
LU FACTORIZATION MEASUREMENT AND OPTIMIZATION

John Cole

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT

In this paper, we analyze the runtime performance of the LU
factorization algorithm. To do this, we first test the basic
algorithm, as well as a blocked algorithm across different
compiler flags. Then, we add other specific optimizations to
the blocked algorithm code in order to get the best runtime
performance possible.

1. INTRODUCTION

Motivation. LU factorization is most often associated with
the problem of Gaussian Elimination. In the problem of
Gaussian Elimination, one needs to solve the system of equa-
tions represented by

�� � �
. It becomes necessary to fac-

tor a given matrix
�

into two other matrices, a lower and
an upper triangle matrix, which when multiplied together,
produce the original square matrix. LU factorization is the
process that accomplishes this. Once this factorization is
done, the resulting� and� matrices can be used to solve
for

�
by solving�� � �

, then� � � � .

Previous Work. The main reference for this paper is James
Demmel’sApplied Numerical Linear Algebra [1]. In this
reference, LU factorization is explained, as well as meth-
ods to use blocking to improve performance. The specific
algorithm for LU factorization is presented, as well as the
algorithm for blocked LU factorization. No performance
plots were included with these algorithms, which led us to
this paper.

What We Are Going to Do. First, we will test the base-
line algorithm from [1] across two different compilers and
4 compiler optimization flags. Then, to accomplish better
performance, we will utilize the blocking algorithm docu-
mented in [1]. Using this algorithm, we will evaluate the
results across blocksizes of 2, 3, and 4. In addition, for each
blocksize, we will attempt to unroll certain bottleneck por-
tions of code to produce even better results.

Organization. In Section 2, we will provide the basics be-
hind both the baseline and blocked algorithms of LU factor-

ization. In addition, we will provide a cost analysis of the
algorithm. Next, in Section 3, we will explain in detail the
exact optimizations made to each blocksize, including our
analysis of where the bottleneck portions of our code are.
In Section 4, we will present exact measurements we made,
and the results of our experiments with several runtime per-
formance plots. And finally, in Section 5 we will provide
some conclusions from our project.

2. LU FACTORIZATION ALGORITHMS AND
COST ANALYSIS

The LU factorization problem seems be a straightforward
algorithm. Our paper only addresses the baseline and blocked
algorithms presented in detail in [1].

2.1. Baseline Algorithm

The baseline algorithm for LU factorization consists of 3
parts for each iteration. These three steps are completed at
each member of the matrix’s diagonal in order from top left
to bottom right.
Pivoting. Later in the algorithm, it becomes necessary to
divide several values of the matrix by this diagonal mem-
ber. So this number cannot be zero. In our implementation,
we use partial pivoting, which means this diagonal member
is the largest absolute value of all member of its column be-
low it. Since with this method we begin moving rows of
the matrix, it becomes necessary to form a permutation ma-
trix � along with� and� , so that the original matrix

�
is

equal to� �� . So with partial pivoting, we must find the
maximum absolute value of the current column below the
diagonal and switch those two entire rows. Along with this
switch, we must switch the corresponding rows in� to pre-
serve� .
Division. Next, we divide each member of the current col-
umn below the diagonal by the diagonal member. Since we
have just done pivoting to ensure this divisor is the largest
absolute value, after this division, the absolute value of all
cells in the current column below the diagonal will be less
than or equal to 1. Since division is much more expensive

than multiplication, in our implementation, we will find the
inverse of the divisor, and use this value in our multiplica-
tions. Assuming we are at column i, the following equation
represents this step. Notice that the original matrix is over-
ridden. � and � will be extracted after the algorithm is
completed.

���� �� ���� � ��	�
� � ��
�
� � � � � �� � �
� � � � � �� � ���� �� ����

Update. Finally, we must update the lower right-hand por-
tion of the array. This is done with a multiplication and a
subtraction for each cell of this lower right-hand array. This
is done through the following equation:

�
� � � � � � � � � � � �
� � � � � � � � � �
�
�
� � � � � �� � �
� � � � � � ��

2.2. Blocked Algorithm

Now, moving to a blocked implementation of the LU factor-
ization algorithm, we are no longer working with a single
member of the diagonal. Now we are working with

�� ��
square along the diagonal, where

�
is the blocksize. Once

again, the blocked algorithm for LU factorization consists
of 3 steps, which are described below, assuming we are at
position i in the matrix. For reference, the

����
block is

labeled as
� ��

. The series of rows to the right of
� ��

span-
ning rows

�
through

� ��
is labeled as

� ��
. The series

of columns below
� ��

spanning columns
�

through

� ��

is labeled at
� ��

. And finally, the rest of the matrix to the
lower right is labeled as

� ��
. Pieces of� and� with the

same subscripts have the same dimensions.

Factorize
� ��

and
� ��

. We will first need to factorize
these two matrices together using the baseline algorithm to
form � ��, � ��, and� ��. While creating these,

� ��
and

� ��
are overridden according to the baseline algorithm.

Solve for
� ��

. To do this, we first must find��
���
. Then,

we form
� �� � � �

��� � � ��
.

�
� � � � � � � � � � � � �
��� � �
� � � � � � � � � �

Update. Just like in the baseline analysis, before we can
step

�
to the next iteration, we must update the lower right-

hand matrix
� ��

. In this case, we do this with a matrix
matrix multiplication, and a subtraction.

�
� � � � � � � � � � � �
� � � � � � � � � �
��
� � � � � � � � �� � �
� � � � � � � � � �

2.3. Cost Analysis

For this paper, we decided to only include additions, multi-
plications, and comparisons as floating point operations in
our analysis. we included comparisons because most com-
parisons subtract the two sides of the comparison, then test
if the result is above or below zero. However, we decided
to not include the divisions of the algorithm because most
projects do not include it in floating point operations analy-
sis.

� Baseline Algorithm

Pivoting. The pivoting section of the algorithm
uses only comparisons, no additions or multiplica-
tions. At each iteration, the current diagonal mem-
ber must be compared to every cell below it. This
means by summing along the entire matrix, there will
be���

�
�� � �, or � ���

��� comparisons.

Division. This step involves one division, then a
multiplication for every cell below the diagonal. Since
we are ignoring divisions, these n divisions do not
count toward our operations count. However, the� ���

���
multiplications will be counted.

Update. Finally, the update step will have a mul-
tiplication and an addition for each of the lower right-
hand matrix’s cells. This means there will be� ���

�
�� � ��,

or � ���
��
�
�
��
��

� additions and multiplications.

Total Cost. By summing each step’s cost, the
total operations in the baseline algorithm is

�� �� � �� � .

� Blocked Algorithm

Factorize
� ��

and
� ��

. By using a small vari-
ation on the analysis of the baseline algorithm, the
number of operations in this step is

� ��� ��
��������� �
�����.
Solve for

� ��
. This is equivalent to solving

� ���
systems of equations, one for each column. This

equates to

� � �� � � �
� � �� operations.

Update. Once again, this is a matrix matrix mul-
tiplication, resulting in

� � ��� �
��� operations. An
important thing to notice is that this step contains the
bottleneck of this algorithm. When performed on the
entire array, this step is on the order of�
�� ��.

Total Cost. To compute the total cost of the blocked
algorithm, we first express a single step of the itera-
tion as
� � �� � ��

� � � �� �
�
������ �
�����

� � � � ��
. Then, we can denote

� � ! � �
and

compute�"���
�� � ��, which gives a final cost of

� � �� �
������ �
�����.

So the cost analysis of both algorithms is identical, and our
runtime analysis can be run on the same number of opera-
tions, irregardless of the algorithm used.

3. PROPOSED METHOD

As described previously, in these experiments, we tested the
performance of the basic and blocked LU factorization al-
gorithm presented in [1]. As noted previously, the lower
matrix update, the third step of the blocked algorithm, dom-
inates the recurrence. So for each of the different block-
sizes, we attempted to modify this step in a way to speed up
the performance.
Blocksize 2. Inside this update step, there is a matrix ma-
trix multiplication. In the basic blocked implementation,we
perform this multiplication with a simple triple loop. So as
our first modification, we blocked this matrix matrix multi-
plication, and unrolled the innermost loop completely. As
another optimization, we unrolled the innermost loop of the
blocked matrix matrix multiplication again, but organized
the multiplications and the additions so that the inner most
loop indexing would be reversed, thereby reusing several lo-
cal variables.
Blocksize 3. For the blocksize equal to 3, we again blocked
the matrix matrix multiplication and unrolled the innermost
loop to attempt to find some optimization.
Blocksize 4. Finally, with the blocksize equal to 4, we once
again blocked the matrix matrix multiplication into chunks
of 4x4 matrix matrix multiplications, which were blocked
into 2x2 sub-blocks. The major optimization for this exper-
iment was to utilize the vector instruction set provided with
the Intel C++ compiler icpc to accomplish this 4x4 matrix
matrix multiplication.

4. EXPERIMENTAL RESULTS

In this section, we will describe the results of our exper-
iments with several graphs. First, we will begin with the
setup of our experiment.
Setup. For these experiments, we ran the tests on our per-
sonal computer, a Dell Pentium M with Centrino technology
running a Mandrake operating system, a version of Linux.
Our processor is 1400MHz, with a maximum performance
of 1400 mega floating point operations per second.
Compiler Flags. To start our experiment, we wanted to an-
swer the question of which compiler optimization flag op-
tion would produce the best results. To do this, we decided
to run the baseline implementation of the LU factorization
algorithm across several different compiler flags. In addi-
tion, we used another C compiler, the Intel’s academic ver-
sion, icpc. From these results in Figure 1, one can see that
the O2 and O3 optimizations produce similar results for the
gcc compiler. In addition, it appears that for at least this
problem, the icpc compiler produces similar results across
all compile flags. From these results, we chose to run the
rest of our experiments with the command line options ”gcc
-O2 *.c”.

200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0

Input Size (n)

R
un

tim
e

(M
FL

O
PS

)

Baseline Factorization Across Varying Compiler Flags

gcc *.c
gcc −O1 *.c
gcc −O2 *.c
gcc −O3 *.c
icpc *.c
icpc −O1 *.c
icpc −O2 *.c
icpc −O3 *.c

Fig. 1. LU Baseline Algorithm plotted across varying com-
piler optimization flags.

Basic vs. Blocked. Next, we wanted to see how the blocked
LU factorization algorithm would perform against the base-
line implementation. We tested the baseline implementation
against blocksizes of 2, 3, and 4. From this graph in Figure

200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0
60

0

Input Size (n)

R
un

tim
e

(M
FL

O
PS

)

Baseline
Blocksize = 2
Blocksize = 3
Blocksize = 4

Fig. 2. LU Baseline algorithm plotted against the Blocked
algorithm with varying block sizes.

2, it is easy to see that blocking does improve the MFLOP
rate as the blocksize increases. From the baseline imple-
mentation to a blocksize of 4, we saw almost a speedup of
4 times the baseline MFLOP rate.
Blocksize 2. Next, we tried to speed up the bottleneck por-
tion of the blocked algorithm with a blocksize of 2. We

wanted to see how important this bottleneck was to the MFLOP
rate, and if we could improve it at all. From this graph in

200 400 600 800 1000

0
20

0
40

0
60

0

Input Size (n)

R
un

tim
e

(M
FL

O
PS

)

Blocksize = 2
Blocksize = 2 fully unrolled
Blocksize = 2 inverted k

Fig. 3. LU blocked algorithm with block size of 2 plotted
against several optimizations.

Figure 3, it appears that the modifications we made did not
seem to have a large impact on the code’s runtime. Both
optimizations had slight impacts for lower values of n, but
each leveled off to very similar results to the basic blocksize
2 code.
Blocksize 3. Next, we tried to speed up the bottleneck por-
tion of the blocked algorithm with a blocksize of 3. Once

200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0
60

0

Input Size (n)

R
un

tim
e

(M
FL

O
PS

)

Blocksize = 3
Blocksize = 3 fully unrolled

Fig. 4. LU blocked algorithm with block size of 3 plotted
against a loop unrolled implementation.

again, as shown in Figure 4, the modified code did not have
a large impact on our results. we attributed this failure to the

amount of scalar variables needed to unroll the code. The
number of scalar variables most likely ran past the number
of registers, and were being pushed onto the stack.
Blocksize 4. Next, we tried to speed up the bottleneck por-
tion of the blocked algorithm with a blocksize of 4. To
do this, we unrolled the matrix matrix multiplication, and
blocked this code into blocks of 2. In addition, we utilized
the vector code library to improve the runtime performance.
To utilize this library, we needed to run these tests with the
Intel C++ compiler, icpc, with the command line of ”icpc
-O2 *.c”. The unrolled code showed some improvement

200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

Input Size (n)

R
un

tim
e

(M
FL

O
PS

)

Blocksize = 4
Blocksize = 4 unrolled − 2x2 blocking
Blocksize = 4 with vector instructions

Fig. 5.

from Figure 5, but very little. However, the vector code
showed outstanding improvement. This version of our code
showed approximately a 7 times improvement.

5. CONCLUSIONS

From the graphs, it seems obvious that the use of the blocked
algorithm provides significant improvement from the base-
line algorithm. However, our improvements on these blocked
versions did not seem to show much impact, apart from the
use of the vector library. These vector instructions gave a
great improvement on our code. As a future experiment,
these vector instructions could be applied to the rest of the
blocked algorithm. In addition, larger blocksizes could be
tested to see which blocksize gives optimal improvement.

6. REFERENCES

[1] J. Demmel,Applied Numberical Linear Algebra, Siam,
1997.

