
GENERATING VECTOR CODE FOR MATRIX-MATRIX MULTIPLICATION

Joohoon Lee and Dongkeun Lee

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT

The current state of the art Matrix-Matrix-Multiplication
(MMM) kernel is known as ATLAS, which generates the
best performing MMM code by search. However, today’s
computer architecture changes rapidly and it is hard to
generate a high performance code without knowing how
to use the new instruction sets. Since ATLAS does not
make use of blocking for L2 cache, or SSE/SSE2
instruction, we are encouraged to improve ATLAS to
obtain higher MMM performance than that of the original
ATLAS. Our experiment result shows that we can obtain
high performance using SSE/SSE2 which is available on
the new generations of Pentium.

1. INTRODUCTION

1.1 Motivation

The matrix-matrix-multiplication (MMM) kernel has been
widely used in numerical computing. There have been a
lot of efforts to generate optimized code for different
architectures. One distinguishable attempt is the ATLAS
project. However, ATLAS does not take advantage of
some of the new features of state-of-the-art processors.
Thus, we want to create a better code generator that makes
use of such advanced features.

1.2 Previous Work and State of the Art

The current state-of-the-art platform adaptation and code
generation for the MMM is ATLAS. ATLAS uses register
blocking, L1-cache blocking, instruction skewing and
loop unrolling techniques to generate a fast code that are
suitable for each platform. However, ATLAS does not
block for L2-cache, and does not generate code that uses
SSE / SSE2 instructions that are present in some of the
new architectures such as Pentium 4. Since Pentium 4 is
the most widely used architecture today, the lack of
support for SSE instruction is a big disadvantage, because
the use of SSE can dramatically increase the performance.

The L2-cache blocking improves performance when the
matrix size is too big to fit in L1 cache. Most of the recent
architectures have multiple levels of memory hierarchy,
and L2-cache is very common, and some recent
architecture also has L3-cache.

1.3 What I Am Going to Do

We want to make a self platform adapting code generator
for MMM, which supports the L2 cache blocking and SSE
instructions on top of all of the current ATLAS features.

1.4 Organization of the Paper

In section 2, we provide the background on the matrix
matrix multiplication and its cost analysis. We explain our
methods in section 3, then present the results in section 4.
Section 5 concludes the paper, and section 6 is the
references we used.

2. NECESSARY BACKGROUND

2.1 Matrix Matrix Multiplication

The MMM can be performed by the following equation.

1

0

N

ij ik kj
k

C A
−

=

= ∑ B ,

where Cij is each entry of result matrix and Aik. BBkj are
each entry of input matrices. For each entries of the output
matrix, the computation requires n additions and n
multiplication, where n is the size of the matrix.

2.2 Cost Analysis

The arithmetic cost of multiplying an n x n by an n x n is
2n3 – n2 by definition. For each entry in the result matrix
C, a row vector of matrix A and a column vector of matrix
B is multiplied together, thus it requires n multiplications.
After multiplication, we need to sum up the multiplied
values of the vector requiring n-1 additions. There are n2
entries in the result matrix C, so the total cost of the
MMM is n2(n + n – 1) = 2n3 – n2.

3. METHOD

3.1 Our version of ATLAS

We first tried to implement most of the current features of
ATLAS in our own code. The current ATLAS performs
the following major optimizations to generate the optimal
code. Each optimization is parametrized with the
parameters specified.

• Register Blocking (Nu, Mu)
• L-1 Cache Blocking (NB) B

• Loop Unrolling (Ku)
• Instruction Skewing (Ls)

We implemented all of the above optimizations with
exception of the Instruction Skewing. However, it was
very hard to achieve the high performance that ATLAS
can generate in limited time we had on this project. In
addition, some of the optimizations done in ATLAS was
not fully understood, thus it was almost impossible to
implement a code that performs better than original
ATLAS generated code. Since our focus was to generate a
code that makes use of the SSE/SSE2, we decided to
spend more time on optimizing the new code with
SSE/SSE2 instead of spending time on a code that
ATLAS can do much better job.

3.2 Self-verification System

After implementing a rough version of codes, we made a
self verification system which compares the result of
computation automatically, so that we can be sure of the
correctness of our new code. This system enabled quick
verification of the new codes. The correctness of
computation is very important, because small variations in
the code can lead to wrong results.

3.3 SSE / SSE2

SSE(Streaming SIMD Extensions) is SIMD instruction set
designed by Intel. SSE allows floating point arithmetic
operations in a set of 4 single precision number which are
stored in 128bit special registers. In theory, SSE can
achieve a performance gain by a factor of 4. SSE2 is an
extension to the basic SSE instruction set with the feature
of support for double-precision (64bit) floating point
numbers. However, SSE2 uses the same 128bt registers,
therefore, SSE2 only supports 2-way floating point
operations. This means that SSE2 can achieve
performance gain by factor of 2.
 We wanted to verify the correctness of our SSE / SSE2
codes before we make code generator. Thus, we made our
first version of code that uses SSE / SSE2 instructions
with fixed parameters instead of automatically generating

corresponding code according to the parameters. After we
verified the correctness using the verification system we
made earlier, then we made an automatic code generator
that creates a code using parameterized inputs.

3.4 L-2 Cache Blocking

We added the L-2 cache blocking to our code generator.
We used parameter NB2 to represent the level 2 blocking.
This optimization is aimed for big matrices that cannot fit
in L-1 cache.

3.5 Search / Code generation

The search technique used in ATLAS is orthogonal line
search. What ATLAS does is fix all but one of the
parameters then conducts a search over all possible values
of that specific parameter. After ATLAS obtains the best
performing parameter, that information is fed back to
optimize another parameter. We followed the ATLAS and
made our own search program. The parameter NB2 is
added to the search because our code generator uses L-2
cache blocking. Our code generator also generates SSE /
SSE2 codes if the architecture supports them.

3.6 Possible TLB miss optimization

There are more interesting attempts to achieve high
performance MMM. The Goto paper mentions how one
can optimize the performance of MMM by reducing the
TLB misses. Most of today’s architectures have multiple
levels of memory hierarchy to buttress the CPU. However,
as you go down the memory hierarchy, more and more
penalties are unavoidable because lower level cache
memory generally has poor performance compared to
registers or L1 cache. However, L2 cache is generally
much larger than L1 cache, so it compensates for its slow
speed. Computer architects usually design the L2 cache
work in size of page size, which is a commonly used for
virtual memory translation. However, this translation
takes a quite considerable amount of time, so there is
dedicated cache structure to reduce the translation penalty.
This structure is known as Table Look-aside Buffer (TLB).
If we can align the memory access so that everything we
perform fits in a page size, then we can minimize the TLB
cache misses and gain more performance. If we have
more time to work on this project, we would like to try
implementing this into our code. Due to lack of time, we
simply aligned all the matrices to page boundary when we
allocate the memory in hope to reduce some TLB misses
if possible.

4. EXPERIMENTAL RESULTS

4.1 Overview

We first made triple loop MMM code and normally
generated MMM code, which searches the best
parameters and gives us the better result than that of triple
loop MMM. However, our goal is to improve normally
generated MMM code using SSE/SSE2 instruction. Our
improved MMM code using SSE/SSE2 instruction gives
us remarkable high performance compare to the normally
generated MMM or nested triple loop MMM. The SSE
code achieves peak performance that is almost six times
faster than the non-SSE code. The SSE2 code is faster by
factor of two compared to non-SSE code. The
experimental result clearly shows that the use of
SSE/SSE2 instructions can dramatically increase the
performance of MMM.

4.2 Experimental Setup

To test performance, we used a Pentium4 (Hyper
Threading), 3.0 GHz under linux. The machine has 16KB
L1 cache and 1024KB L2 cache. For compilation we used
GCC 3.34 with following flag:
-03 -Wall -I. -march=pentium4 -mfpmath=sse -fomit -lm.

4.3 Search Result

Our search program determined the following parameters
for the optimal performance on our test machine.

• Nu = 2, Mu = 2, NB = 32, NB2 = 256, Ku = 32
The Pentium 4 has 8 registers, thus Nu and Mu value of 2
is perfect size for register blocking. The L-1 and L-2
cache blocking size is determined by searching for the
best level 2 blocking size NB2 first, then searching level
one block size. The unrolling factor Ku is then determined.

4.4 One level of blocking

The Plot 1 shows the performance of various codes
without the level 2 cache blocking. The performance of
SSE code is 50 times as high as that of triple loop MMM.
The graph shows that since we only block for one level of
cache, our codes cannot sustain the high performance as
the test matrix size gets larger. Our experimental data
shows that without L2 cache blocking, our code suffers
significant performance penalty if the test matrix size is
larger than 512. We plotted both a single precision (Float)
and double precision (Double) MMM performance on the
graph because SSE only supports single precision
calculation, so we need to compare the performance with
the same data type. If we compare the performance of
SSE2 code with the double precision code, we can see
that SSE2 code is approximately 1.5 times faster. In
theory we should have gotten twice faster, since SSE2
supports two way floating point operations, but there is

overhead associated with the SSE2 instruction that
reduces the ideal performance gain.

MMM Performance without L2 blocking

0

1000

2000

3000

4000

5000

6000

32
0

64
0

96
0

12
80

16
00

19
20

22
40

25
60

28
80

32
00

35
20

38
40

Size

SSE

SSE2

Double

Float

Triple Loop

Plot 1: MMM Performance without L2 Blocking

MMM Performance with L2 blocking

0

1000

2000

3000

4000

5000

6000

7000

32 25
6

48
0

70
4

92
8

11
52

13
76

16
00

18
24

20
48

22
72

24
96

27
20

29
44

31
68

33
92

36
16

38
40

40
64

Size

SSE
SSE2
Float
Double
Triple Loop

Plot 2: MMM Performance with L2 Blocking

4.4 Two levels of blocking

Plot 2 shows the performance after we implemented the
level 2 cache blocking optimizations. With L-2 blocking,
our code sustains high performance throughout larger
range of matrix sizes. The peak performance of SSE code
reached almost 6000 MFLOPS, which is six times faster
than our original generated code. It does not make sense
to gain factor of 6, because SSE instruction supports 4-
way vector calculations, but if we think about the sub-
optimality of our normal code, then it makes more sense.
On a 3Ghz Pentium 4, the theoretical maximum
performance without the use of SSE/SSE2 instructions is
approximately 3GFLOPS, and ATLAS reaches about
75% of the peak performance, so in this case, ATLAS
code would have reached 2250MFLOPS. If we compare
our SSE code to ATLAS, then we can see that we only
gained about a factor of three. This is due to the overhead
of using SSE instructions.

5. CONCLUSIONS

The speed of computer has been growing exponentially.
However, the computer architects will soon face the end
of the Moore’s law. When the architects cannot achieve
higher performance by just scaling, they will come out
with new techniques to keep improving the current
processors. One remarkable approach is dual core systems
that are beginning to appear just now. ATLAS had the
right idea when they created an automatic code generator
using search to achieve high performance on new
architectures, but in order to optimally use all the
potentials of the new hardware, it is important to
understand and make use of the new features. If a
software developer does not use the new features, then
developing new hardware will be pointless.

6. REFERENCES

[1] R. Whaley, A. Petitet, J. Dongarra, “Automated Empirical
Optimization of Software and the ATLAS Project”, Sep. 2000

[2] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali,
P. Stodghill, “Is Search Really Necessary to Generate High-
Performance BLAS?”.

[3] K. Goto, R. Geijn, “On Reducing TLB Misses in Matrix
Multiplication” FLAME Working Note #9, The University of
Texas at Austin, Department of Computer Sciences. Technical
Report TR-2002-55. Nov. 2002

	GENERATING VECTOR CODE FOR MATRIX-MATRIX MULTIPLICATION
	ABSTRACT

