
OPTMIZED SOFTWARE DEFINED RADIO 
 

Bryan Chen, Vijay Chandrasekhar 
 
 

ABSTRACT 
 
A software radio is a radio whose channel modulation 
waveforms are defined in software. A software radio 
receiver is an embedded platform that can support 
different communication standards.  All the base-band 
processing is performed on a DSP.   On the receiver side, 
the base-band processing encompasses matched filtering 
of the incoming data, frame synchronization, frequency 
offset and phase offset correction, timing offset correction 
and finally the demodulation of the digital base-band 
signal. For the system in consideration, the base-band 
processing is done on a TI DSP (TMSC6701), a DSP with 
stringent speed and memory constraints.  For the software 
radio to function in real-time, it is imperative that each of 
the software components be highly optimized for time and 
space. This paper focuses on optimizing the three core 
modules of a software radio: filtering, correlation and 
frequency offset correction.   A variety of optimization 
techniques such as Karatsuba, rhombing and overlap add 
using Spiral FFTs were employed to optimize the software 
components mentioned above. We managed to achieve a 
speed of 5X by employing the above-mentioned 
optimizations.  We conclude on the basis of our timing 
results and analysis that a real-time implementation of 
our software defined setup is achievable. 
 

1. INTRODUCTION 
 
Promising wireless applications can be broken down into 
three groups: cellular communications, wireless LANS, 
and defense/aerospace technologies.  Each of these 
employs a different communications standard. All these 
contemporary communications signal an industry wide 
desire for Radio Frequency (RF) technology that can be 
rapidly upgraded, reconfigured, and deployed at minimal 
cost and retaining use of existing technologies.  However, 
most RF technology in use today requires specially 
designed hardware to process signals and data at sufficient 
speeds for effective use.  The concept of the software 
radio is to replace these high-priced components with 
object-oriented software architectures that not only meet 
the intense computation requirements of digital 
communications, but allow dynamic reconfiguration and 
minimal cost, on-demand upgrades of products.  
 

Once hardware can be reconfigured on-demand, an entire 
cellular network could be upgraded by distributing a new 
program, in much the same manner that software patches 
and updates respond to virus threats.  Another potential 
use of this technology is creating bridges between 
networks operating on different standards. 
 
1.1 Motivation 
   

Our software radio uses a TMSC6701 TI DSP for 
base-band signal processing.   The TMSC6701 has 
stringent speed and memory constraints.  The peak 
performance that can be achieved on the TMSC6701 is 
900 MFLOPS.  Also, the TMSC6701 has only 1 M-bit of 
on-chip memory.  
 
For our software radio to operate real-time, several real-
time timing constraints need to be met. It was determined 
that the core software components (filtering, correlation, 
frequency offset correction) needed to be highly 
optimized, for the system to operate under real-time 
conditions. As a result of the TMSC6701 system 
limitations listed above, it is very important that the core 
software modules of the system be highly optimized so 
that our system can support high input data rates 
 
1.2 Previous Work and State-of-the-art 
 
 The TMSC6701 TI DSP embedded platform has been 
used by the FEAST [1] software radio project at Western 
Michigan University.   FEAST also highlights the 
importance of optimizing software modules for the 
embedded TI platform. FEAST uses C’6000 TI DSP 
profiling tools to identify inefficient code segments.   
These time-critical areas are then rewritten using linear 
assembly and optimized using TI assembly optimizers.   
      
 Another popular software radio platform is the open 
source GNU Radio [2].  The GNU Radio provides a 
library of signal processing blocks and details on how to 
link them together.   The programmer builds a radio by 
creating a graph where the vertices are signal processing 
blocks and the edges represent the data flow between 
them. The signal processing blocks are implemented in 
C++. Conceptually, blocks process infinite streams of data 
flowing from their input ports to their output ports 
 



1.3 Overview 
 
Our software radio receiver set-up consists of a Maxim 
RF2410 evaluation board, AD6644 Analog to Digital 
Converter (ADC), AD6620 Digital Down Converter 
(DDC) and a TMSC6701 TI DSP.   All the base-band 
signal processing is performed on the TI DSP.     
 
We began by implementing the core modules of the SDR 
on a Pentium 4 3.2 GHz processor.  We identified the 
critical software modules of our software radio 
implementation i.e. filtering, correlation for frame 
detection and frequency offset correction.  The filtering 
module was best optimized by implementing rhombing 
and loop-unrolling optimization techniques on the 
straightforward convolutional implementation.   The 
correlation module was best optimized by implementing 
the overlap-add FFT algorithm using smaller 1024 
Cooley-Tukey FFTs generated by SPIRAL [3] for our x86 
test platform.   We determine the frequency offset 
statistically by searching over a range of possible 
frequency offset values.  This module required a large 
number of constants to be pre-computed and stored in 
memory.  Hence, this module was optimized extensively 
for both time and space. We optimized this module using 
basic optimization techniques like loop-unrolling and 
scalar replacement.  We reduced the number of constants 
so that they could all be stored on the TMSC6701 on-chip 
memory.     
 
We used the results that we obtained for our x86 
implementation to draw conclusions on whether or not 
real-time constraints could be met on the TMSC6701 DSP 
platform.    Based on our timing analysis, it was 
determined that meeting real-time constraints was 
achievable on the TI DSP embedded platform for our 
software radio set-up. 
 
1.4 Organization of paper 
 
In Section 2, we provide a detailed description of the 
hardware components and core software modules of our 
SDR.   In Section 3, we provide details of the embedded 
DSP platform used in the SDR.  Section 4 includes details 
of our implementation and the optimization techniques 
that are used.  A detailed timing analysis is provided in 
this section.   In Section 5, we provide details of porting 
the preliminary x86 implementation to the embedded DSP 
platform.   Section 6 concludes with a summary of our 
results. 
 
 
 
 
 

 
 

2. BACKGROUND OF SOFTWARE DEFINED 
RADIO 

 
2.1 Hardware Set-up 
 

The Maxim 2410 Evaluation boards are used for 
receiving and transmitting RF signals.   The up conversion 
from IF to RF and the down conversion from RF to IF is 
done using Analog Devices evaluation boards AD6620 
and AD6623 respectively.   Analog Devices evaluation 
boards AD6644 and AD9723 are used for A/D and D/A 
respectively.  The base-band processing is carried out on a 
TMSC6701 DSP (Texas Instruments). 
 

Our current goal is to optimize the software 
components on a x86 platform and then port it to the 
Texas Instruments DSP platform (TMS C6701).     The 
results obtained by implementing the core software 
modules on a x86 platform are discussed in Section 4. 
     
2.2 Software components 
 

Figure 1: Core modules of a software radio 
 
The key software components of the SDR are illustrated 
in the diagram above.    For our test system, the data is 
processed in blocks of 7500 complex samples.   The 
maximum block size that can be stored in the on-chip 
memory of the TI DSP is 8000 complex samples.    Also, 
the test data that we use is 10 times over-sampled.  
      
The input to the above system is 7500 QPSK (Quadrature 
Phase Shift Keying) complex samples and the final output 
of is 7500/5*2 = 3000 information bits.  
 
2.2.1 Filter 
 
The input to this block is 7500 complex samples and the 
output of this block is 7500 complex samples after the 
filtering process.  The incoming data is first filtered to 
remove noise components. The filter in consideration here 
is a raised cosine matched filter, which is given by the 
equation below: 



 
where T is the sampling period and alpha is the roll-off 
factor.   The Matlab function firrcos is used to generate a 
100 tap filter.     
 
2.2.2 Correlation 
 
The input to this block is 7500 complex samples obtained 
from the filtering block. The output of this block is the 
starting index of a frame.    
 
The incoming data is received in packets.  The start of 
each frame or packet is determined by correlating the 
incoming data sequence with a known correlation 
sequence.  The correlation sequence used here is a QPSK 
sequence consisting of only symbols 00 and 11.  
 
2.2.3 Frequency offset and phase offset correction 
 
The correlation block above is used to determine the 
starting index of a frame.  The header of each frame is a 
known BPSK (Binary Phase Shift Keying) sequence.    
The header is used to estimate the frequency offset.   The 
input to this block is 630 samples (header of one frame) 
and the output of this block is an estimate of the 
frequency and phase offset of the data. 
 
The down conversion of the RF signal to the base-band 
domain is not ideal and hence leaves a frequency offset in 
the base-band signal.  This module corrects the offset 
empirically by trial and error of a range of possible values 
of frequency offset and phase offset.  The set of frequency 
offset values over which the search is done is a function 
of the carrier frequency. 
 
Let the BPSK header sequence of length 630 be given by 
x[n].  The values for w0 and alpha that minimize the 
standard deviation of the scalar product x[n] and 
exp(j*w0*n+alpha) are the frequency offset and phase 
offset respectively.   This can be characterized by the 
equation below: 
{alpha, w0 | min(std deviation ( x[n].*exp(j*w0*n + alpha 
for n = 0: 629))}, for a range of values alpha and w0 
determined empirically. 
 
2.2.4 Timing offset correction 
 
The input to this block is 7500 complex samples obtained 
after correction of the phase and frequency offset in the 
module 2.2.3.    The output of this block is 7500/M 

complex samples where M is the over-sampling factor. 
 
The incoming data is over-sampled by a factor of 5 or 10  
for all our test cases.  This module corrects the timing 
offset by sampling the over-sampled data at the right 
instants in time.  
 
2.2.5 Demodulation 
 
The input to this block is 7500/M complex samples 
obtained after the correction of the timing offset in 
module  
2.2.4. The output of this block is the final 7500/M*2  
information bits in the signal.  Our SDR is primarily used 
for demodulating ASK/PSK data.  The modulation 
scheme used in all the test cases in consideration is  QPSK 
IS-95.  
       
     Finally, the timing offset correction and demodulation 
modules are O(N) run-time operations.  These two 
modules take significantly less time than the first three 
modules and are hence ignored in the timing analysis in 
the following sections.  Also, equalization for removing 
multi-path components in the signal is also a core 
component of a SDR.  Since, the test environment is free 
of multi-paths, the equalization module is also ignored.  
 

3. TI DSP PLATFORM 
 
The TI C6701 DSP is a VLIW processor with up to eight 
parallel operations occurring on each clock cycle. The TI 
C701 operates at a clock frequency of 167 MHz.  The 
peak performance that can be achieved on this platform is 
900 MFLOPS.  A performance of 700 MFLOPS can be 
sustained on this platform [4]. 
 
The TI C6701 has stringent on-chip memory constraints 
too.  This embedded platform has 1 Mbit of on-chip 
memory, 256 kb of  synchronous 133 Mhz SBSRAM and 
32 Mb of 100 Mhz  synchronous SDRAM [5].  However, 
access to data in the SBSRAM/SDRAM is significantly 
slower than accessing on-chip memory. Hence, several 
optimizations for space have been performed to try to fit 
all the pre-computed constants in the TI on-chip memory. 

 
4. IMPLEMENTATION AND OPTIMIZATIONS 

 
Since our system consists of modular components, we 
decided to optimize each component individually since an 
individual component’s performance shouldn’t affect 
another component’s performance.  The MFLOPS were 
computed using the pin tool [6]. 
 
All of the implementations were compiled and run on a 
Intel Pentium 4 with 8K L1 cache and 512K L2 cache.  



The code was compiled with gcc version 3.2.1 with –O4 
flags.  The experiment below was carried out on an input 
data stream of 66 kilo symbols per second. The IF carrier 
frequency is set to 1 MHz.   Processing of data is done in 
blocks of 7500 complex samples and the size of each 
frame or packet is 288 bits.    
 
4.1 FIR Filter 
 
The matched filter in consideration is a FIR filter with 100 
taps.  The raised cosine filter is generated in Matlab using 
the command firrcoss.  The filter taps are constant for a 
given input data rate.  The FIR coefficients were hard-
coded into our C program.   If implemented by definition, 
filtering has O(LN)  run-time, where L is the number of 
taps and N is the size of the input vector.  On the other 
hand, if implanted using the Cooley-Tukey FFT, filtering 
takes   O(N log N)  run-time.   The optimizations 
performed on the filtering module include rhombing and a 
one-level Karatsuba implementation.   
 
The fact that the filter length is significantly shorter than 
the input implies that DFTs should be avoided as they 
would result in a lot of wasted space. 
 

Algorithm Time taken 
(seconds) 

MFLOPS 

By Definition 0.006 500 
Rhombing 0.005 615 
Unroll by 4 0.0025 1230 

Figure 2: Runtimes for Filter Module 
 

Figure 2 shows the runtimes of the different 
implementations.  We tried to implement the one- level 
Karatsuba approach, but it did not have any significant 
improvement in runtime due to the additional overhead of 
copying.  The rhombing implementation seemed to 
perform better than the implementation by definition due 
to cache locality.  This implementation is further 
improved by unrolling the inner for loops  in the 
rhombing implementation by a factor of 4. 
 
4.2 Correlation 
 
The correlation is used to detect the start of each frame. 
The length of the correlation sequence varies with input 
parameters like the data rate, over-sampling factor and the 
packet size.  The length of the correlation sequence is 
determined empirically.  The correlation sequence is a 
BPSK sequence, consisting only of the complex symbols 
00 and 11.     For the test data sets in consideration, the 
length of the correlation sequence varies from 630 to 
1260.    Correlation, by definition, has O(LN) run time, 
where L is the number of taps and N is the size of the 
input vector.  Like filtering, correlation has O(N log N) 

run time if implemented using the Cooley-Tukey 
Algorithm.    Since the length of the correlation sequence 
is significantly large, implementation using FFTs speeds 
up the run-time considerably.  The overlap-add FFT 
algorithm is used to improve the run-time.  The overlap-
add algorithm breaks down the correlation module into 
smaller Cooley-Tukey FFTs.  
 
This module was first implemented using the 
straightforward convolutional definition.  We then tried a 
variety of FFT implementations including FFTs using 
SPRIAL [3].  Next we finally exploited cache locality 
using the overlap-add FFT method along with further 
optimizations such as loop unrolling and scalar 
replacement. 
 

Algorithm Time taken 
(seconds) 

 MFLOPS 

Normal definition, 
convolution 

0.0074 1170 

Exact size Stanford 
DFT (8129) 

0.03840 963 

8192 DFT  
Spiral FFT 

0.00200 
 

872 
 

Overlap add using 
1024 Spiral FFT 

0.00500 755 

Overlap add 
unrolled 

0.002245 1172 

Figure 4: Runtimes for Correlation Module 
 
The runtimes for the implementations did get faster as we 
used FFTs.  Spiral generated FFTs proved to be faster 
than the Stanford FFT implementation [7].  We got further 
improvements in runtimes when we implemented overlap 
add along with unrolling.  One thing to note was an exact 
FFT size of 8129 caused performance to suffer a lot. 
 
4.3 Frequency Offset Correction 
 
The frequency offset can be defined as the difference 
between the frequency of a source and a reference 
frequency.  In a software defined radio, the data is down-
converted from RF to base-band and then processed on a 
DSP.   However, the down conversion process leaves a 
residue frequency offset, which needs to be corrected 
before the data can be demodulated correctly.    In our 
system, the frequency offset and phase offset are 
determined empirically.  For our software defined radio, 
the order of the frequency offset was first determined 
empirically as a function of the input carrier frequency.     
 
The frequency offset algorithm described in 2.2.3 takes 
O(LMN) run-time where L is the number of trial 



frequency offset values, M is the number of phase offset 
values and N the length of the header sequence.  
 
For the frequency offset correction module, we first 
implemented a straightforward brute force search over a 
large range of values.  Next, the search was done using 
fewer constants and some math simplifications. We next  
implemented the frequency offset correction algorithm 
using a smarter search determined empirically on the basis 
of the input carrier frequency.  This implementation 
searches over fewer values and yields the same results as 
the previous implementations.   For our software radio 
system, it was determined empirically that the frequency 
offset is of the order 10^-10 of the carrier frequency. This 
knowledge is used to search over a narrower range of 
values to determine an estimate of the carrier frequency 
offset.  Our last optimization uses a technique which 
decreases the number of constants that need to be stored 
from N to square root of N. 
 
Algorithm Time 

taken 
(seconds) 

MFLOPS Constants 

Brute force 
search over 200 
frequency values 

0.04 1891 126050 

Unroll by 8 0.03 2521 126050 
Smarter search 
based on input 
frequency 

0.007 2161 25250 

Reduce 
Constants 

0.014 1607 2050 

Figure 4: Runtimes for Frequency Offset Module 
The runtimes got faster as we implemented algorithms 
which used less floating point calculations.  Also it can be 
noted that unrolling helped to speed up runtime.  The 
biggest performance gain though was achieved from a 
smarter search which searched over a narrower range of 
values.  One also notices, that the run time increases by a 
factor of 2 when the number of constants is reduced from 
N to square root of N.  This happens because of a trade-
off between storing one constant in memory versus 
computing one during run-time. Due to the memory 
constraints of the DSP, the last implementation was 
chosen as the ideal one.  
 
 
 
 

5. MOVING TO THE TI PLATFORM 
Our total best runtime on our x86 platform took 0.0025 + 
0.002245 + 0.014 = 0.018745 seconds.  The DSP has a 
maximum flop rate of 900 MFLOPS [1] which is roughly 
a factor of about 3 slower than our maximum x86 
MFLOPS.  Interpolating this, we predict that the runtime 

on the DSP should take about 0.056 seconds.  The real-
time constraints that need to be met on the TI DSP based 
on some back of the envelope calculations are shown 
below: 
 
 
Data rate/ksps Upper bound on time to 

process one block of 7500 
complex samples 

66 0.114 
100 0.075 
250 0.03 
Based on these back of the envelope calculations, it seems 
that our current implementation on the DSP would  be 
able to support a constant input data stream of 100 kilo 
samples per second. 
 
 

6. CONCLUSION 
.  
Our software radio’s 3 main components were each 
optimized a significant amount and all had significant 
runtime improvements from the initial implementation.  
Using different algorithmic implementations, along with 
optimizing for cache locality and loop unrolling played an 
important role in the optimization process.  In an effort to 
fit as many pre-computed constants into the TI DSP on-
chip memory as possible, we implemented optimizations 
that reduced the number of constants that needed to be 
stored from the N roots of unity to square root of N roots 
of unity.  Our next step would be to port our code to the 
TMSC6701 DSP.  This will also involve relocating many 
of the constants we use to the different memory banks on 
the DSP. 
 

 
7. REFERENCES 

 
[1].Bazuin, Bradley. Flexible Electrical and 
SoftwareProgrammable Transceivers (FEAST) for 
Wireless Communications 
[2].GNU Radio: http://www.gnu.org/software/gnuradio/ 
[3]. Spiral Code Generator: http://www.spiral.net 
[4].TMS320c67x Floating Point DSP Performance: 
http://www.techonline.com/community/ed_resource/featur
e_article/20124 
[5]. TMS320C6201/6701 Evaluation Module: User’s 
Guide 
[6].Pin tool: http://rogue.colorado.edu/Pin/index.html
[7]. R.C. Singleton, Stanford Research Institute 
 

http://rogue.colorado.edu/Pin/index.html

	OPTMIZED SOFTWARE DEFINED RADIO 
	ABSTRACT 


