
FAST CALCULATION OF HARALICK TEXTURE FEATURES

Eizan Miyamoto1 and Thomas Merryman Jr.2

1Human Computer Interaction Institute
2Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

ABSTRACT

It is our aim in this research to optimize the numerical
computation of the Haralick texture features [1] that con-
sists of two steps. Haralick texture features are used as a pri-
mary component to discern between different protein struc-
tures in microscopic bio-images. The first of these two parts
is the construction of the co-occurrence matrix. Upon com-
pletion of this implementation, we will attempt to optimize
the code using a novel recursive blocking algorithm. We
will also use standard practices of optimizing code such as
scalar replacement and unrolling. The second part, feature
calculation, will be optimized by putting to use information
about the data that we will be working with and eliminating
any redundancies in the code. We will also apply the prac-
tices of unrolling and scalar replacement. With these opti-
mizations in place, we will show that we reduce the runtime
by a20% in the co-occurrence construction phase and by a
factor of20 in the feature calculation phase of computation.

1. INTRODUCTION

The Haralick texture features are used for image classifica-
tion. These features capture information about the patterns
that emerge in patterns of texture. The features are calcu-
lated by construction a co-occurrence matrix that is tradi-
tionally computationally expensive. Once the co-occurrence
matrix has been constructed, calculations of the 13 features
begin. Some of these features include angular second mo-
ment, contrast, correlation, as well as a variety of entropy
measures. Due to the numerical nature of the computation,
this problem is the focus of our optimization.

1.1. Motivation

The objective of this work is to reduce the runtime of com-
puting the Haralick texture features. These features are used
extensively in image classification. This work is motivated

The author thanks Jelena Kovacevic. This paper is a modified version
of the template she used in her class.

by the bottle neck created when needing to calculate these
features, both in the training and testing phases of the clas-
sification. By decreasing the time spent calculating these
features, this will increase the efficiency in which we can
train and test a classifier as well as the throughput of images
needing to be classified.

1.2. Previous Work and State-of-the-Art

Optimization of the Haralick texture features is a topic that
has not been previously discussed in the literature.

1.3. What We Are Going to Do

Haralick texture feature calculation can be broken down into
two parts or modules; (1) the construction of the co-occurrence
matrices and (2) the calculation of the 13 texture features
based on the co-occurrence matrices. The problem of op-
timization is approached in a similar fashion, that is, opti-
mization of each of the two components is tackled indepen-
dently.
The co-occurrence matrices optimization was done by first
using a recursive blocking algorithm. The base cases of this
recursion were then unrolled. Coinciding with the construc-
tion of the co-occurrence matrices are the calculations of
statistical properties of these matrices. The optimization of
this calculation was begun by ensuring that the order that
the data was processed was done in a manner to reduce the
number of cache misses. We were also able to take advan-
tage of some of the inherent properties of the co-occurrence
matrices to limit the number of times data would need to be
accessed from these matrices. This code was also unrolled
complete the optimization.
The feature calculations involved a more straight forward
approach. The first optimization was to combine the loops
so that we did not loop through the data unnecessarily or ac-
cess the co-occurrence matrices more than necessary. Then,
similarly to the statistical properties of the co-occurrence
matrices, we were able to limit the amount of data access.
The last stages of this optimization were to again unroll the

code where applicable.

1.4. Organization of the Paper

This paper will follow the structure detailed next. In section
2, we will present an overview of the co-occurrence matrix.
We will also briefly summarize the 13 texture features that
will be calculated from the co-occurrence matrix. In this
section we will also give a cost analysis of a straightforward
implementation. In section 3, we will show the approach
that we used to optimize the two modules outlined in sec-
tion 2. Section 4 will show the results of our optimizations
in comparison to the straight forward implementation. In
section 5, we will discuss the conclusions that can be made
as a result of this work.

2. HARALICK TEXTURE FEATURES

In this section, we will provide the necessary definitions and
background needed to understand the Haralick texture fea-
tures. A broad over view of the knowledge needed to com-
pute the texture features is given in the following subsec-
tions as well as a cost analysis for these calculations.

2.1. Co-occurrence Matrix and Statistical Properties

A co-occurrence matrix,P is used to describe the patterns
of neighboring pixels in an image at a given distance,d.
In the calculation of the texture features,4 such matrices
are needed to describe different orientations. More specif-
ically, one co-occurrence matrix describes pixels that are
adjacent to one another horizontally,P 0. There is also a co-
occurrence matrix for the vertical direction and diagonally
in both directions. These matrices are calledP 90, P 45 and
P 135 respectively. Fig. 1 gives a graphical description of
this process forP 0o

. The method to apply this to the other
3 orientations is done in a similar fashion.

1

1

3

2

2 2

2 4

3

3 3

4

4 4

4

4

1 2 3 4

1

2

3

4

+ 1

+ 1

1 2 3 4

1

2

3

4

11 10

3

32

21

1

1 2

22

2

0

(a) (b) (c)

Fig. 1. Construction of the co-occurrence matrix ford = 1:
The original image (a) begins by having each of its neigh-
boring pairs examined. Part (b) shows the incremental stage
that occurs when the outlined neighboring pixels in (a) are
examined. Part (c) shows the final result of the horizontal
co-occurrence matrix ford = 1.

The co-occurrence matrices are symmetric matrices with
the dimensionality ofNg ×Ng whereNg is the number of
possible gray levels for a particular image. You can then
think of the co-occurrence matrices as being represented by
a 3-dimensional data structure shown in Fig. 2. The third
dimension isd which varies depending on the dimensions of
the original input image. For simplicity, we will assume that
the input images are square images with dimensionsN×N .

.

.

.

.

.

.

d = 1

d = 2

d = N- 2

.

.

.

i= 1 . . . N g

j=
Ng

. .
 .

1

Fig. 2. A 3-dimensional representation of the volume cre-
ated by calculating the co-occurrence matrix for a given ori-
entation. Each image would have 4 similar co-occurrence
volumes. The gray area represents the unique information
contained with in this volume since each slice in d is a sym-
metric matrix.

For each layer ofd some statistical properties can be de-
fined. The equations in Table 1 are the statistical properties
of the co-occurrence matrix.

2.2. Texture Features

Using the descriptions given in the previous subsection, the
13 Haralick texture features can be calculated directly using
the equations found in Table 2.

2.3. Cost Analysis

The cost associated with completing all of the above opera-
tions is divided into5 categories; Number of adds(A(N, Ng)),
number of multiplies(M(N, Ng)), number of logarithms(L(N, Ng)),
number of exponentials(E(N)) and number of square roots(S(N)).
N corresponds to the dimensions of the image andNg is the
number of gray levels found in the input image. If we take
a specific distance,d, to be used during calculation of the
co-occurrence matrix, the costs are given as follows:

A(N,Ng) = 8N2 + 76N2
g + O(N) + O(Ng)

M(N, Ng) = 64N2
g + O(Ng)

Statistical Properties of Co-occurrence Matrix

R =

Ng∑
i=1

Ng∑
j=1

P (i, j) (1)

p(i, j) =
P (i, j)

R
(2)

px(i) =

Ng∑
j=1

p(i, j) (3)

py(j) =

Ng∑
i=1

p(i, j) (4)

px+y(k) =

Ng∑
i=1

Ng∑
j=1

p(i, j), i + j = k andk = 2, 3, . . . , 2Ng

(5)

px−y(k) =

Ng∑
i=1

Ng∑
j=1

p(i, j), |i− j| = k andk = 0, 1, . . . , Ng − 1

(6)

HXY 1 = −
Ng∑
i=1

Ng∑
j=1

p(i, j) log (px(i)py(j)) (7)

HXY 2 = −
Ng∑
i=1

Ng∑
j=1

px(i)py(j) log (px(i)py(j)) (8)

Table 1. The statistical properties calculated from the co-
occurrence matrix.

L(Ng) = 20N2
g + O(Ng)

E(N) = 4,

and

S(N) = 4.

We can go further with this cost analysis by giving the over-
all cost by summing over alld’s. This analysis is given next.

A(N, Ng) =
19
3

N3 + 76N2
g N + O(NgN)

M(N, Ng) = 64N2
g N + O(NgN)

L(N,Ng) = 20N2
g N+O(NgN)(N−2)(20N2

g +12Ng−4),

E(N) = 4N −O(1),

and

S(N) = 4N −O(1).

There is one additional measure that should be listed. This
is the number of Load Increment Stores (LIS) needed to
complete the building of the co-occurrence matrix. This is
based on the size of the input image,N , and is given as

LIS(N) = 2N3 −O(N2).

Descriptions of 13 Haralick Texture Features

f1 =

Ng∑
i=1

Ng∑
j=1

p(i, j)2, (9)

f2 =

Ng−1∑

k=0

k2px−y(k), (10)

f3 =

∑Ng

i=1

∑Ng

j=1 (ij)p(i, j)− µxµy

σxσy
, (11)

f4 =

Ng∑
i=1

Ng∑
j=1

(i− µ)2p(i, j), (12)

f5 =

Ng∑
i=1

Ng∑
j=1

1

1 + (i− j)2
p(i, j), (13)

f6 =

2Ng∑
i=2

ipx+y(i), (14)

f7 =

2Ng∑
i=2

(i− f8)
2px+y(i), (15)

f8 = −
2Ng∑
i=2

px+y(i) log (px+y(i)), (16)

f9 = −
Ng∑
i=1

Ng∑
j=1

p(i, j) log (p(i, j)), (17)

f10 = variance ofpx−y, (18)

f11 = −
Ng−1∑
i=0

px−y(i) log (px−y(i)), (19)

f12 =
f9 −HXY 1

max (HX, HY)
, (20)

f13 =
√

1− exp−2(HXY 2−f9), (21)

Table 2. The equations corresponding to the 13 individual
Haralick texture features.

3. OPTIMIZED IMPLEMENTATION OF
HARALICK FEATURE CALCULATION

The process of calculating the Haralick texture features oc-
curs in two separate modules. The first module is in building
the co-occurrence matrices and computing some statistical
properties of these matrices as shown in Table 1. The sec-
ond module processes the statistical properties as well as
the co-occurrence matrices from the previous module and
calculates the actual texture features shown in Table 2. We
will discuss the optimizations of each of these modules in
the following subsections.

3.1. Co-occurrence Matrices

Blocking: The first optimization that is taken when calcu-
lating the co-occurrence matrices is blocking. We begin
with an N × N image. This image is then divided into
smaller images of sizeB ×B as shown in Fig. 3.

N

N

B

B

(a) (b)

Fig. 3. Blocking occurs on the original image (a) in this
way. The image is broken down into smaller images of di-
mensions B x B. The now smaller images are again divided
into smaller images and this process reiterates until the base
case has been reached.

Taking the newly divided image, the co-occurrence is
calculated for each of the smaller images and then they are
combined to form the co-occurrence of the entire image.
This process differs depending on the orientation of the par-
ticular co-occurrence matrix. We shall begin by discussing
the simplest case, examination of horizontal neighbors of
distanced. For the horizontal case, we first calculate the co-
occurrence of the smaller images that were created during
the blocking. The algorithm that we used is recursive, so
during the calculation of the co-occurrence matrix this pro-
cess is iterated until the base case is reached. The base case
occurs when the sub images are of dimension1×1, a single
pixel. At this step the we examine the pixels in that image
and updates the co-occurrence matrix accordingly. The base
case is represented as shown in Fig. 1. Fig. 4 shows the
horizontal children compare step. This is straight forward
as we only need to compare the children blocks with other
children in the same row. This process is continued until the
entire horizontal co-occurrence matrix is constructed. The
process for calculating the vertical neighbors is similar to
the case just described, except we now examine blocks that
are located in the same columns of the image. In both of
these cases we examine each sub-image once. The parame-
ters for the blocking are found using a search that is platform
specific.

We now must examine the blocking mechanism in a
more general case. These general cases are illustrated in
Fig. 5.

Unrolling: The next step that we take during this op-
timization is to unroll the code. Due to the recursive nature

(a) (b)

(c) (d)

Fig. 4. This is an illustration of the recursive children com-
pare step. Part (a) shows the parent of a darkened child (c).
This child of (a) will be used to calculate co-occurrences
with each of the darkened children shown in part (b). Part
(d) is a particular child of (b) which is to be compared to
(c). Parts (c) and (d) will then repeat this process until the
base case has been reached.

(a) (b)

(c) (d)

Fig. 5. Part (a) shows all of the siblings that must be com-
pared in the135o case. Part (b) shows the siblings that must
be compared in the90o case. Part (c) shows the siblings
that must be compared in the45o case. Part (d) shows the
siblings that must be compared in the0o case.

of this algorithm, we can only unroll for the base cases of
the algorithm.

3.2. Texture Features

Concatenation of features: The first step that was taken
to optimize the actual feature calculations was to combine
the features that loop across the data in similar ways. By
examining the equations given in section 2.2, many of the
features use the same loop patterns over the co-occurrence
matrix. We begin by combining the featuresf1, f3, f4, f5,
andf9. The loops in each of these features span all ofi
and j as well as make accesses to the co-occurrence ma-
trix. We can reduce the number of memory accesses by
combining all of these feature calculations into one loop.
Similarly, f2andf11 loop overpx−y with the same indices.
These can also be combined into a single loop. This can
be applied once more to featuresf6, f7, andf8. Once these
combinations were completed, we further reduced the com-
putation needed onf1, f3, f4, f5, andf9 using the knowl-
edge that the co-occurrence matrix is symmetric. We then
changed the indices from

∑Ng

i=1

∑Ng

j=1 to 2
∑Ng

i=1

∑Ng

j=i.
This further reduced the number of accesses needed to the
co-occurrence matrix by a factor close to2. We also com-
bined the calculation of the statistical properties found in
Table 1 into these loops to further increase the efficiency of
accesses to the co-occurrence matrix.

Unrolling: Each of the for loops were then unrolled to
increase the efficiency of the code.

Log Table: The largest bottle neck that arises after the
above optimizations are implemented are the computation
of the logarithms. The only logarithms taken during the cal-
culation of the texture features are of probabilities, that is,
numbers between 0 and 1. The logarithm of0 should be
taken as equal to0 since these logarithms are used in en-
tropy calculations. Knowing the range of what numbers
would have their logarithms taken, we devised a log table
with 1000 entries to span the range from zero to one. This
gave us an additional speed up but we do trade some preci-
sion in doing so.

4. EXPERIMENTAL RESULTS

Co-occurrence Calculation: The blocking algorithm de-
scribed in section 3 actually slowed down the code consid-
erably. Our first implementation was a good implementa-
tion in that the loops were ordered in the efficient manner.
The reason the blocked code slowed down the code was due
to the large amount of complexity that it added to the cal-
culation of the co-occurrence matrix. The statistical prop-
erties of the co-occurrence matrix will be discussed in the
feature calculation section. In Fig. 6 we show the run-
times from of our different implementations. The nature of

Fig. 6. Results of co-occurrence matrix optimizations.

the co-occurrence matrix is to be accessed somewhat ran-
domly within a particular slice atd. However, in real world
microscopy images, the accesses to the co-occurrence are
more localized because there are frequently similar regions
that have the same co-occurrence within the input image.
The compiler used on this was gcc with optimization flags
”-O3” and ”funroll-loops”.

Feature Calculation: We were able to make improve-
ments to this portion of the computation by combining the
loops, scalar replacement and making use of the log table.
This reduced the runtime of the feature calculation consid-
erably as shown in Fig. 7. With these implementations we
were able to alleviate the feature calculations as a bottle-
neck in the overall system of calculating Haralick texture
features. The bottleneck now entirely resides in the com-
putation of the co-occurrence matrix which was difficult to
speed up due to its nature of random access of data in the
co-occurrence matrix. The compiler used on this was gcc
with optimization flags ”-O3” and ”funroll-loops”.

5. CONCLUSIONS

We have shown that by dramatic savings can be achieved by
optimizing in the manner described in this literature. First,
by making the implementation of the texture features mod-
ular we can focus on the problems separately. The speed
up during the construction of the co-occurrence matrices is
attributed to the recursive blocking algorithm, unrolling and
scalar replacement. The second module consisting of the
actual feature calculations was optimized using concatena-
tion of redundancies as well as unrolling. A smart approach
to this problem has increased the overall performance of the

Fig. 7. Results of feature calculation optimizations.

system by approximately a factor of2.

6. REFERENCES

[1] Robert M. Haralick, K Shanmugam and Its’Hak Din-
stein(1979). “Textural Features for Image Classifica-
tion.” IEEE Transactions on Systems, Man, and Cy-
bernetics..

