was 
not fully understood, thus it was almost impossible to 
implement a code that performs better than original 
ATLAS generated code. Since our focus was to generate a 
code that makes use of the SSE/SSE2, we decided to 
spend more time on optimizing the new code with 
SSE/SSE2 instead of spending time on a code that 
ATLAS can do much better job. 
 
3.2 Self-verification System 
 
After implementing a rough version of codes, we made a 
self verification system which compares the result of 
computation automatically, so that we can be sure of the 
correctness of our new code. This system enabled quick 
verification of the new codes. The correctness of 
computation is very important, because small variations in 
the code can lead to wrong results.  
 
3.3 SSE / SSE2 
 
SSE(Streaming SIMD Extensions) is SIMD instruction set 
designed by Intel. SSE allows floating point arithmetic 
operations in a set of 4 single precision number which are 
stored in 128bit special registers. In theory, SSE can 
achieve a performance gain by a factor of 4. SSE2 is an 
extension to the basic SSE instruction set with the feature 
of support for double-precision (64bit) floating point 
numbers. However, SSE2 uses the same 128bt registers, 
therefore, SSE2 only supports 2-way floating point 
operations. This means that SSE2 can achieve 
performance gain by factor of 2.  
    We wanted to verify the correctness of our SSE / SSE2 
codes before we make code generator. Thus, we made our 
first version of code that uses SSE / SSE2 instructions 
with fixed parameters instead of automatically generating 

corresponding code according to the parameters. After we 
verified the correctness using the verification system we 
made earlier, then we made an automatic code generator 
that creates a code using parameterized inputs.  
 
3.4 L-2 Cache Blocking 
 
We added the L-2 cache blocking to our code generator. 
We used parameter NB2 to represent the level 2 blocking. 
This optimization is aimed for big matrices that cannot fit 
in L-1 cache.  
 
3.5 Search / Code generation 
 
The search technique used in ATLAS is orthogonal line 
search. What ATLAS does is fix all but one of the 
parameters then conducts a search over all possible values 
of that specific parameter. After ATLAS obtains the best 
performing parameter, that information is fed back to 
optimize another parameter. We followed the ATLAS and 
made our own search program. The parameter NB2 is 
added to the search because our code generator uses L-2 
cache blocking. Our code generator also generates SSE / 
SSE2 codes if the architecture supports them. 
 
3.6 Possible TLB miss optimization 
 
There are more interesting attempts to achieve high 
performance MMM. The Goto paper mentions how one 
can optimize the performance of MMM by reducing the 
TLB misses. Most of today’s architectures have multiple 
levels of memory hierarchy to buttress the CPU. However, 
as you go down the memory hierarchy, more and more 
penalties are unavoidable because lower level cache 
memory generally has poor performance compared to 
registers or L1 cache. However, L2 cache is generally 
much larger than L1 cache, so it compensates for its slow 
speed. Computer architects usually design the L2 cache 
work in size of page size, which is a commonly used for 
virtual memory translation. However, this translation 
takes a quite considerable amount of time, so there is 
dedicated cache structure to reduce the translation penalty. 
This structure is known as Table Look-aside Buffer (TLB). 
If we can align the memory access so that everything we 
perform fits in a page size, then we can minimize the TLB 
cache misses and gain more performance. If we have 
more time to work on this project, we would like to try 
implementing this into our code. Due to lack of time, we 
simply aligned all the matrices to page boundary when we 
allocate the memory in hope to reduce some TLB misses 
if possible.  
 

4. EXPERIMENTAL RESULTS 
 
4.1 Overview 



 
We first made triple loop MMM code and normally 
generated MMM code, which searches the best 
parameters and gives us the better result than that of triple 
loop MMM. However, our goal is to improve normally 
generated MMM code using SSE/SSE2 instruction. Our 
improved MMM code using SSE/SSE2 instruction gives 
us remarkable high performance compare to the normally 
generated MMM or nested triple loop MMM. The SSE 
code achieves peak performance that is almost six times 
faster than the non-SSE code. The SSE2 code is faster by 
factor of two compared to non-SSE code. The 
experimental result clearly shows that the use of 
SSE/SSE2 instructions can dramatically increase the 
performance of MMM.  
 
4.2 Experimental Setup 
 
To test performance, we used a Pentium4 (Hyper 
Threading), 3.0 GHz under linux. The machine has 16KB 
L1 cache and 1024KB L2 cache. For compilation we used 
GCC 3.34 with following flag: 
-03 -Wall -I. -march=pentium4 -mfpmath=sse -fomit -lm. 
 
4.3 Search Result 
 
Our search program determined the following parameters 
for the optimal performance on our test machine. 

• Nu = 2, Mu = 2, NB = 32, NB2 = 256, Ku = 32 
The Pentium 4 has 8 registers, thus Nu and Mu value of 2 
is perfect size for register blocking. The L-1 and L-2 
cache blocking size is determined by searching for the 
best level 2 blocking size NB2 first, then searching level 
one block size. The unrolling factor Ku is then determined.   
 
4.4 One level of blocking 
 
The Plot 1 shows the performance of various codes 
without the level 2 cache blocking. The performance of 
SSE code is 50 times as high as that of triple loop MMM. 
The graph shows that since we only block for one level of 
cache, our codes cannot sustain the high performance as 
the test matrix size gets larger. Our experimental data 
shows that without L2 cache blocking, our code suffers 
significant performance penalty if the test matrix size is 
larger than 512. We plotted both a single precision (Float) 
and double precision (Double) MMM performance on the 
graph because SSE only supports single precision 
calculation, so we need to compare the performance with 
the same data type. If we compare the performance of 
SSE2 code with the double precision code, we can see 
that SSE2 code is approximately 1.5 times faster. In 
theory we should have gotten twice faster, since SSE2 
supports two way floating point operations, but there is 

overhead associated with the SSE2 instruction that 
reduces the ideal performance gain. 
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Plot 1: MMM Performance without L2 Blocking 

 
MMM Performance with L2 blocking
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Plot 2: MMM Performance with L2 Blocking 

 
4.4 Two levels of blocking 
 
Plot 2 shows the performance after we implemented the 
level 2 cache blocking optimizations. With L-2 blocking, 
our code sustains high performance throughout larger 
range of matrix sizes. The peak performance of SSE code 
reached almost 6000 MFLOPS, which is six times faster 
than our original generated code. It does not make sense 
to gain factor of 6, because SSE instruction supports 4-
way vector calculations, but if we think about the sub-
optimality of our normal code, then it makes more sense. 
On a 3Ghz Pentium 4, the theoretical maximum 
performance without the use of SSE/SSE2 instructions is 
approximately 3GFLOPS, and ATLAS reaches about 
75% of the peak performance, so in this case, ATLAS 
code would have reached 2250MFLOPS. If we compare 
our SSE code to ATLAS, then we can see that we only 
gained about a factor of three. This is due to the overhead 
of using SSE instructions.  



 
5. CONCLUSIONS 

 
The speed of computer has been growing exponentially. 
However, the computer architects will soon face the end 
of the Moore’s law. When the architects cannot achieve 
higher performance by just scaling, they will come out 
with new techniques to keep improving the current 
processors. One remarkable approach is dual core systems 
that are beginning to appear just now. ATLAS had the 
right idea when they created an automatic code generator 
using search to achieve high performance on new 
architectures, but in order to optimally use all the 
potentials of the new hardware, it is important to 
understand and make use of the new features. If a 
software developer does not use the new features, then 
developing new hardware will be pointless.  
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