
OPTIMIZING ALL-PAIRS SHORTEST-PATH ALGORITHM USING VECTOR
INSTRUCTIONS

Sungchul Han and Sukchan Kang

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT

In this paper, we present a vectorized version of the Floyd-
Warshall shortest-path algorithm to improve the performance.
The vectorized implementation utilizes the single instruc-
tion multiple data (SIMD) instructions available in Intel ar-
chitectures. The experimental results show that the instruction-
level parallelism obtained by simultaneously processing 8
nodes combined with unrolling yields between 2.3 and 5.2
times of speed-up over the existing blocking algorithms,
which only utilize cache locality.

1. INTRODUCTION

1.1. Motivation
The rapid increase in the transistor count and the speed in
the modern processors have resulted in a variety of state-
of-the-art features in modern processors such as pipelining,
simultaneous multithreading, vector instructions, and cache
hierarchy. However, straight-forward implementations of
many numerical algorithms cannot fully exploit these fea-
tures. Thus, for the best result, the original algorithm has
to be modified to utilize these features. The appropriate ap-
proach often depends on the specific algorithm to be opti-
mized.

In this paper, we aim to develop a new implementa-
tion of the Floyd-Warshall algorithm by utilizing the vector
instructions available in state-of-the-art architectures. The
Floyd-Warshall algorithm is a representative shortest-path
algorithm that is widely used in computer networks, com-
puter aided design for integrate circuits, and many academi-
cal research problems. Since most shortest-path algorithms
are similar in nature, the knowledge gained in this paper
from the FW algorithm will be useful to find the set of op-
timization techniques that can be applied to other shortest-
path algorithms in general.

1.2. Previous Work and State-of-the-Art
The all-pairs shortest-path problem is a well-known prob-
lem in graph theory in which we want to find the shortest

The authors would like to thank Dr. Markus Püschel and Dr. Franz
Franchetti for technical guidance and advice throughout the course 18799.

path for all source-destination pairs within a given graph. If
there are no negative-length cycles, the solution can be ob-
tained by the Floyd-Warshall (FW) algorithm[1]. A num-
ber of papers discussed the optimization of the FW algo-
rithms in terms of cache performance. Venkataraman et
al.[3] presented a tiled implementation of the FW algorithm
and reported a performance improvement of a factor of two
against the straight-forward implementation. Further im-
provements were made by Joon-Sang Park et al.[2], who
presented a recursive implementation with block data lay-
out (BDL) that maps a tile of data, instead of a row, into a
contiguous memory.

Both of these papers concentrated on the exploitation
of data locality to improve the cache performance, but nei-
ther of these worked on the parallel execution of multiple
instructions. The blocking techniques previously developed
in these papers will be our starting point to make further
improvements.

1.3. Overview
First, the performance of the blocked versions of the FW
algorithms was analyzed for the test platform of our choice.
These include the straight-forward iterative implementation
(FWI), the recursive version (FWR), and the tiled version
(FWT). Further experiments were conducted using unrolling,
which is known to be a very effective technique for matrix-
matrix multiplication and the fast Fourier transforms[4, 5].
Finally, we modified the algorithm to use vector instruc-
tions, specifically Intel single instruction multiple data ex-
tensions 2 (SSE2), which provides eight parallel arithmetic
or logical operations on 16-bit integer data[6]. To find the
best vectorized implementation, the performances of vari-
ous unrolled versions were compared.

1.4. Organization of the Paper
The rest of the paper is organized as follows. Section 2
gives some backgrounds on the original FW algorithm and
the blocked versions that are used to improve the cache per-
formance. In Section 3, the setup for experiments will be
explained with some preliminary results on the existing al-
gorithms. In Section 4, the proposed vectorized FW algo-



rithm is introduced. The experimental results of the pro-
posed algorithm will be presented in Section 5. Finally, we
offer conclusions in Section 6.

2. NECESSARY BACKGROUND

2.1. Floyd-Warshall Algorithm

The input of the FW algorithm is a N × N distance matrix
D, in which the element D(i, j) is initialized to the weight
of the edge from node i to node j, or set to ∞ when there
is no connection from i to j. The FW algorithm runs for
N iterations and yields the output matrix D, where D(i, j)
now indicates the length of the shortest path from i to j.
Thus, it is an in-place algorithm that overwrites the result
of each iteration to the input matrix. If the reconstruction
of the actual shortest path is desired, an additional output
matrix V is also generated. The element V (i, j) indicates
the most recently added intermediate node between i and j.
The pseudo-code for the straight-forward implementation is
shown in Table 1.

function FW(D, V)
for k=1:N
for i=1:N

for j=1:N
sum = D[i][k]+D[k][j];
if (sum<D[i][j])

D[i][j] = sum;
V[i][j] = k;

Table 1. Floyd-Warshall by definition

The operation of the straight-forward implementation
(FW) can be intuitively understood. The initial content of
the distance matrix correspond to the shortest paths for all
pairs without allowing any intermediate nodes. In the first
iteration (k = 1), node 1 is allowed as a potential interme-
diate node for all source-destination pairs. Accordingly, the
direct path from i to j, for all i and j, is compared with
the new path from i via 1 to j, and the shorter path is cho-
sen. Then, the nodes k = 2, . . . , N are successively consid-
ered as a potential intermediate node. In the kth iteration,
the existing shortest path from i to j that does not contain
node k is compared with the path from i via k to j. After
N iterations, all possible intermediate nodes will have been
considered, and the distance matrix will contain the lengths
of the shortest paths. Whenever a new path containing the
newly added intermediate node k is chosen, the node num-
ber k is stored at the corresponding position in the matrix
V . The actual shortest paths can be reconstructed by re-
cursively gathering the nodes recorded in the the matrix V .
This matrix will be referred to as the “via” matrix in the rest
of the paper.

2.2. Blocked Floyd-Warshall Algorithms
First, we define a generalized version of the FW algorithm
called FWI as in Table 2. Unlike FW, FWI accepts three ma-

trices A,B and C, and writes the result to the matrix A. Ob-
viously, FWI(D,D,D,V) yields the same result as FW(D,V).

function FWI(A, B, C, V)
for k=1:N

for i=1:N
for j=1:N
sum = B[i][k]+C[k][j];
if (sum<A[i][j])

A[i][j] = sum;
V[i][j] = k;

Table 2. Generalized Iterative FW Algorithm (FWI)

The triple-loop structure of the FWI seems very similar
to matrix-matrix multiplication. In matrix-matrix multipli-
cation, the order of i, j, and k does not affect the final result,
and thus can be freely changed. In FW, on the other hand,
k has to be the outermost loop to produce correct results
while i and j can be done in any order. However, under cer-
tain conditions, the k-loop can be put inside the i-loop and
j-loop, making blocking possible. By appropriate reorder-
ing of i, j, and k, FWI(A,B,C,V) with N × N matrices
can be performed in a blocked manner, i.e., FWI(A,B,C,V)
with P × P matrices are invoked (N/P )2 times, where P
is the subblock size after blocking. Therefore, it is possible
to perform FWI recursively, and the recursive version will
be referred to as FWR for the rest of the paper. The code
for FWR is shown in Table 3. There is also a tiled version
of FW, which is simply a recursion by only one level. This
will be referred to as FWT. (In this section, only the final
form of the blocked algorithm was introduced. Refer to [2]
for a proof.)

function FWR(A, B, C, V)
N : input size;
P : subblock size;
A[i,j] : PxP submatrix (i,j) of A, i.e.,

A[(i-1)*P+1:i*P][(j-1)*P+1:j*P];
M = N/P;
if (N<=Base)

FWI(A,B,C,V);
else

for k=1:M
FWR(A[k,k],B[k,k],C[k,k],V[k,k]);
for j=1:k, j!=k
FWR(A[k,j],B[k,k],C[k,j],V[k,j]);

for i=1:k, i!=k
FWR(A[i,k],B[i,k],C[k,k],V[i,k]);

for i=1:k, i!=k
for j=1:k, j!=k

FWR(A[i,j],B[i,k],C[k,j],V[i,j]);

Table 3. Blocked Recursive FW Algorithm (FWR)

When the via matrix is not included, the operations counts
for all variants of the blocked versions are the same as that
of the original FW, which is 2N 3 integer additions, counting
a comparison and a minimum operation as two operations.
For the via matrix, however, it is not clear what should be
the operations count. Basically, it involves one comparison,
but if this can be shared with the minimum operation for the
distance matrix as shown in Table 2, there is no arithmetic
cost. If minimum operators are provided by the compiler,



we may need a separate comparison for the via matrix since
the result of the implicit comparison in the minimum opera-
tor may not be accessible. This is true when we use the vec-
tor minimum operators. Furthermore, we had to use three
logical operators (i.e., four integer operations in total) for
the via matrix in efforts to reduce the branch instructions in
the compiled codes. For fair comparison between conven-
tional algorithms and the vectorized algorithms to follow,
we assumed an operation count of 6N 3 integer operations
for any FW algorithm with the via matrix.

3. PRELIMINARY EXPERIMENTS

3.1. Setup of Experiments

For the experiments with the FW algorithms, a number of
directed graphs with random weights from 1 to 10 have been
generated using a graph generation package provided by R.
Johnsonbaugh and M. Kalin[7]. The number of nodes N
in the graphs was constrained to be power of two, and the
number of edges in the graph was set to N 2/3.

The target system was a laptop with a 1600MHz Pentium-
M processor equipped with 32KB I-cache, 32KB of D-cache,
and 1MB of L2-cache. The main memory was 1GB. As a
preliminary step for optimizing the FW algorithm, the op-
timal parameters for blocked algorithms were searched for
by experiments. The optimum parameters found were as
follows.

• For FWR, blocking factor of 2 and base size of 256
• For FWT, tile size of 256

The data type of the distance matrix D and the via matrix
V was defined as 16-bit integers. This makes it possible
to vectorize eight integer additions with the SSE2 128-bit
registers. Also, since we assumed that each edge has an
integer weight from 0 to 10, 16 bits are usually enough to
represent the longest path for fairly large graphs.

The number of 16-bit words that can fit in the L2 cache
is 512K words, and each FWI(A,B,C) involves three ma-
trices. Since

√

512k/3 = 418, the optimal base size (or
tile size) of 256 roughly corresponds to the L2 cache. This
indicates that the blocking should be performed for the L2
cache instead of the L1 cache since the miss penalty of L2
cache of Pentium-M processor is very small.

3.2. Performance of the Blocked Algorithms
With the optimal parameters, the performance of the blocked
algorithms was compared against the straight-forward im-
plementation FWI. As shown in Fig. 1 with the via matrix
and in Fig. 2 without via matrix, the recursion-all-the-way
strategy yields the poorest performance due to the excessive
recursion overhead. On the other hand, regardless of the via
matrix, the blocked algorithms FWT and FWR show similar
performances as the simple FWI, and begin to outperform
for fairly large input sizes (N = 210 or more). This is due to
the small data width (2-byte) in comparison with large cache

5 6 7 8 9 10 11
200

300

400

500

600

700

800

900

1000

1100

1200

NB = log
2
N

M
IP

S

Performance vs. NB

FWI

FWT

FWR−all−the−way

FWR

Fig. 1. Comparison of blocked algorithms (with via)

5 6 7 8 9 10 11
50

100

150

200

250

300

350

400

450

500

NB = log
2
N

M
IP

S

Performance vs. NB

FWI

FWT

FWR−all−the−way

FWR

Fig. 2. Comparison of blocked algorithms (without via)

memory. We could not measure the performance for larger
input sizes due to excessive runtime, but we could measure
the performance with different data types. With 32-bit in-
tegers, the blocked algorithms were about 20% better than
FWI. Therefore, for the input sizes considered in this paper,
i.e., N = 25, . . . , 211, with 2-byte integer types, there is
little chance of improving the performance by solely block-
ing.

3.3. Effect of Unrolling
Initially, the performance of unrolling was measured for
FWI, FWR, and FWT where the 2×2 and 4×4 micro-blocks
were unrolled. However, the performance of any unrolled
FW algorithm was only about 60% of their non-unrolled
counterparts. We do not know exactly why unrolling has
this adverse effect, but it seems to aggravate the branch
penalty caused by the ’if’ clause in the FW algorithm. In
assembly level, there are conditional load statements (a.k.a.



predicated move mnemonics) that can implement the FW
algorithms without incurring a branch. However, we could
not consistently prevent the compiler from using branch in-
structions within the C++ language syntax.

4. PROPOSED OPTIMIZATION

For higher cache performance, we divided the input matrix
into small tiles of appropriate size and performed each tile
with vectorized FW routines. Then, unrolling was applied
again to alleviate the loop overhead.

4.1. Vector Instructions
The Intel SSE2 instruction set allows the packing of eight
16-bit integers into one 128-bit register. The minimum op-
erator for the distance matrix (A, B, orC) could be simply
implemented with a vector minimum intrinsic. However,
the via matrix (V ) was performed using ’compare’, ’and’,
’andnot’, ’or’ intrinsics with an aim to eliminate branch in-
structions. The main idea is that the conditional assignment
Y = (A < B)?C : D can be done by two instructions
M = A < B; Y = M ·C +M̄ ·D, where M is a mask with
all ones or all zeros depending upon the result of A < B,
M̄ is the one’s complement of M , ’·’ is a logical AND op-
erator, and ’+’ is a logical OR operator.

4.2. Tiling
A modified FWI with 1x8 vector instructions (FWI-1x8)
was designed, where the innermost loop variable j incre-
ments by 8. For each value of k and i, eight operations cor-
responding to eight j’s are performed simultaneously. With
FWI-1x8, the performance dependency on the tile size was
also changed. To find out the optimal tiling parameters, the
performance of one-level tiling was measured for various
tile sizes. And then, the optimal tile size for two-level tiling
was searched for with the inner tile size set to the previously
found value. The result is as follows.

• Tile size 1: 256 (block size after first tiling)
• Tile size 2: 64 (block size after second tiling)

The two-level tiled FW that invokes FWI-1x8 for the base
case will be denoted as FWT2-1x8.

4.3. Unrolling
To see the effect of unrolling for vectorized codes, the mid-
loop variable i was unrolled. We designed three unrolled
versions with the unrolling factor of 2, 4, and 8, which
will be called FWT2-1x8-U2, FWT2-1x8-U4, and FWT2-
1x8-U8, respectively. In addition, we also designed FWT2-
1x16-U8, where the j variable is unrolled by a factor of 16
using two 1x8 vector instructions and the i variable is un-
rolled by a factor of 8 as before.

5. EXPERIMENTAL RESULTS

We used the gcc 3.3.4 compiler for all of the non-vectorized
algorithms since it gave better performance. For vectorized
codes, we used Intel icc 8.1 compiler for the same reason.

5 6 7 8 9 10 11
800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

NB = log
2
N

M
IP

S

Performance vs. NB

FWT (TSZ=256)

FWT2−1x8 (TSZ=256,64)

FWT2−1x8−U2

FWT2−1x8−U4

FWT2−1x8−U8

FWT2−1x16−U8

Fig. 3. Performance of vectorized algorithms (with via)

By experiment, the best optimization flags were chosen as
follows.

• For gcc, “-O2 -march=pentium-m”
• For icc, “-O3”
The performance of the vectorized algorithms with the

via matrix is shown in Fig. 3 along with the conventional
blocking algorithm (FWT). It can be seen that between 95%
and 130% of speed-up against FWT has been obtained with
the non-unrolled version (FWT2-1x8), and between 133%
and 170% of increase with the unrolled version (FWT2-
1x8-U8). This graph also shows that the higher unrolling
factor improves the performance except that the horizon-
tally unrolled version (FWT2-1x16-U8) was only as good
as the one unrolled by a factor of 2 (FWT2-1x8-U2).

Even greater improvements were observed for the case
without the via matrix, as shown in Fig. 4. For the unrolled
version (FWT-1x8), the increase was between 231% and
359%. Unlike the previous case with the via matrix, the best
performance was observed from the most unrolled version
(FWT2-1x16-U8), which gave an increase between 369%
and 417%.

In the results shown in Fig. 3 and 4, the reasons for the
improvements by the unrolled versions (FWT2-1x8) seem
to be twofold: the parallel execution by vectorization and
the elimination of branch instructions. Also, it was shown
that, unlike the conventional algorithms, unrolling signifi-
cantly improved the performance.

6. CONCLUSIONS

In this paper, we showed that the performance improvement
for the FW algorithm by blocking was not noticeable for in-
puts sizes of up to 211. In addition, the results showed that
unrolling did not improve performance for the conventional
blocked FW algorithms. We presented a vectorized FW im-
plementation that improved the performance by a factor of



5 6 7 8 9 10 11
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

NB = log
2
N

M
IP

S

Performance vs. NB

FWT (TSZ=256)

FWT2−1x8 (TSZ=256,64)

FWT2−1x8−U2

FWT2−1x8−U4

FWT2−1x8−U8

FWT2−1x16−U8

Fig. 4. Performance of vectorized algorithms (without via)

between 2.3 and 5.2 over the conventional blocked algo-
rithms. It has been also observed that unrolling works ef-
fectively for vectorized versions. Since the results shown
in this paper were acquired from Intel Pentium-M platform
only, the experiments on other platforms seem to be an es-
sential step to make this research a complete one. For an-
other further step, we hope to extend the proposed tech-
niques to other routing algorithms that are more popular in
networking.

7. REFERENCES

[1] D. Bertsekas and R. Gallager, Data Networks, Prentice
Hall, Upper Saddle River, 1992.

[2] Joon-Sang Park, Michael Penner, and Viktor K.
Prasanna, “Optimizing graph algorithms for improved
cache performance”, IEEE Trans. Parallel and Dis-
tributed Systems, vol. 15, pp. 769-782, Sep 2004.

[3] G. Venkataraman, S. Sahni, and S. Mukhopadhyana,
“A blocked all-pairs shortest-paths algorithm”, in Proc.
Scandinavian Workshop algorithms and Theory, 2000.

[4] A. C. McKellar and E. G. Coffman, Jr., “Organizing
matrices and matrix operations for paged memory sys-
tems”, Commun. ACM, vol. 12, issue 3, pp. 153-165,
1969.

[5] M. Wolfe, “Iteration space tiling for memory hierar-
chies”, in Third SIAM Conference on Parallel Process-
ing for Scientific Computing, Dec 1987.

[6] Intel C++ Compiler User’s Guides, http:

//support.intel.com/support/performance

tools/c/linux/v8/c_ug_lnx.pdf.

[7] R. Johnsonbaugh and M. Kalin, a graph gener-
ation package, http://condor.depaul.edu/

˜rjohnson/source/graph_ge.c


